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Abstract: The α1A-adrenergic receptor (α1A-AR) antagonist is useful in treating  

benign prostatic hyperplasia, lower urinary tract symptoms, and cardiac arrhythmia.  
Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were 

performed on a set of α1A-AR antagonists of N-aryl and N-nitrogen class. Statistically 

significant models constructed from comparative molecular field analysis (CoMFA) and 
comparative molecular similarity indices analysis (CoMSIA) were established based on a 

training set of 32 ligands using pharmacophore-based molecular alignment. The leave-one-

out cross-validation correlation coefficients were q
2

CoMFA = 0.840 and q
2

CoMSIA = 0.840. 
The high correlation between the cross-validated/predicted and experimental activities of  

a test set of 12 ligands revealed that the CoMFA and CoMSIA models were robust 

(r2
pred/CoMFA = 0.694; r2

pred/CoMSIA = 0.671). The generated models suggested that electrostatic, 
hydrophobic, and hydrogen bonding interactions play important roles between ligands and 

receptors in the active site. Our study serves as a guide for further experimental 

investigations on the synthesis of new compounds. Structural modifications based on the 
present 3D-QSAR results may lead to the discovery of other α1A-AR antagonists. 
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1. Introduction 

Adrenergic receptors are members of the G-protein coupled receptor superfamily of membrane 

proteins that mediate effects of the sympathetic nervous system through the actions of epinephrine and 

norepinephrine and control the equilibrium of the cardiovascular system. The receptors have been 
classified into three classes (α1, α2, and β) with three members in the α1 subfamily, namely, α1A, α1B, 

and α1D [1]. Many physiological processes, including smooth muscle contraction, myocardial inotropy 

and chronotropy, and hepatic glucose metabolism are related to the α1A-adrenergic receptors  
(α1A-ARs); thus, clinical applications of these receptors are of interest to many scientists. The α1A-AR 

antagonists are considered as the first-line of therapy for lower urinary tract symptoms associated with 

clinical benign prostatic hyperplasia (BPH), because they have proven efficacy in mediating smooth 
muscle contraction in the human prostate [2]. 

Reports on the application of QSAR analysis to α1-AR species are relatively limited [3–6]. The 

SAR of 39 α1 adrenoceptor antagonists derived from the antipsychotic sertindole with respect to 
affinity was investigated using a 3D-QSAR approach based on the GRID/GOLPE methodology  

by Balle’s group [7]. Montorsi reported quantitative size and shape affinity/subtype selectivity 

relationships derived from a large set of very heterogeneous α1a-, α1b-, and α1d-adrenergic receptor 
antagonists [8]. Maciejewska et al. reported a structure-activity analysis of hexahydro and 

octahydropyrido-(1,2-c)-pyrimidine derivatives as α1A-AR antagonists, using comparative molecular 

field analysis (CoMFA) [9]. Li’s and Xia’s groups provided insights into α1A-adrenoceptor antagonists 
through self-organizing molecular field analysis in the same year [10]. Shakya et al. reported  

3D-QSAR models based on a series of 25 dihydropyridine class compounds using the APEX-3D 

program, which can automatically identify biphore (pharmacophore) sites, and 3D-QSAR modeling [11]. 
Compared with SOMFA studies, the model has strong predictability, particularly for compounds with 

enantio-selectivity. Last year, Gupta reported on studies based on CoMFA and comparative molecular 

similarity indices analysis (CoMSIA) performed on a set of diverse α1A-AR antagonists to understand 
the relationship between structure and antagonistic activity [12]. This study was based on common 

structural alignments. The generated models suggest that steric, electrostatic, and hydrophobic 

interactions play important roles in structure-activity analysis.  
The superimposition of compounds in an alignment is crucial in 3D-QSAR studies. Many studies 

have reported that pharmacophore alignment is a useful tool that is superior to others [13,14]. Genetic 

algorithm with linear assignment of hypermolecular alignment of datasets (GALAHAD®) is regarded 
as a superior tool for molecular alignment compared with classical common structural alignment [15], 

especially for compounds that share few structural commonalities. GALAHAD uses the proprietary 

technology of Tripos® and generates pharmacophore alignments and hypotheses from sets of ligand 
molecules using a genetic algorithm [16]. The relationship between the chemical structures and the 

biological function studies based on the pharmacophore alignments of α1A-adrenergic receptor using 
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GALAHAD has yet to be reported. Based on the alignment obtained, CoMFA and CoMSIA models 

were developed. The information derived from these models will be helpful in predicting the activity 
and guiding the design of other α1A-AR antagonists. 

