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Abstract: Stone-Wales operators interchange four adjacent hexagons with two  

pentagon-heptagon 5|7 pairs that, graphically, may be iteratively propagated in the 

graphene layer, originating a new interesting structural defect called here Stone-Wales 

wave. By minimization, the Wiener index topological invariant evidences a marked 

anisotropy of the Stone-Wales defects that, topologically, are in fact preferably generated 

and propagated along the diagonal of the graphenic fragments, including carbon nanotubes 

and graphene nanoribbons. This peculiar edge-effect is shown in this paper having a 

predominant topological origin, leaving to future experimental investigations the task of 

verifying the occurrence in nature of wave-like defects similar to the ones proposed here. 

Graph-theoretical tools used in this paper for the generation and the propagation of the 

Stone-Wales defects waves are applicable to investigate isomeric modifications of 

chemical structures with various dimensionality like fullerenes, nanotubes, graphenic 

layers, schwarzites, zeolites. 
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1. Introduction 

On hexagonal systems like graphene layers, graphene nanoribbons (GNR’s) and carbon nanotubes 

(CNT’s), the isolated pentagon–heptagon single pair (also called 5|7 pair, 5|7 defect, 5|7 dislocation or 

the pearshaped polygon [1]) and pentagon–heptagon double pair 5/7/7/5 arising from the celebrated 

Stone-Wales transformation (SW transformation or SW rotation [2]) are important structural defects 

largely influencing chemical, mechanical, and electronic properties [3]. Figure 1 represents the general 

Stone-Wales transformation SWq/r (Figure 1a), associated to the most studied variants, the SW6/6 in 

graphene (Figure 1b) often called Stone-Thrower-Wales rotation and the SW5/6 in fullerenes (Figure 1c) 

the so-called pyracylene rearrangement. 

Figure 1. (a) Local transformation SWq/r changes a group of four proximal faces with p, q, 

r, s atoms in four new rings with p–1, q+1, r–1, s+1 atoms; (b) On the graphene layer 

(p=q=r=s=6) SW6/6 reversibly flips four hexagons in a 5|7 double pair; (c) SW5/6 

reversible flip on the fullerene surface.  

 

Scope of this theoretical article is to illustrate the topological properties of SW rotations in 

hexagonal systems investigating, in particular, the family of isomeric SW transformations able to 

generate and propagate 5|7 defects in graphenic fragments, graphene nanoribbons and carbon 

nanotubes. We present initially (see next paragraph) an original graphic tool able to modify the 

hexagonal patterns of carbon atoms under the action of subsequent SW bond rotations generating 5 and 

7-membered carbon rings. Our tool operates in the dual space and, more generally, it creates various 

kinds of defective layers with no limitations on the composition of the modified rings that may have 

any number of members m = 3, 4, 5, 6, … The topological simulations confirm moreover that SW 

double pairs 5/7/7/5 possess a peculiar anisotropy, matching, from a pure topological point of view 

similar ab-initio results on sp
2
-carbon systems recently appeared in literature (see [4] and related).  
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Another interesting topological effect is also introduced, consisting in the diffusion of a 5|7 pair in 

the hexagonal network as a consequence of iterated SW rotations; this topology-based mechanism that 

produces a linear rearrangement of the hexagonal mesh is called here the SW wave. Whereas 

mechanically exfoliated monolayer graphene is structurally (almost) perfect in atomic scale [3], 

graphene layers produced by chemical vapour deposition (CVD) techniques present a parade of defect 

structures, which are due to the growth on substrates with surface defects and/or other irregularities. 

New stable carbon allotropes have been therefore proposed [5] by considering the presence of 

periodical arrangements of defective building blocks such as Stone-Wales defects, inverse Stone-Wales 

defects, vacancy defects, and other structural modifications of the pristine hexagonal plane. The first 

experimental observation of a particular type of linear topological defects is reported in [6] where 

extended chains of octagonal and pentagonal sp
2
-hybridized carbon rings, detected by scanning 

tunneling microscopy (STM) images, function as a quasi-one-dimensional metallic wire and may be 

the building blocks for new all-carbon electronic devices. This important experimental finding 

enforces meanwhile the theoretical role of the SW waves, that are in principle structurally simpler than 

the pentagons-octagons chain reported in [6], as a possible hexagonal inter-grain spacing (see the 

visualizations given in Section 2) between graphenic fragments. Molecular mechanics simulations 

show that in graphene the presence of cylindrical curvature energetically facilitates such a split of the 

5/7/7/5 SW dislocation dipole [4], assigning to this class wave-like atomic-scale rearrangements a 

fundamental role in nanoengineering of graphenic lattices. One has however to notice that other 

transmission electron microscopy (TEM) detailed measurements point out [7,8] that the migration and 

the separation of the pentagon-heptagon pairs does not happen on planar graphene membranes where 

the 5–7 defects relax back reconstructing the original graphene lattice. These experiments indicate that 

extended dislocation dipole, favored by the presence of structural strain, preferably appear in curved 

graphitic structures or systems like CNT or fullerene molecules. In epitaxial graphene grown at high 

temperatures on mechanically-polished SiC(0001), a characteristic 6-fold “flower” defect results from 

STM measures [9,10]. We note that the observed rotational grain boundaries is conveniently 

describable as radial type of the SW wave suggesting that the wave-like theoretical mechanism 

presented here, may have a general applicability.  

