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Abstract: Oxidative stress plays a critical role in the pathogenesis of diabetes, 

hypertension and atherosclerosis. Some authors reported that fat accumulation correlates to 

systemic oxidative stress in humans and mice, but the relationship of lipid production and 

oxidative metabolism is still unclear. In our laboratory we used 3T3-L1 preadipocytes, 

which are able to differentiate into mature adipocytes and accumulate lipids, as obesity 

model. We showed that intracellular reactive oxygen species (ROS) and antioxidant 

enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities 

increased in parallel with fat accumulation. Meanwhile N-acetylcysteine (NAC), a well 

known antioxidant and Glutathione (GSH) precursor, inhibited ROS levels as well as fat 

accumulation in a concentration-dependent manner. NAC also inhibited both adipogenic 

transcription factors CCAAT/enhancer binding protein beta (C/EBP β) and peroxisomal 

proliferator activated receptor gamma (PPAR γ) expression; we suggested that intracellular 

GSH content could be responsible for these effects.  
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1. Introduction 

Obesity is a condition of pandemic proportions, against which no effective pharmacological 

treatment has yet been found. This condition is characterized mainly by the excessive accumulation of 

triacylglycerol (Tg) in white adipose tissue, which result in larger adipocytes, inflammatory responses 

and changes in the adipokines secreted. The murine 3T3-L1 fibroblastic cell line can be induced to 

differentiate into mature adipocytes in cell culture using dexamethasone and insulin [1], and it has 

been used as a model system to study the mechanisms involved in the adipogenic process.  

Mac Dougald et al. demonstrated that adipocyte differentiation program is regulated by transcriptional 

activator such as CCAAT/enhancer binding protein beta (C/EBP β) and peroxisomal proliferator 

activated receptor gamma (PPAR γ), which are able to coordinate the expression of genes involved in 

creating and maintaining the adipocyte phenotype including the insulin-responsive glucose  

transporter GLUT 4 [2]. Therefore, these transcriptional activators are useful to evaluate adipocyte 

differentiation pathway. 

Recent studies show that obesity may induce systemic oxidative stress; the increase of oxidative 

species in accumulated fat could be an early instigator of the obesity-associated metabolic syndrome [3]. 

Oxidative stress plays a critical role in the pathogenesis of several diseases such as cancer, 

hyperthyroidism, rheumatoid arthritis and diabetes [4–8]. Mitochondria are generally considered as a 

potential source of cellular reactive oxygen species (ROS) generation [9] but, nonmitochondrial 

sources of ROS production are known [10–15]. ROS attract current attention not only because of their 

role in diseases but also as component of intracellular redox signaling cascades [16,17] Treatment of 

3T3-L1 with insulin, during differentiation protocol, rapidly generates a burst of hydrogen peroxide, 

which has a major impact on the early transmission of the insulin receptor signal, suggesting that H2O2 

has a strong impact on insulin signal transduction [18]. Recently, Kim et al. demonstrated that 

exogenous H2O2 could be able to differentiate preadipocytes to adipocytes increasing C/EBP β  

and PPAR γ expression [19]. However, others showed that oxidant treatment decreased PPAR γ 

expression [3]. These different responses to the same oxidant agent shows the complex role that 

reactive oxygen species (ROS) have in adipocyte differentiation, suggesting that intracellular redox 

status would play a key role in the modulation transcriptional activator expression. The current study is 

focused on the contradiction between possible oxidative stress effects on lipid accumulation. 

Moreover, high dose of N-Acetyl-L-cysteine (NAC) administration to rats, a well known 

antioxidant, reduces body weight and visceral fat in rats by down regulation of metalothionein 

expression [20]. Our aim is to evaluate the effect of low dose of NAC on 3T3–L1 differentiation 

markers expression and cellular lipid accumulation.  
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2. Results and Discussion  

2.1. NAC Effect on Oxidative Markers 

3T3-L1, a preadipocyte cell line is able to differentiate into adipocytes in the presence of MDI  

(a mixture of 0.5 mM 3-isobutyl-1-methyl xanthine (M), 0.1 µM dexamethasone (D) and, 2 µM insulin 

(I)), which stimulates triglyceride (Tg) accumulation; the differentiation protocol is developed by 

culturing the cells with MDI medium in 10% FBS-DMEM for 48 h, and then transferred to fresh 10% 