2. Materials and Method 

2.1. Data Collection  

All α1A-AR antagonist structures were collected from recent reports (Figure 1 and Table 1) [17–25]. 

The selected compounds have diverse structural features and cover a wide range of biological activity, 

spanning over four orders of magnitude (0.1–630 nM). The training and test sets were classified to 
ensure that both sets could completely cover the whole range of biological activity and physicochemical 

and structural diversity studied. The need for models to be tested on a sufficiently large test set  

(25%–33% of the total samples) to establish a reliable QSAR model had been previously suggested [26]. 
Therefore, the dataset, which was composed of 44 compounds, was divided into training (32 

compounds) and test (12 compounds) sets. All data from various references were from the same 

laboratory. The affinity constants of compounds were evaluated by radio-receptor binding assays. [3
H] 

Prazosin was used to label cloned human α1-ARs expressed in CHO cells and WB4101 was used as a 

reference compound. Ki values were derived from IC50 using the Cheng-Prusoff equation [27]. All  

Ki values were expressed as pKi values (−log Ki). 

Figure 1. Structures of the α1A-AR antagonists used in the 3D-QSAR study. 

 

Table 1. Structures of the training set molecules used in the 3D-QSAR study. 

Series 
Compd. 

No.    R1 R2 R3 X Ki(nM) pKi 

I 

1 4-Cl -OCH3 -OCH3 O 0.251 9.60 
2 2-CH3 -OCH3 -OCH3 O 1.58 8.80 
3 3-CH3 -OCH3 -OCH3 O 0.398 9.40 
4 4-CH3 -OCH3 -OCH3 O 1.99 8.70 
5 3-OCH3 -OCH3 -OCH3 O 1.99 8.70 
6 4-OCH3 -OCH3 -OCH3 O 1.99 8.70 
7 H -OCH3 -OCH3 S 3.16 8.50 
8 H -OC2H5 -OC2H5 O 3.16 8.50 
9 H -OC2H5 -H O 2.00 8.70 
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Table 1. Cont. 

Series 
Compd. 

No. R1 R2 R3 X Ki(nM) pKi 

II 

10 -Cl - - - 441.29 6.36 
11 -CH - - - 467.33 6.33 
12 -CN - - - 170.88 6.77 
13 -Br - - - 301.13 6.52 
14 -F -F - - 108.10 6.97 
15 -Cl -CH3 - - 100.44 7.00 
16 -CH3 -CH3 - - 95.42 7.02 
17 -CH3 -Cl - - 152.20 6.82 
18 -CN -Cl - - 402.56 6.39 
19 -Cl -F - - 86.16 7.06 

III 

20 
S  

-OCH3 -OCH3 - 0.08 10.05 

21 
 

-OCH3 -OCH3 - 0.51 9.29 

22 
O  -OCH3 -OCH3 - 3.23 8.49 

IV 

23  2-Cl 5-Cl - 95.68 7.02 

24  2-Cl 5-Cl - 264.40 6.58 

25 
 

2-Cl 5-Cl - 73.57 7.13 

26  2-OCH3 - - 23.4 7.63 

27  2-OCH3 - - 43.54 7.36 

28  2-Cl 5-Cl - 21.77 7.66 

29 
O OH

 
2-OCH3 - - 5.88 8.23 

30 O
O

H

 
2-OCH3 - - 7.94 8.10 

31 
O

O

H

 2-OCH3 - - 28.84 7.54 

V 32 - - - - 629.04 6.20 

2.2. Structural Sketch and Alignment 

Structural sketches and refinement of the entire set of α1A-AR antagonists were accomplished using 

SYBYL® 8.1 molecular modeling software (Tripos Associates Inc.) and their 3D structures were 

generated using CONCORD®. All compounds were minimized under the Tripos standard (TS) force 
field [28] with Gasteiger-Hückel atomic partial charges [29]. Minimizations were done using the Powell 

method, in which calculations were set to terminate at an energy gradient value of 0.01 kcal/mol. 