The SW rotations applied in the present studies derive from the general (Figure 1a) Stone-Wales 

local and isomeric transformation SWp/r varying the internal connectivity of four generic carbon rings 

made of p, q, r, s atoms to produce four new adjacent rings with p–1,q+1,r–1,s+1 atoms without 

changing the network of the surrounding lattice. SWp/r reversibly rotates the bond shared by the two 

rings p and r, preserving both, the total number of carbon atoms 

v = p + q + r + s-8 

and the total number of carbon-carbon bonds 

e = v + 3 

On the graphene ideal surface, made only of hexagonal faces, the SW6/6 rotation transforms four 

hexagons in two 5|7 adjacent pairs (Figure 1b) symbolized in literature [4,11] as 5/7/7/5 defect and 

also quoted as the SW defect or the dislocation dipole. We remember here that the SW rotations play 

an important role in connecting the isomers of a given Cn fullerene with different symmetries. In the 
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crucial case of the C60 fullerene, its 1812 isomers are grouped by the pyracylene rearrangements SW5/6 

(Figure 1c) in 13 inequivalent sets (the larger one consisting of 1709 cages) connected to the 

buckminsterfullerene (C60-Ih) through one or more SW transformations [12], leaving 31 isomers 

unconnected to any of these sets. This limitation has been overcome by the introduction of non-local 

generalized Stone-Wales transformations [13] to generate the whole C60 isomeric space starting from 

just one C60 isomer. 

Theoretical investigations based on plane-wave density-functional methods [12] set to no less than 

6.30 eV the uphill energy barrier dividing the buckminsterfullerene from the SW connected isomer 

with C2v symmetry; this barrier reaches 9 eV for hexagonal systems like nanotubes or large graphene 

portions. Using the extended Hückel method, enlarging the relaxation region around the SW defect, it 

can be found that the formation energy of a SW defect considerably decreases to 6.02 eV for a flat 

graphene fragment case. This result has been verified by using ab initio pseudopotential [14]. This 

result seems to preclude the formation of any SW 5/7/7/5 defect in nature, but as it has been  

reported [15,16] that this barrier drops rapidly, reducing to 2.29 eV the creation barrier of SW rotations 

due to the catalyzing action of interstitials defects or ad-atoms present in the hexagonal networks. 

Pentagon–heptagon pairs have been predicted to be stable defects also in important theoretical  

articles [17,18] showing that energetic particles, as electrons and ions, generate 5|7 pairs in graphite 

layers or CNT’s as a result of knock-on atom displacements. On the experimental side, accurate  

high-resolution TEM studies made on single-walled carbon nanotubes [19] or electron-irradiated 

pristine graphene [20] document in situ formation of SW dislocation dipoles. TEM measures also 

evidence [21] stable grain boundaries with alternating sequence of pentagons and heptagons that show 

the relevance of wave-like defects during graphene edge reconstruction. 

Extended theoretical investigations [22] by means of first-principles density-functional 

computations, demonstrate that, on graphene layers, the dislocation dipole 5/7/7/5 defects become 

particularly stable - in comparison to other possible local defective structures as haeckelite units with 

three pentagons and three heptagons—when the two 5|7 pairs are separated by lattice vacancies in the 

number of ten or over. Moreover, recent literature (see the excellent review [3]) on GNR’s constructed 

from haeckelites considers systems with SW defects as new hypothetical nano-architectures with 

fascinating applications in electronics. Isolated 5|7 pairs could also appear at grain boundary in 

graphene fragments, changing their edge termination and electronic properties, forming hybrid GNR’s. 

These hybrids exhibit half metallicity in the absence of an electric field, and could be used to transport 

spin-polarized electrons; which could be a step forward in new spintronic devices. 

Considering the above experimental and theoretical evidences of the structural stability of 

hexagonal systems with 5|7 defects, this theoretical note aims to investigate the topological, wave–like 

mechanisms leading the diffusion (or annihilation) of pentagon–heptagon pairs.  

Figure 2 shows the fundamental topological operations for the generation and the propagation of 

SW waves in the graphene lattice. The first rotation SW6/6 (Figure 2a) of the chemical bond (arrowed) 

shared by the two hexagons creates the two 5|7 pairs (the SW defect 5/7/7/5). The second operator 

SW6/7 turns the bond between the heptagon and the nearby shaded hexagon and inserts the 6|6 couple 

of shaded hexagons between the two original 5|7 pairs (this topological defect is also referenced in [4] 

as 5/7/6/6/7/5), leading to the overall structural effect of initiating the propagation of the SW wave 

along the dotted direction (Figure 2b). Iterated transformations SW6/7 will successively drift the 5|7 
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pairs in the lattice (along the dotted directions in (Figure 2b), producing the topological SW  

wave (SWW). 

Figure 2. (a) SW6/6 originates two 5|7 pairs (in gray); (b) SW6/7 splits the pairs by 

swapping one of them with two nearby hexagons (shaded). Dotted SW6/7 pushes the SW 

wave in the dashed direction; (c-d) Mechanisms (a,b) in the graphene dual plane. Hexagons, 

pentagons, heptagons are represented by white, shaded, black circles respectively. 