FBS-DMEM containing 2 µM insulin. MDI medium addition is considered day 0 of differentiation 

protocol. At day 10 of differentiation protocol the cells are fully differentiated showed 70–80% cells 

with refractive lipid droplets observable microscopically, cell cultures showed high concentrations of 

pro-oxidant species during the cellular differentiation from preadipocytes into adipocytes. In order to 

evaluate the cellular redox state of adipocytes during differentiation, intracellular reactive oxygen 

species (ROS) levels were measured using a probe which became fluorescent upon oxidation by ROS; 

then we quantified its fluorescence. Differentiating cells (DC) at day 10 showed a two-fold higher 

ROS levels than control cells (CC) (Figure 1). MDI mixture plus 10 µM NAC were added at day 0 of 

differentiation protocol, NAC was replaced every day during the differentiation protocol, this well 

known antioxidant reduced ROS levels in differentiating cells at day 10 (DC NAC) to values lower 

than those obtained in CC. 

Figure 1. ROS production in 3T3-L1. Intracellular ROS is expressed as nmol ROS  

(% control), considering Control Cells (CC) as 100. * p < 0.01 vs control values (CC). 
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Since we observed a pro-oxidant state during differentiation pathway, we determined superoxide 

dismutase (SOD) and glutathione peroxidase (GPx) activities, as cell responses to possible oxidative 

stress; we showed that both enzyme activities were significantly higher in DC than in CC at day 10 of 

differentiation protocol. 10 µM NAC addition reduced both enzymatic activities in DC NAC to values 

not significantly different from CC; results at day 10 of differentiation protocol are showed in Figure 2.  

10 µM NAC was added to cultures during 12 days without any toxic effect, DC and DC NAC 

cultures showed no significant difference in cell viability, assessed by trypan blue exclusion, during all 

the differentiation experiment long; we also performed an experiment adding 10 µM NAC to vehicle 

treated cells (CC), which demonstrated that NAC was not toxic for the cells (data not shown). 
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Figure 2. Superoxide dismutase (SOD) activity and glutathione peroxidase (GPX) activity 

in 3T3-L1. Enzyme activity is expressed as enzyme units (% control), considering Control 

Cells (CC) as 100%. * p < 0.01 vs control values (CC). 
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Our results showed that a pro-oxidant state was developed in fully differentiated adipocytes (at day 

10 of differentiation protocol), in accordance to others authors which had studied this model [21–23]. 

Nevertheless, Mc Lung et al. demonstrated that mice which overexpressed GPx1 (Glutathione 

peroxidase selenium dependent) developed obesity [24]; since we evaluated ROS and antioxidant 

enzymes activities at day 10 of differentiation pathway, our results did not invalidate Mc Lung 

previous results. Moreover, in the absence of an appropriate
 
compensatory response from the 

endogenous antioxidant network,
 
the system could become overwhelmed; therefore, to avoid ROS 

increase and their potentially deleterious effects, they are detoxified by several enzymatic systems such 

as SOD and GPx, as observed in other cell models [25]. Here, enzyme activities increased in 3T3-L1 

in fully differentiated adipocytes; NAC, a well known antioxidant, decreased ROS level and, as a 

consequence, NAC treated cells did not show any antioxidant enzyme activity increase. Therefore we 

could speculate that NAC did not affect directly antioxidant enzyme activity. 

2.2. NAC Effect on Triglyceride and GSH Content 

At day 10, fully differentiated cells (DC) showed almost six times more triglyceride (Tg) content 

than in control cells (CC); NAC was added to MDI medium at day 0 of differentiation protocol and 

replaced every day during 12 days (all differentiation experiment long); then, we determined 

triglyceride content at day 10 (DCN). We used different concentration of NAC (5 µM, 10 µM, 20 µM, 

50 µM and 100 µM) to evaluate the effect of antioxidant. The lower concentration which exerted 

inhibitory effect on trigliceryde accumulation was 5 µM (0.31 ± 0.05 g Tg/g protein [DCN] vs  
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0.23 ± 0.05 [CC], p < 0.01), but 10 µM of NAC was the lower dose that produced the maximum 

inhibitory effect on triglyceride accumulation since we found in NAC treated cells almost same Tg 

concentration as obtained in control cells (0.21 ± 0.1 g Tg/g protein [DCN] vs 0.23 ± 0.05 [CC], no 

significant difference was observed); therefore, we used 10 µM NAC for further experiments. NAC 

did not provoke any effect on control cells, NAC treated cells (CCN) showed similar Tg content to CC 

(10 µM NAC: 0.20 ± 0.08 Tg/g protein [CCN] vs 0.23 ± 0.05 [CC], no significant difference was 

observed). 5 µM, 10 µM, 20 µM and 50 µM of NAC were used without toxic effects during 12 days, 

100 µM of NAC provoked a 30% decrease in the number of viable cells.  