Pharmacophore results for N-Aryl and N-heteroaryl piperazine α1A-AR antagonists using 
GALAHAD have been reported previously [30], and the optimized model from the previous report 

was used as a template in the present study. All compounds in the training and test sets were aligned 

with this template using the “Align Molecules to Template Individually” option in GALAHAD. The 
other parameters for calculation were set to default values.  
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2.3. 3D-QSAR Studies 

CoMFA, a method that reflects the non-bonding interaction between the receptor and the ligand, is 
widely used in drug design. The steric (Lennard-Jones) and electrostatic (Coulombic) potential 

energies of the TS force fields implemented in SYBYL were evaluated by CoMFA. For each 

pharmacophore alignment ligand, a 3D cubic lattice with a grid spacing of 1.0 Å in the x, y, and z 
directions was generated to enclose the molecule aggregate. A sp3

 carbon atom with a charge of +1.0 

and a Van der Waals radius of 1.52 Å was used as a probe; this atom was placed at every lattice point 

to calculate various steric and electrostatic fields. An energy cut off value of 30 kcal/mol was imposed 
on all CoMFA calculations to avoid excessively high and unrealistic energy values within the molecule. 

Then, partial least-squares (PLS) analysis was applied to obtain the final model [31]. 

During calculation of the steric and electrostatic fields in CoMFA, many grid points on the 
molecular surface were ignored due to the rapid increase in Van der Waals repulsion. To avoid a 

drastic change in the potential energy of the grid points near the molecular surface, CoMSIA employed 

a Gaussian-type function based on distance. Thus, CoMSIA may be capable of obtaining more stable 
models than CoMFA in 3D-QSAR studies [31–33]. The constructed CoMSIA model provided information 

on steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields.  

The grid constructed for the CoMFA field calculation was also used for the CoMSIA field 
calculation [32]. Five physico-chemical properties (electrostatic, steric, hydrophobic, and hydrogen 

bond donor and acceptor) were evaluated using a common probe atom placed within a 3D grid. A 

probe atom sp3 carbon with a charge, hydrophobic interaction, and hydrogen-bond donor and acceptor 
properties of +1.0 was placed at every grid point to measure the electrostatic, steric, hydrophobic, and 

hydrogen bond donor or acceptor field. Similar to CoMFA, the grid was extended beyond the 

molecular dimensions by 1.0 Å in three dimensions and the spacing between probe points within the grid 
was set to 1.0 Å. Different from the CoMFA, a Gaussian-type distance dependence of physicochemical 

properties (attenuation factor of 0.3) was assumed in the CoMSIA calculation. 

The partial least squares (PLS) method was used to explore a linear correlation between the 
CoMFA and CoMSIA fields and the biological activity values [34]. It was performed in two stages. 

First, cross-validation analysis was done to determine the number of components to be used. This was 

performed using the leave-one-out (LOO) method to obtain the optimum number of components and 
the corresponding cross-validation coefficient, q

2 [35]. The value of q
2 that resulted in a minimal 

number of components and the lowest cross-validated standard error of estimate (Scv) was accepted. 

The column filtering values (σmin) was set to 2.0 kcal/mol in order to speed up the analytical process 
and reduce noise. Second, the optimum number of components were used to derive the final PLS 

model, with no validation method [36,37]. The CoMFA and CoMSIA results were then graphically 

interpreted by field contribution maps. 

2.4. Predictive Power of the Models 

The predictive power of the 3D-QSAR model was determined from a set of 12 compounds in the 

test set (Table 2). These molecules were superimposed using the same pharmacophore molecular 
alignment method described above, and their activities were predicted using the CoMFA and CoMSIA 
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models generated by the training set. The predictive correlation coefficient, r2
pred, of the CoMFA and 

CoMSIA models were calculated using the test set, according to the formula, 

SD-PRESS2
SD

r
pred

=  (1)  

where SD is the sum of the squared deviations of each experimental value from the mean, and PRESS 

is the sum of the squared differences between the predicted and actual affinity values for every 
molecule [31].  

Table 2. Structures of the test set molecules used in the 3D-QSAR study. 

Series 
Compd. 

No.    