 

SWW mechanism provides theoretical support to recent studies on graphenic structures. Some 

authors [1] emphasize the importance of 5|7 dislocations monopole at the grain boundaries of 

polycrystalline graphene, stating that these defects cannot be annealed by any local reorganization of 

the lattice. SW waves allow 5|7 dislocations also to anneal by just involving surrounding 6|6 pairs and 

moving backward, being all transformations in Figure 2 completely reversible.  

Theoretically, SW defects and isolated 5|7 pairs have been extensively investigated in [11] where 

ab-initio simulations of the electronic properties are reported; authors conclude that a single  
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heptagon–pentagon dislocation is a stable defect whereas the Stone-Wales adjacent pairs are 

dynamically unstable. These two conformations may easily find a unified description considering that 

these lattice defects correspond to different propagation steps of the same SW wave.  

Considering the very rich variety and complexity of all possible paths that SW waves may describe 

on the graphenic surface, involving a variable numbers of 5|7 pairs, this article just focuses on the 

topological properties exhibited by the linear propagation of the basic SW defect, the 5|7 double pair 

(Figure 1b). This choice limits the SWp/r rotations to just to the operators SW6/6 and SW6/7. In spite of 

the apparent simplicity of our model, SW waves present an evident and marked topological anisotropy 

immediately signaled by the Wiener index [23] W(N) of the graphenic system under study (graphene 

fragments, CNT’s and GNR’s).  

It is really important to note that, more and more, various anisotropic effects are evidenced in 

literature [3,4,24–27] by applying first-principle techniques to the determination of the energy-stress 

behaviors of different configurations of SW defects on graphene nanotubes and nanoribbons. Similar 

effects appear in the theoretical distribution of magnetic dipoles in defective carbon metallic  

nanotubes [28]. A comparison between our findings and literature results is also provided.  

2. Generation and Propagation of Stone-Wales Rearrangements  

Before modeling the SW wave propagation, it is worth introducing the graphic tool used to generate 

this kind of defects on the hexagonal structures. The effectiveness of such an algorithm derives from 

the choice to operate in the dual topological representation of the graphenic layers as shown in  

Figure 3. Also the topological modeling will be conducted in the dual space. 

Figure 3. Dual representation of the graphene lattice obtained by replacing each hexagonal 

face by the central 6-connected graph node. Graphene plane is then equivalently tiled by 

hexagons (direct space) or by starred nodes (dual space). The x-periodic (y-periodic) direct 

graphene nanoribbon has the armchair (zig-zag) orientation. The framed unit cell has been 

used to build this 4 × 7 graphenic fragment. 
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The generation of the SW rotations is greatly facilitated by considering the dual representation of 

the graphene layer by assigning to each hexagonal face the corresponding 6-connected (starred) vertex. 

Figure 3 visually overlaps both direct and dual graphene representations showing their topological 

equivalency: each pair of adjacent faces in the direct lattice corresponds in fact to a pair of bonded 

nodes in the dual graph and vice versa. The graphene fragment is taken in its armchair orientation 

along x and Figure 3 evidences a 4 × 7 dual lattice and its unit cell. In the dual lattice the generic SWp/r 

simply rotates the internal edge between the p- and the r-connected nodes, making the study of the SW 

rearrangement very simple and suitable for automatic procedures.  

On the graphene dual layer the SW6/6 rotation (Figure 2c) then changes four 6-connected nodes 

(white circles) into two 5-connected (shaded circles) and two 7-connected (black circles) vertices, 

matching the standard transformation in the direct lattice of four hexagons in two pentagons and two 

heptagons (Figure 2a). Moreover 5|7 pairs may also migrate in the graphene lattice, pushed by 

consecutive Stone-Wales transformations of SW6/7 type that rotate, in the dual space, the vertical edge 

between the 6-, and the 7-connected vertices, driving the diagonal diffusion of a 5|7 pair in the 

graphene lattice. Figure 2d gives more details about the swapping mechanism between the 5|7 and the 

6|6 couples. The repeated action of the SW6/7 operator originates the topological SW wave in both 

lattice representations. 

Figure 4a represents the diagonal diffusion of the SW wave (dislocation dipole) after four SW6/7 

rearrangements, evidencing with the dashed arrows the increasing distance between the two 5|7 pairs 

of the original SW6/6 dislocation. At each step, the pentagon (shaded circle) and the heptagon (black 

circle) interchange their locations with those of two hexagons (white circles) producing the diagonal SW 

wave, a large dislocation dipole that modifies the landscape of direct and dual lattices (Figures 4a and 4b). 

Being η the size of the dislocations (e.g., η equals the number of 6|6 pairs included between the two 5|7 

pairs) both examples in Figure 4 have size η = 4, assuming size η = 0 for the basic SW6/6 rotation of 

(Figures 1b). Equivalently, η equals the number of SW6/7 rearrangements used to generate the 

dislocations in both spaces. A SW wave produces (Figure 4b) a characteristic hexagonal inter-grain 

spacing, isomeric to the pristine graphene layer that represents therefore a good theoretical model for 

the boundary between graphenic fragments. 