A time-course assay to evaluate NAC effect (10 µM NAC) on intracellular Tg levels during cell 

differentiation pathway showed a consistent significant decrease in Tg content, with a similar kinetic 

as observed in CC (Figure 3). To exclude errors due to artificial effects of excess fat in differentiated 

adipocytes, Tg content is reported per protein content and per DNA content. NAC addition to CC did 

not modify triglyceride content in CC during the experiment. 

Figure 3. N-acetylcysteine (NAC) effect on triglycerides accumulation in 3T3-L1 during 

differentiation pathway. NAC was added at day 0 and replaced every day, during 12 

days (DCN). 

 

N-Acetyl-L-cysteine (NAC), a well known antioxidant, provides cysteine for reduced glutathione 

(GSH) and promotes its synthesis [26,27]. Since GSH could act as a cellular reductor buffer against 

pro-oxidant state observed during differentiation preadipocytes pathway, we carried out a time-course 

experiment to measure the cellular reductor GSH during differentiation protocol. Total GSH level 

significantly increased at day 8 days of differentiation protocol in differentiating cells (DC) compared 

to control cells (CC) (Figure 4), coincident with Tg increase in DC. 10 µM NAC addition, from day 0 

of differentiation protocol, produced an increase of 25% in intracellular total GSH content in DC from 

day 1 of differentiation protocol. For instance, at day 10, total GSH was significantly higher in NAC 

treated DC than in DC (0.53 ± 0.03 mmoles total GSH/g protein [DC] vs 0.71 ± 0.04 mmoles total 

GSH/g protein [DCN], p < 0.01). To exclude errors due to artificial effects of excess fat in 

differentiated adipocytes, total GSH content is reported per protein content and per DNA content. 
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Figure 4. Glutathione (GSH) content in 3T3-L1 during differentiation pathway. NAC was 

added at day 0 and replaced every day, during 12 days (DCN). 

 

We observed that intracellular triglyceride content correlates with intracellular total GSH content. 

Kobayashi also showed that fully differentiated adipocyte had significantly higher GSH content than 

preadipocytes [28]. GSH is a radical scavenger that directly neutralizes superoxide anion and hydroxyl 

radicals and it is also an essential cofactor in the inactivation of hydroperoxides by glutathione 

peroxidase; so, GSH could help as a buffer against ROS allowing cell viability and normal cell function. 

Our assays demonstrated that low dose of NAC was able to increase intracellular GSH content since 

the beginning of differentiation protocol and, it was able to inhibit fat accumulation in 3T3-L1 cells in 

a dose-dependent manner. Since day 8 of differentiation protocol, Tg content was significantly higher 

in differentiated cells than control cells; meanwhile, Tg content resulted significantly lower in NAC 

treated cells than in fully differentiated cells. Also, Tg content in NAC treated cells showed no 

significant difference to control cells. Similar results were described by Kim et al. [20], suggesting that 

NAC could affect Tg content by metalothionein-II down-regulation. Nevertheless, they showed that 

doses lower than 2 mM NAC did not affect metalothionein-II expression; therefore we could rule out 

any possible effect of NAC by this pathway, since we used a 100 times lower dose of NAC. Thus, in 

this case, we could suggest a NAC effect as ROS scavenging because of GSH increased content.  