R1 R2 R3 X Ki(nM) pKi 

I 33 2-Cl -OCH3 -OCH3 O 1.41 8.85 

II 
34 -Br -Br - - 91.25 7.04 

35 -Cl -I - - 383.60 6.42 

III 

36 O

O

 
-OCH3 - - 27.54 7.57 

37 
 

-OCH3 -OCH3 - 2.34 8.63 

38 
O  

-OCH3 -OCH3 - 0.40 9.40 

39 
O

 
-OCH3 -OCH3 - 72.44 7.14 

IV 

40 N

O

O  
-Cl -Cl - 2.28 8.64 

41 
N

O

O

N

 
-OCH3 - - 235.52 6.63 

42 N

O

O

 
-Cl -Cl - 47.86 7.32 

43 N

O

 
-Cl -Cl - 33.93 7.47 

V 44 

NH2

O

NH

F

F

F
N

O

O

 
31.62 7.50 

3. Results and Discussion 

3.1. Alignment 

The pharmacophore model generated by GALAHAD contained one donor center, one positive 

charged nitrogen atom, two acceptor centers, and two hydrophobic centers, more than other reported 

models, which is shown in [Figure 2(a)]. The internal distance of the pharmacophore feature is 
consistent with previously reported models. The pharmacophore model has reasonable assessment 

parameters, such as a high specificity value (4.212), high steric score (4903.5), and low energy value 

(92.9 Kcal/mol) [30,38]. All of the compounds were superimposed based on the template [Figure 2(b)]. 
Ligands have the same binding site and share common interactions. However, they sometimes do not 

share common structures. GALAHAD, as an alignment tool, considers the flexibility of each 
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compound and performs a compact alignment based on essential structural elements related to activity 

by variation of the torsional degrees of freedom. Compared to the QSAR model previously reported, 
the classical approach based on a rigid alignment of minimized structures, does not show any 

uniformity with the active conformation. Pharmacophore-based molecular alignment using 

GALAHAD in the current manuscript will generate a rational alignment for 3D-QSAR studies.  

Figure 2. The alignment of the molecules in the present study (b) based on the 

pharmacophore hypothesis (a) using GALAHAD; magenta, hydrogen bond donor atom 

(D); green, acceptor atom (A); cyan, hydrophobic center (H); red, positive nitrogen (P). 

 

3.2. CoMFA and CoMSIA Models 

A statistically significant 3D-QSAR model was obtained using the properly selected training set of 

32 ligands. Results of the statistical analysis are presented in Table 3.  

In the CoMFA model, initial PLS analysis of the aligned training set was done using a default σmin 
data filter of 2.0 kcal/mol and the Tripos standard field. This yielded a highly significant q2 value of 

0.840 (with Scv = 0.476, using four components), which indicates that it is a model with high statistical 

significance; a q
2 value of 0.6 is considered statistically significant in CoMFA and CoMSIA  

studies [39]. The conventional r
2 value of 0.988 and low standard error of estimate (SEE) value of 

0.128 indicate the accuracy of the predictions of the model. High values of q2 from the LOO analysis 

can be regarded as a necessary, but not a sufficient, condition for a model to possess significant 
predictive power [40]. In addition to LOO, the internal predictive ability of the model was further 

assessed by a group cross-validation performed with 30 groups for 30 times. The mean of 30 readings 

was given as r2
cv; the mean r2

cv of 0.837 also suggests that the model has good internal predictability. 
Similar to CoMFA, the CoMSIA model with the steric, electrostatic, hydrophobic, donor and 

acceptor fields result in satisfactory statistical data (Table 3, model A). However, the steric and donor 

fields (10% and 18% contribution, respectively) did not significantly contribute to affinity in the  
all-fields model. Moreover, presumably correlated fields increase the complexity of contour maps and 

complicate their interpretation. Therefore, CoMSIA approaches with smaller subsets of fields were 

calculated (Table 3, columns B-E). The hydrophobic field was always considered in accordance with 
the hydrophobic groups in the pharmacophore model. The internal predictivities of the field 

combinations B-E were only slightly reduced compared to the all-fields model A. Among the five 

models, the combination of the electrostatic, hydrophobic, and acceptor field (model E) has the highest 
external predictivity (r2

pred = 0.671). The conventional non-cross validated r
2 of 0.975 and the SEE 
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value of 0.180 indicate that this model is statistically highly significant. Analogous to the CoMFA, a 

group cross-validation was done to assess further the internal predictive ability of the model. The 
cross-validation was performed 30 times with 30 groups. The mean r

2
cv obtained was 0.864, which 

also indicated the robustness of this model.  