The dual space represents the natural arena for studying all sorts of SW flips, avoiding the graphical 

difficulties that one usually encounters in redistributing the carbon atoms and bonds in the direct lattice. 

One easily generates the vertical SW wave by applying in fact our graphical algorithm to the diagonal 

edges of the graphene dual lattice (Figure 5). SW transformations produce also very complex 

rearrangements of the graphenic layer including isolated pentagonal nanocones, as the very little one 

on top of the diagonal SW wave in Figure 4c, creating fullerenic-like regions in the graphenic  

plane [29]. The proposed dual space graphical algorithm appears therefore capable to handle complex 

combinations of general Stone-Wales rotations SWp/r to create novel classes of isomeric rearrangements, 

with rings made of various numbers of atoms, of fullerene (dimensionality D = 0), nanotubes (D = 1), 

graphenic structures (D = 2) or crystals (D = 3) as schwarzites or zeolites. 
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Figure 4. (a) Diagonal SW wave (dislocation dipole) in the dual graphene layer after the 

generation and four propagation steps (size η = 4); at each step (dashed arrows) SW6/7 

swaps the pair made by one pentagon (dashed circle) and one heptagon (black circle) with 

two connected hexagons (dotted circles); dotted arrow indicates the next available translation 

of the 5|7 pair; (b) The topological modification (a) originates, in the direct lattice, a 

hexagonal inter-grain spacing (dashed rings); (c) After a few more SW rotations, an isolated 

pentagon (arrowed), forming a small nanocone, is generated. 

 

Figure 5. SW vertical wave in the dual graphene layer after four propagation steps (dashed 

arrows); SW6/7 swaps the pentagon (dashed circle) heptagon (black circle) pair with two 

hexagons (dotted circles); dotted arrow indicates the next possible translation of the 5|7 

pair, induced by a SW6/7 rotation of the hexagon-heptagon diagonal dashed bond. The SW 

wave generates anti-diagonal hexagons-hexagons bonds with respect to the unrotated one. 

 

(b) (a) (c) 
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The some-how arbitrary definition of diagonal or vertical direction assigned to the SW waves on 

closed surfaces of graphenic fragments, nanoribbons, nanotubes considers the armchair graphene 

orientation selected in Figure 3. Topologically, the extension of the region interested by the dislocation 

dipole may be arbitrarily enlarged by applying more and more SW6/7 rotations.  

Energetically, the situation is more articulated; as explained in the next Section, the lattice shows in 

fact anisotropic reactions to the propagation of the SW waves along different directions when a closed 

graphene fragment is considered. 

In summary, on the armchair-oriented graphene (Figure 3), the simplest propagation mechanisms 

available for the 5|7 pairs are: 

• Diagonal SW wave, Figure 4: SW6/7 rotates the vertical bond of the graphene dual lattice 

between the 6-connected node and the 7-connected node of the diffusing 5|7 pair, causing the 

diagonal drift of the pair and the creation of a new horizontal hexagon-hexagon bond (Figure 

2d gives some more details); 

• Vertical SW wave, Figure 5: SW6/7 rotates the diagonal bond of the graphene dual lattice 

between the 6-connected node and the 7-connected node of the diffusing 5|7 pair, with the overall 

effect to vertically shift the pair, generating a new anti-diagonal hexagon-hexagon bond. 

Above diffusion processes apply to an isolated 5|7 dislocation monopole as well to the 5|7 double 

pair arising from a SW6/6 rearrangement. In the following we mainly study this latter case, focusing on 

the mechanisms leading to the creation of diagonal or vertical extended dislocation dipoles in the 

graphene lattice.  

It is worth noting that similar topological tools are used in other disciplines like in Biology where  

wave-like diffusion mechanisms model cells proliferation processes [30].  

In concluding this Section we observe that from the pure topological point of view one may 

consider each lattice configuration illustrated in this work as the result of an instantaneous transformation 

caused by a single, non-local SW rotation. This new class of transformations represents a further 

generalization, potentially infinite, of the non-local rearrangements early proposed [13] to generate the 

entire isomeric space of a given Cn fullerene starting for a limited number of inequivalent cages. 

3. Theoretical Basis of the Topological Model 

The nature of the SW waves is investigated here by means of graph-theoretical methods only, 

postponing the correlations to the energy of the system to future specific investigations on the subject. 

According to this approximated model, we assign to the Wiener index W(N) topological invariant [23] 

the role of topological potential of the system, subject to a minimum principle. This approximated 

model assumes that similar carbon systems have the tendency to arrange their structures minimizing 

the invariant W seen as the inteartomic, long-range potential among all pairs of carbon atoms. 

Heuristically, this approach is confirmed from the fact that, for example, among 1812 non-isomorphic 

C60 fullerene isomers, just the physically stable isomer with icosahedral symmetry C60-Ih and isolated 

pentagons corresponds to the isomer with the minimum W value W = 8340 and the highest topological 

compactness. This concept is naturally extended to the isomers of any other carbon chemical systems. Our 

simulations aim therefore for the most-compact structures seen as very good candidates for chemically 
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stable systems. [29,31] present recent successful applications of this method to graphenic layers and C66 

fullerene. Computationally, our assumption implies the topological minimum principle on W: chemically 

stable structures have to be searched among the configurations minimizing the W index. 