Table 3. Statistical analysis of CoMFA and CoMSIA models  

Parameters 
a
 

CoMFA CoMSIA 
b
 

 A B C D E 

Optimal PLS component 4 3 3 3 2 3 
q

2
 0.840 0.874 0.866 0.842 0.856 0.840 

Scv 0.476 0.407 0.419 0.456 0.427 0.459 
r

2
 0.988 0.980 0.982 0.977 0.961 0.975 

SEE 0.128 0.160 0.154 0.174 0.222 0.180 
F 555.64 469.24 510.31 394.83 357.74 370.67 
r

2
cv 0.837     0.864 

Fractions       
Steric 0.460 0.104 0.203 0.153 0.133  
Electrostatic 0.540 0.217 0.386 0.297 0.264 0.347 
Hydrophobic  0.212 0.410 0.336  0.399 
Donnor  0.183   0.360  
Acceptor  0.285  0.214 0.243 0.254 

r
2

pred 0.694 0.646 0.581 0.576 0.663 0.671 
a q

2, leave-one-out cross-validation correlation coefficient; Scv, leave-one-out cross-validated 
standard error; r2, conventional correlation; SEE, standard error of estimate; F, F-test value; r2

cv, 
conventional correlation of group cross-validation; b CoMSIA model calculated using different 
field combinations. A, all fields; B, Steric, electrostatic and hydrophobic fields; C, Steric, 
electrostatic hydrophobic and acceptor fields; D, Steric, electrostatic donor and acceptor fields;  
E, electrostatic hydrophobic and acceptor fields. 

3.3. Predictive Power of the Models 

The cross-validated pKi values calculated by CoMFA and CoMSIA, and the residuals between the 
experimental and cross-validated pKi values of the compounds in the training set are listed in Table 4. 

The predictive powers of the CoMFA and CoMSIA models were further examined using a test set of 

12 compounds not included in the training set. The predicted pKi values calculated by CoMFA and 
CoMSIA are also shown in Table 4.  
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Table 4. Experimental and cross-validated/predicted biological affinities and residuals 

obtained by the CoMFA and CoMSIA (model E) for 32 compounds in the training set and 
12 compounds in the test set. 

Compd. 

No. 

pKi (exp.) pKi (pred.) ∆pKi 
a
 

CoMFA CoMSIA CoMFA CoMSIA 

Training set 
1 9.60 9.620 9.561 −0.0197 0.0388 
2 8.80 8.743 8.896 0.0572 −0.0957 
3 9.40 9.410 9.273 −0.0103 0.1265 
4 8.70 8.593 8.680 0.1072 0.0201 
5 8.70 8.659 8.687 0.0412 0.0127 
6 8.70 8.649 8.777 0.0505 −0.0771 
7 8.50 8.510 8.611 −0.0103 −0.1113 
8 8.50 8.440 8.676 0.0602 −0.1755 
9 8.70 8.689 8.843 0.0108 −0.1432 

10 6.36 6.505 6.694 −0.1453 −0.3342 
11 6.33 6.385 6.474 −0.0548 −0.1435 
12 6.77 6.652 6.716 0.1176 0.0540 
13 6.52 6.559 6.605 −0.0385 −0.0847 
14 6.97 6.923 6.901 0.0472 0.0688 
15 7.00 7.113 7.035 −0.1129 −0.0352 
16 7.02 6.880 6.690 0.1404 0.3303 
17 6.82 6.793 6.656 0.0275 0.1644 
18 6.39 6.475 6.641 −0.0852 −0.2509 
19 7.06 7.011 7.024 0.0494 0.0363 
20 10.05 10.126 9.768 −0.0759 0.2821 
21 9.29 9.294 9.181 −0.0042 0.1095 
22 8.49 8.601 8.751 −0.1107 −0.2609 
23 7.02 6.871 6.661 0.1492 0.3588 
24 6.58 6.590 6.691 −0.0096 −0.1111 
25 7.13 7.177 7.202 −0.0472 −0.072 
26 7.63 7.653 7.404 −0.0229 0.2259 
27 7.36 7.365 7.290 −0.0055 0.0698 
28 7.66 7.697 7.423 −0.0371 0.2370 
29 8.23 8.275 8.179 −0.0451 0.0512 
30 8.10 8.070 8.265 0.0305 −0.1652 
31 7.54 7.576 7.631 −0.0364 −0.0906 
32 6.20 6.217 6.235 −0.0173 −0.0351 

Test set 
33 8.85 8.587 9.010 0.2629 −0.1603 
34 7.04 6.766 6.613 0.2737 0.4265 
35 6.42 6.669 6.653 −0.2490 −0.2334 
36 7.57 8.514 8.370 −0.9437 −0.800 
37 8.63 8.174 8.723 0.4563 −0.0931 
38 9.40 9.804 9.128 −0.4037 0.2719 
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Table 4. Cont. 