Current selection of the topological potential, privileges transformations of the graphene layer, 

increasing the system compactness. The same method has been recently used in simulating the 

growing steps of fullerene-like nanostructures on the graphene dual plane [29] or the stability of the 

C66 fullerene [31] with a good match with the experimental results. 

For a chemical graph with N vertices, W comes from the half-sum of the chemical minimum 

distances dij between all pairs of vertices Vi, Vj in the lattice: 

∑=

ij

ijdNW
2

1
)(  (1) 

On large structures, this distance-based invariant shows a remarkable polynomial behavior. For 

infinite one-dimensional graphs [32] (polymers) it grows as W(N) ≈ N
3
, being that a particular case of 

the polynomial-like general formula W(N) ≈ N
s
 (with s =2 + 1/D) recently conjectured for large  

D-dimensional lattices [29]. In case of D = 2 structures, the general closed form for the Wiener index is: 
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For the dual graphene lattice in Figure 3 the following elegant relation holds [33]: 
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where N represents the number of vertices of the dual lattice e.g., the number of hexagonal faces in the 

graphenic layer. Periodic boundary conditions are imposed on the dual graphenic lattices along the 

current study. The influences of the topological potential W on the propagation of the diagonal and 

vertical SW waves in the graphene dual lattice are discussed in the next paragraph.  

4. Results and Discussions 

Initially, the topological propagation of the SW waves has been simulated on the G10 dual graphene 

lattice consisting of 10 × 10 unit cells with N = 200 starred vertices and periodic boundary conditions. 

Equation (3) attributes to that ideal closed lattice G10 the reference value of the topological potential 

WG10 = 116,500.  

Let’s now generate and propagate the diagonal SW wave (in Figures 4a and 4b).  

The first diagonal SW6/6 flip produces the 5|7 double pair (Figures 2a and 2c) and decreases the 

lattice potential to W = 116,015, easily derivable from the direct computation of the graph chemical 

distances according to the definition (1). In our approximated model this negative 0.42% variation of 

the Wiener index represents the topological gain induced by the creation of a diagonally oriented  

SW defect.  

The subsequent SW6/7 rotation (Figures 2b and 2d) translates one of the 5|7 pair with a further 

decrease of the topological potential being W = 115 870 for the step η = 1 on G10. This behavior is 

confirmed at each propagation steps of the diagonal SW wave, augmenting the topological stability of 

the system. The reduction of the topological potential W follows an almost linear trend, see the top 
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curve of (Figure 6a) where the number of propagation steps η is reported, the η = 0 case corresponding 

to the creation of the diagonal dislocation SW dipole with topological potential W = 116,015. The 

result evidences the tendency of the 10 × 10 graphene fragment to allow the unlimited topological 

diffusion the 5|7 pair along the diagonal direction with the creation of extended diagonal dislocation 

dipoles (Figures 4a and 4b). This characteristic of the diagonal SW wave has a pure topological root 

strongly correlated to the connectivity properties of the pentagon-heptagon pairs embedded in the 

hexagonal mesh and to the edge effect induced by the fragment boundary.  

A different situation is encountered by simulating the vertical SW wave given in Figure 5 that 

moves in the graphene fragment parallel to the ribbons of hexagons, orthogonally to the armchair edges.  

It is worth noticing that both the heptagon-pentagon and hexagons-hexagons bonds generated by the 

vertical SW in the dual lattice form a π/3 angle with the armchair edge, see Figure 5. After the first 

SW6/6 vertical rotation, the two new 5|7 pairs give W = 116,425 for η = 0 with a little topological gain 

of just −0.06% compared to WG10 = 116,500 of the pristine lattice, smaller than the one (−0.42%) 

detected in the diagonal case. The successive SW6/7 flip starts the vertical propagation (η = 1) of one of 

the 5|7 defect, slight increasing the topological potential W = 116,426. This growth of the topological 

potential opposes to the vertical diffusion of the wave, being this barrier effect confirmed at the 

successive steps η = 2 and η = 4 by the increasing values W = 116,438 and W = 116,455. According to 

our simulations therefore the topological potential W obstacles (Figure 6a bottom) the diffusion of the 

vertical SW wave in the closed 10 × 10 graphene fragment G10.  

Figure 6. (a) Wiener index W for diagonal and vertical SW waves for the N = 200 dual 

closed graphene graph G10 as a functions of the wave propagation steps η. Diagonal 

dislocation dipoles (top) freely flow in the lattice, whereas the vertical ones (bottom) are 

stopped; (b) On the N = 1250 lattice G25, vertical SW waves (bottom) present a limited 

penetration (η = 6), being the diagonal penetration of the defects still favored (top). The 

ratio WG25/WG10 ≈ 97.77 between the W values for the two ideal lattices WG25 = 11390625 

and WG10 = 116500 follows the ratio of the N
5/2

 leading terms in Equation (3).  
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Figure 6. Cont. 

 

The influence of the size of the system on the reported topological anisotropy has been investigated 

by considering the closed dual graphene lattice G25 with N = 1250 starred nodes and starting value 

WG25 = 11,390,625. After the first SW diagonal rotation (η = 0) the potential passes to Wη=0 = 11,373,153 

with a gain in the topological stability of about −0.15%. One may also observe the vertical propagation 

on the G25 lattice suffuses that of G10 one in accordance with the idea that for infinite extended system 

it will resemble the potential well, within which the diagonal movement takes place. The N
5/2

 leading 

terms in Equation (3) give for the ideal lattices with N = 1250 and N = 200 an approximated ratio of 

97.66 that matches quite well the corresponding fraction WG25/WG10 ≈ 97.77 showing the fast 

convergence of the Wiener index polynomial (3).  

It is moreover very interesting to note that a similar ratio 98.03 characterizes also the previously 

reported W values of the defective G10 an G25 layers with one SW defect (η = 0) suggesting that an 

infinite set of exact polynomial functions W(N,η) may be found as generalization of the Formula (3) to 

describe—still with the N
5/2

 dependence—the topological potential W in presence of diagonal  

(or vertical) dislocation dipoles with variable size η; this topological property will be the subject of 

future investigations. 

Our simulations on the G25 lattice confirm that the diagonal propagation on large distances of the 

5|7 pair is still favored (Figure 6b top) whereas just a limited penetration (η = 5) of the vertical SW 

dislocation dipole is allowed (Figure 6b bottom). This behavior differs from the sharp potential barrier 

encountered by the vertical SW wave in the smaller G10 layer (Figure 6a bottom) and one may  

consider the limited vertical propagation in G25 as the tendency of the system to recover, for large N, 

the equivalency between the two plane directions that, for the infinite graphenic sheet, are  

totally indistinguishable. 

The anisotropy of the SW waves constitutes an important effect induced by the topological potential 

W on the closed graphenic systems studied here and complements the quantum mechanical origin, as 

suggested by recent researches on carbon nano-ribbons (GNR’s) [24,25]. 

The main achievements of the present results are summarized as follows: 
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• The tendency of the 5|7 defects [19,22] to cover large graphene regions find here a specific 

topological mechanism, the SW wave. It produces (via the initial SW6/6 flip) two 5|7 pairs and 

then separates them via consecutive SW6/7 rotations, creating an extended dislocation dipole; 

the reversed isomeric operation may also take place to annihilate distant 5|7 pairs;  

• In the graphene layer SW6/7 flips are also able to transport isolated 5|7 dislocation monopoles, 

by exchanging the heptagon and pentagon positions with those of two nearby hexagons; this 

drifting mechanism may also annihilate or modify the 5|7 pair in colliding with other structural 

defects (grain boundaries, other 5|7 pairs, generic q|r pairs, etc.). This result integrates previous 

studies [1] providing the invoked local annealing mechanism. 

The preference for diagonal SW waves perfectly matches results in literature [22] based on  

density-functional theoretical methods describing large (η ≥ 5) diagonal dislocations dipoles as 

particularly stable lattice configurations. These results provide a sound theoretical base to our 

approximated topological model. Further studies [4] based on molecular mechanics methods confirm 

the existence of anisotropic diffusion mechanisms in hexagonal systems in presence of multiple SW 

defects. In [4] is demonstrated that the diagonal distribution of multiple 5/7/7/5 dipoles is energetically 

favorable in graphenic lattices differently curved, including nanotubes. Moreover, the presence of the 

cylindrical curvature, associated to small tensile strain, causes [4] the diffusion of the defects with the 

insertion of a certain number η of 6|6 hexagon-hexagon pairs between the two 5|7 pairs of the initial 

5/7/7/5 SW dipole, showing that the diagonal propagation of the SW wave is energetically favored in 

(curved) hexagonal systems; these results represent a first theoretical validation our topological model 

and future investigations will be expressly devoted to correlate the topological potential represented in 

Figure 6 with the energy of planar and curved graphenic layers. We observe that the instrumental role, 

in curved graphitic structures, of the induced tensile strain in allowing the creation and the diffusion of 

dislocation dipoles has been recently confirmed by extended experimental and theoretical studies [7,8], 

stating that SW defects form in graphene with a lower probability than in CNT’s. 

A further confirmation of the existence of a preferred direction for the diffusion of the SW pairs 

comes from the distinct pentagon-pentagon bond energy predicted in [27] for the two different 

orientations of the SW defect in (5,5) single-walled carbon nanotubes; these results increase the 

chemical relevance of to the anisotropic propagation mechanisms of the Stone-Wales waves proposed 

here as an edge effect characterizing hexagonal nanosystems, as GNR’s, CNT’s and large graphene 

fragments like the above G25 lattice or the 6344 atoms square graphite sheets previously modeled in 

literature using molecular mechanics tools [4]. In ref. [28] the characteristic spatial patterns of electric 

current flow are studied in metallic arm-chair CNT’s depending on the orientation of the SW defect. 