Compd. 

No. 

pKi (exp.) pKi (pred.) ∆pKi 
a 

CoMFA CoMSIA CoMFA CoMSIA 
  Test set    

39 7.14 7.916 7.652 −0.7758 −0.5117 
40 8.64 7.996 7.506 0.6440 1.1341 
41 6.63 6.584 6.848 0.0461 −0.2182 
42 7.32 7.794 6.801 −0.4744 0.5191 
43 7.47 6.974 7.079 0.4955 0.3908 
44 7.50 7.341 7.852 0.1589 −0.3518 

r
2

pred 
b  0.694 0.671   

a ∆pKi is defined as pKi,experimental − pKi,cross-validated/predicted; 
b Predictive correlation coefficient of the 

test set is defined as r2
pred = (SD – PRESS)/SD. 

The results show that the CoMFA model (r2
pred = 0.694) gives a better prediction than the CoMSIA 

model does (r2
pred = 0.671). Plots of the cross-validated/predicted pKi versus the experimental values 

are shown in Figure 3. The shaded diamonds and open squares represent the training set and the test set, 

respectively. 

Figure 3. Correlation between cross-validated/predicted pKi versus experimental pKi for 
the training set (shaded diamonds) and the test set (open squares); CoMFA graph (a) and 

CoMSIA graph (b). 

  
             (a)                       (b) 

3.4. Graphical Interpretation of the Fields 

The CoMFA and CoMSIA contour maps of the PLS regression coefficients at each region grid 

point provide a graphical visualization of the various field contributions, which can explain the 
differences in the biological activities of each compound. These contour maps were generated using 

various field types of StDev*coefficients to show the favorable and unfavorable interactions between 

ligands and receptors in the active site. 
In the CoMFA model, the fractions of steric and electrostatic fields are 46.0% and 54.0%, 

respectively. Favorable and unfavorable cutoff energies were set at the 80th and 20th percentiles for 

the steric contributions. The contour maps of the fields are shown in [Figure 4(a)], with the higher 
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affinity compound 20 as the reference structure. The surfaces indicate the regions where the increase 

(green region) or decrease (yellow region) in steric effect would be important for the improvement of 
binding affinity. The large green isopleths upon the thiochromene part reflect a sharp increase in 

affinity for all the anchor moieties transferred into this area. Compound 20, with its large bulky phenyl 

group, coincide with the green isopleths. When the thiochromene group in compound 20 was replaced 
by 8-methyl-8-azaspiro decane-7, 9-dione (such as compounds 24 and 32), and the yellow region was 

occupied by the large bulky groups, and the antagonistic activity of these compounds evidently 

decreased. This was probably due to the insufficient space to accommodate these bulky groups in the 
anchor moieties ofthe receptor-binding site, which caused collision among groups and the reduced 

affinity of the compounds. [Figure 4(b)] shows the electrostatic contributions with compound 20 as a 

template ligand. The electrostatic contour map shows regions of red polyhedra (contribution level: 
15%), where electron-rich substituents are beneficial for the binding affinity, whereas the blue colored 

regions (contribution level: 85%) show the areas where positively charged groups enhance the 

antagonistic activity. The large blue area near the thiochromane moiety indicates a region where 
negatively charged groups decrease antagonistic activity. Compound 32 has a carbonyl in the blue area, 

which may be not conducive to the improvement of activity. The electrostatic contour map shows a 

region of red contours neighbor to the oxygens connects with benzene, indicating that electron-rich 
substituents (such as bromine, cyano group) are beneficial for the binding affinity. 

Figure 4. Steric (a) and electrostatic (b) contours with high-affinity compound 20 in the 

final CoMFA model; B, blue; G, green; R, red; Y, yellow. 

 

In the CoMSIA model, the fractions of the electrostatic, hydrophobic, and hydrogen-bond donor 
and acceptor fields were 34.7%, 39.9% and 25.4%, respectively. The CoMSIA contour plots are also 

exemplified by some ligands of high affinity. Similarly, red and blue isopleths (contribution levels: 

15% and 85%, respectively) of the electrostatic fields [Figure 5(a)] enclose regions, where negative 
and positive charges have favorable effects on pKi, respectively. The contour maps of electrostatic 

fields are similar to that of the CoMFA. Compared with the CoMFA model, its electronic field areas 

are smaller. The blue contours rather indicate where negatively charged substructures are unfavorable, 
such as methyl substitution and amino substitution should be placed to enhanced binding affinity, 

while the red contours neighboring to oxygens indicate electronegative groups will do a favorable 

effect of antagonistic potency. 
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Figure 5. Contour plots illustrating, electrostatic (a), hydrophobic (b) and hydrogen bond 

acceptor (c) properties revealed by the CoMSIA model; high affinity compounds 20 shown 
as templates; B, blue; C, cyan; Gr, gray; M, magenta; O, orange; R, red. 

 

For hydrophobic field contributions, orange and gray isopleths are drawn at contribution levels of 

85% and 15%, respectively. These enclose regions favorable for hydrophobic and hydrophilic groups, 
respectively [Figure 5(b)]. Orange areas are mainly distributed in the thiochromene side, which is 

consistent with the hydrophobic center of the pharmacophore hypotheses, as well as with the contour 

maps of the steric fields generated by the CoMFA and CoMSIA models. Hydrophobic interactions 
may be dominant for ligand binding. These areas suggest the importance of hydrophobic interaction 

near the phenylchroman group of the most active compound in the training set. Halogen (except 

fluorine) substitution in orange region will enhance molecular hydrophobic field and increase the 
affinity of the compound. In addition, the introduction of hydrophilic groups (such as amide and amine) 

on the other side of the benzene ring (transparent gray) may increase α1A-AR antagonistic activity, 

whereas chlorine substitution in compound 32 may reduce the binding activity of α1A-AR, which is a 
representative of weak α1A-AR receptor binding. 

The graphical interpretation of the field contributions of the H-bond properties is shown in  

[Figure 5(c)] (the H-bond acceptor field). Magenta isopleths (80%) encompass regions wherein 
hydrogen bond acceptor groups lead to improved α1A-AR antagonist activity; while areas encompassed 

by red isopleths (20%) should be avoided from hydrogen bond acceptor, which will result in impaired 

biological activity. Small red isopleths are inlaid in the purple region. The oxygen atom connected to 
the phenyl group may be an important factor to high activity of compound 20. The introduction of a 

hydrogen bond acceptor in the area may further improve the activity.  

3D structures of human α1A-AR homology models have been successfully developed by Li’s group 
based on the crystal structure of β2-AR [41]. This optimized homology model was retrieved from 

Protein Model Data Base (PMDB entry: PM0075211). The pharmacophore features were placed into 

the binding pocket of this model, as shown in Figure 6. According to previous reports [41,42], 
hydrophobic interactions may occur between the hydrophobic group of a ligand and pockets 

constituted by Trp102, Cys110, Tyr111, Ser158, Phe193, Phe288, Phe289 and Phe312. Asp106 seems 

to play a role in antagonist binding through strong electrostatic interactions with the protonated 
nitrogen atom. Ser188 and Ser192 may have H-bond effects with acceptor and donor features. In 

contrast to the most reported 3D-QSAR models mentioned in “Introduction”, GALAHAD was used in 

the present models to superimpose ligands based on pharmacophore molecular alignment. The flexible 
superimposition afforded by the current models more closely coincides with the receptor binding sites 
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and reduces the likelihood of confusion arising from compounds belonging to different classes. The 

generated models suggested that electrostatic, hydrophobic, and hydrogen bonding interactions play 
important roles between ligands and receptors in the active site. The q2, r2

pred and contours obtained 

from the present CoMFA and CoMSIA model show strong predictability and application and provide 

detailed information about the molecular features of the ligands, which will contribute to the 
antagonistic potency.  

Figure 6. The binding pocket of α1A-AR homology model with compound 20 matching  

the pharmacophore. 

 

4. Conclusions 

CoMFA and CoMSIA models were established based on a training set of 32 ligands using 

pharmacophore-based molecular alignment by GALAHAD. The statistical significance of the models 

was evaluated. The q2 values of the CoMFA and CoMSIA models are 0.840 (4 components) and 0.840 
(3 components), respectively. These models also predict the biological activities of 12 ligands of  

α1A-AR antagonists in the test set. 

In this study, GALAHAD is a useful pharmacophore alignment tool that can yield a good  
3D-QSAR model for α1A-AR antagonists. The present results of the 3D-QSAR model provided a 

valuable tool for predicting the activities of novel α1A-AR antagonists and a basis upon which more 

active compounds can be derived by targeted structural modifications.  
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