The presence of rotating loop currents at nanometer scale is originated by quantum interference of 

conducting and quasi-bound states of electrons in the region of the dislocation dipole, and generates 

typical patterns of induced magnetic dipoles suitable for experimental detection. The distribution of the 

loop currents effectively distinguishes the symmetry of the SW defects suggesting that this anisotropic 

magnetic effect may occur in a general nanostructure, finding potentially application in novel electronic 

and magnetic nanodevices. Electronic and chemical properties of 5|7 or 5/7/7/5 topological defects are 

different from the ones exhibited by structural defects (e.g., the presence of single non-hexagonal rings 

surrounded by hexagonal rings) and, according to review [3], “their reactivity and detection needs to 
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be investigated theoretically and experimentally”. Article [21] gives an interesting evidence of a 

possible topological SWW mechanism, showing the linear defect that appears during the TEM edge 

reconstructions of a graphene sheet under the effect of a 80 kV transmission electron microscopy. The 

stable edge configuration, made of an alternating sequence of pentagons and heptagons, swaps with the 

pristine zigzag edge, the energy input from the beam proving the required activation energy. 

These studies reflect the relevance of the anisotropic behavior of SW defects and of the topological 

SW waves mechanism both introduced in this article. Further investigations, both theoretical and 

experimental, are required to fully understand the capability of the suggested mechanisms in producing 

stable edge reconstructions in graphenic systems. 

Finally, we notice that the present topological model is applicable to a wide class of chemical 

structures including systems with vacant atoms or other kinds of structural defects or to describe the 

evolution, driven by the topological potential W, of Cn nanoflakes in which 5|7 pairs are stable defects 

according to energy-minimization technique [34].  

5. Conclusions 

The proposed topological potential W effectively simulates the diffusion of 5|7 pairs in graphenic 

structures, favoring the new diagonal wave-like mechanism (SW wave) whose importance has to be 

assessed by future experimental and first-principle studies. The reported anisotropy represents a 

peculiar property of the SW defects population of graphenic limited portions, nanotubes, etc. 

The dual representation of the systems makes the generation and the characterization of SW waves 

remarkably easy, allowing the fast iteration of arbitrary sequences of generic SWq|r rotations to 

produce an endless, at the moment largely unknown, sequence of new isomeric configurations in 

chemical structures with various dimensionality like fullerenes, nanotubes, graphenic layers, schwarzites, 

zeolites.  

An open question remains regarding the infinite iteration of steps of SW wave propagation that 

should stabilize the net to a given energetic value, with observable character; this may be treated 

through combining the present topological approach with the path-integral or propagator  

information [35] contained therein and to provide the allied quantum information (e.g., the canonical 

partition function) that allows for evaluation of all thermodynamic functions, phase-transition included. 

Nevertheless, this will be the subject of forthcoming communications. 

Acknowledgements  

OO and MVP are grateful Hagen Kleinert and Axel Pelster form hospitality at Free University 

Berlin in the summer of 2011 where the paper was completed; MVP thanks Romanian CNCS-UEFISCDI 

(former CNCSIS-UEFISCSU) project TE16/2010-2011 within the PN II-RU-TE-2009-1 framework 

for supporting the present work and the German Academic Exchange Service (Deutscher 

Akademischer Austausch Dienst) for the fellowship DAAD/A/11/05356/322 allowing this paper being 

developed at Free University of Berlin.  



Int. J. Mol. Sci. 2011, 12 7948 

 

References 

1. Liu, Y.; Yakobson, B.I. Cones, pringles, and grain boundary landscapes in graphene topology. 

Nano Lett. 2010, 10, 2178–2183. 

2. Stone, A.J.; Wales, D.J. Theoretical studies of icosahedral C60 and some related species. Chem. 

Phys. Lett. 1986, 128, 501–503. 

3. Terrones, M.; Botello-Mendez, A.R.; Campos-Delgado, J.; Lopez-Urias, F.; Vega-Cantu, Y.I.; 

Rodriguez-Macias, F.J.; Elias, A.L.; Munoz-Sandoval, E.; Cano-Marquez, A.G.; Charlier, J.C.; et al. 

Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. 

Nano Today 2010, 5, 351–372. 

4. Samsonidze, Ge.G.; Samsonidze, G.G.; Yakobson, B.I. Energetics of Stone–Wales defects in 

deformations of monoatomic hexagonal layers. Comput. Mater. Sci. 2002, 23, 62–72. 

5. Lusk, M.T.; Carr, L.D. Nanoengineering defect structures on graphene. Phys. Rev. Lett. 2008, 100, 

175503:1–175503:4. 

6. Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I.I.; Batzill, M. An extended defect in graphene as a 

metallic wire. Nat. Nano 2010, 5, 326–329. 

7. Meyer, J.C.; Kisielowski, C.; Erni, R.; Rossell, M.D.; Crommie, M.F.; Zettl, A. Direct imaging of 

lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586. 

8. Kotakoski, J.; Meyer, J.C.; Kurasch, S.; Santos-Cottin, D.; Kaiser, U.; Krasheninnikov, A.V. 

Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. 

Rev. B 2011, 83, 245420:1–245420:6. 

9. Rutter, G.M.; Crain, J.N.; Guisinger, N.P.; Li, T.; First, P.N.; Stroscio, J.A. Scattering and 

interference in epitaxial graphene. Science 2007, 317, 219–222.  

10. Meyer, J.C.; Kurasch, S.; Park, H.J.; Skakalova, V.; Künzel, D.; Groß, A.; Chuvilin, A.;  

Algara-Siller, G.; Roth, S.; Iwasaki, T.; et al. Experimental analysis of charge redistribution due 

to chemical bonding by high-resolution transmission electron microscopy. Nat. Mater. 2011, 10, 

209–215.  

11. Carpio, A.; Bonilla, L.L.; de Juan, F.; Vozmediano, M.A.H. Dislocations in graphene. New J. 

Phys. 2008, 10, 053021:1–053021:13. 

12. Kumeda, Y.; Wales, D.J. Ab initio study of rearrangements between C60 fullerenes. Chem. Phys. 

Lett. 2003, 374, 125–131. 

13. Babic, D.; Bassoli, S.; Casartelli, M.; Cataldo, F.; Graovac, A.; Ori, O.; York, B. Generalized 

Stone-Wales transformations. Mol. Simul. 1995, 14, 395–401. 

14. Zhoua, L.G.; Shib, S.Q. Formation energy of Stone–Wales defects in carbon nanotubes. Appl. 

Phys. Lett. 2003, 83, 1222–1224. 

15. Collins, P.G. Defects and Disorder in Carbon Nanotubes. In Oxford Handbook of Nanoscience 

and Technology: Frontiers and Advances; Narlikar, A.V., Fu, Y.Y., Eds.; Oxford University Press: 

Oxford, UK, 2011. 

16. Ewels, C.P.; Heggie, M.I.; Briddon, P.R. Adatoms and nanoengineering of carbon. Chem. Phys. 

Lett. 2002, 351, 178–182. 

17. Nordlund, K.; Keinonen, J.; Mattila, T. Formation of ion irradiation induced small-scale defects 

on graphite surfaces. Phys. Rev. Lett. 1996, 77, 699–702. 



Int. J. Mol. Sci. 2011, 12 7949 

 

18. Krasheninnikov, A.V.; Nordlund, K.; Sirviö, M.; Salonen, E.; Keinonen, J. Formation of  

ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 2001,  

63, 245405:1–245405:6. 

19. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in 

graphene layers. Nature 2004, 430, 870–873. 

20. Kotakoski, J.; Krasheninnikov, A.V.; Kaiser, U.; Meyer, J.C. From point defects in graphene to 

two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505:1–105505:4. 

21. Chuvilin, A.; Meyer, J.C.; Algara-Siller, G.; Kaiser, U. From graphene constrictions to single 

carbon chains. New J. Phys. 2009, 11, 083019:1–083019:10. 

22. Jeong, B.W.; Ihm, J.; Lee, G.-D. Stability of dislocation defect with two pentagon-heptagon pairs 

in graphene. Phys. Rev. B. 2008, 78, 165403:1–165403:5. 

23. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, 

Germany, 2000. 

24. Bhowmick, S.; Waghmare, U.V. Anisotropy of the Stone-Wales defect and warping of graphene 

nano-ribbons: A first-principles analysis. Phys. Rev. B. 2010, 81, 155416:1–155416:7. 

25. Huang, B.; Liu, M.; Su, N.; Wu, J.; Duan, W.; Gu, B.-L.; Liu, F. Quantum manifestations of 

graphene edge stress and edge instability: A first-principles study. Phys. Rev. Lett. 2009, 102, 

166404:1–166404:4. 

26. Zeng, H.; Leburton, J.P.; Xu, Y.; Wei, J. Defect symmetry influence on electronic transport of 

zigzag nanoribbons. Nanoscale Res. Lett. 2011, 6, 254:1–254:6. 

27. Dinadayalane, T.C.; Leszczynski, J. Stone–Wales defects with two different orientations in (5, 5) 

single-walled carbon nanotubes: A theoretical study. Chem. Phys. Lett. 2007, 434, 86–91. 

28. Im, J.; Kim, Y.; Lee, C.-K.; Kim, M.; Ihm, J.; Choi, H.J. Nanometer-scale loop currents and 

induced magnetic dipoles in carbon nanotubes with defects. Nano Lett. 2011, 11, 1418–1422. 

29. Cataldo, F.; Ori, O.; Iglesias-Groth, S. Topological lattice descriptors of graphene sheets with 

fullerene-like nanostructures. Mol. Simul. 2010, 36, 341–353. 

30. Pyshnov, M.B. Topological solution for cell proliferation in intestinal crypt. J. Theor. Biol. 1980, 

87, 189–200. 

31. Vukicevic, D.; Cataldo, F.; Ori, O.; Graovac, A. Topological efficiency of C66 fullerene. Chem. 

Phys. Lett. 2011, 501, 442–445. 

32. Bonchev, D.; Mekenyan, O. A Topologycal approach to the calculation of the π-electron energy 

and energy gap of infinite conjugated polimers. Z. Naturforsch. 1980, 35A, 739–747. 

33. Cataldo, F.; Ori, O.; Graovac, A. Graphene topological modifications. Int. J. Chem. Model. 2011, 

3, 45–63. 

34. Kosimov, D.P.; Dzhurakhalov, D.P.; Peeters, F.M. Carbon clusters: From ring structures to 

nanographene. Phys. Rev. B 2010, 81, 195414:1–195414:12. 

35. Putz, M.V. Path integrals for electronic densities, reactivity indices, and localization functions in 

quantum systems. Int. J. Mol. Sci. 2009, 10, 4816–4940. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