Since we used low dose of NAC in our experiments, we evaluated a possible reversible effect of 

this antioxidant. We performed the differentiation protocol as usually, 10 µM NAC was added at day 0 

of differentiation protocol and maintained only 24 hours; NAC 24 hours treated cells (DCN*) showed 

similar Tg content than that observed in DC (day 8: 0.83 ± 0.15 g Tg/g protein [DC] vs 0.82 ± 0.18 g 

Tg/g protein [DCN*], no significant difference was observed; day 10: 1.20 ± 0.10 g Tg/g protein [DC] 

vs 1.16 ± 0.08 g Tg/g protein [DCN*], no significant difference was observed); therefore we observed 

a reversible effect of the antioxidant on differentiation pathway, since NAC treated cells were able to 

recover from the treatment. Other authors also showed that NAC should be included early and 

maintained during differentiation protocol [29], its effect could be in early stage of adipocyte 

differentiation pathway.  
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2.3. NAC Effect on Adipocyte Differentiation Markers 

It is well demonstrated that treatment of preadipocytes with inducers of differentiation, like  

MDI medium, produce a transient increase in expression of adipogenic transcriptional factors 

CCAAT/enhancer binding protein beta (C/EBP β) and peroxisomal proliferator activated receptor 

gamma (PPAR γ); the cells showed a specific kinetic expression of these transcription factors during 

differentiation pathway [2]. We could speculate that NAC could interfere with differentiation program 

of adipocytes; therefore we performed experiments in presence of 10 µM of NAC to evaluate some 

adipogenic transcription factor expression. We performed a time course analysis for these adipogenic 

factors in DC (before increase on Tg content was evident). We evaluated adipogenic factors expression 

from day 0 to day 4 of differentiation protocol in absence and presence of NAC; we added NAC at day 

0 and it was replaced every day during all the experiment. C/EBP β (liver-enriched transcriptional 

activator protein: LAP) showed a similar kinetic expression with/without NAC, but a significant 

decrease of C/EBP β expression occurred in MDI-NAC treated cells at day 1 (3.90 ± 0.60 AU [DC1] 

vs 0.89 ± 0.10 AU [DCN1], p < 0.01), which was supported during the 4 days experiment (Figure 5A). 

No significant differences for the adipogenic transcription factor PPAR γ expression was observed 

between DC and MDI-NAC treated cells during first two days of differentiation protocol; however,  

a significant decrease for PPAR γ was observed at day 4 (3.41 ± 0.60 AU [DC4] vs 0.55 ± 0.50 AU 

[DCN4], p < 0.01) (Figure 5(B)). 

Figure 5. NAC effect on CCAAT/enhancer binding protein beta (C/EBP β) (A), and 

peroxisomal proliferator activated receptor gamma (PPAR γ) (B), in 3T3-L1 during 

differentiation pathway. 

 

The values represent fold increase in adipogenic factor expression over the control cells (CC) 

expression. Representative results from one of three independent western blot experiments with similar 

results are shown. Results are expressed as arbitrary units; * p < 0.01 vs control values (CC). 

Since NAC significantly affected changes in transcription factors expression; we postulated that 

NAC inhibited lipid accumulation by affecting at least these two adipogenic transcriptional factors. 

C/EBP β is expressed immediately after induction of differentiation, and its expression in adipocytes 

accelerates adipogenesis in response to hormonal inducers [30]. We observed that C/EBP β expression 
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in presence of MDI-NAC resemble differentiated cells pattern; in fact, C/EBP β expression at day 2 in 

NAC treated cells is higher than that observed in control cells. As previously described, 3T3-L1 cells 

exhibited the defined pattern for C/EBP β expression during differentiation protocol [31] and, NAC 

produced a consistent decrease in this adipogenic factor expression during the differentiation with 

same kinetic of differentiated cells. Therefore, our kinetic experiment demonstrated that NAC affected 

C/EBP β expression during all differentiation protocol, possibly by increased GSH level which acts as 

ROS scavenger. We measured ROS level at day 10, but increase in intracellular ROS could be from 

before that day and linked to the increased expression of C/EBP β at differentiated cells (DC). In 

accordance with our results, Hallenborg et al. demonstrated that high dose NAC produced a decrease 

on C/EBP β expression after 6 hours of treatment with this antioxidant [29]. On the other hand, 

Carriere et al. [32] showed that cells treatment with drugs used to modulate mitochondrial ROS 

generation induced a strong increase of CHOP-10 protein content with a slight increase in  

liver-enriched activating protein (C/EBP β–LAP) during the differentiation pathway. We did not 

evaluate CHOP-10 expression in our system but, we did a kinetic for C/EBP β (LAP protein), which 

demonstrated that C/EBP β is lower in MDI-NAC treated cells than that observed in differentiated 

cells; evidence for C/EBP β DNA binding activity is regulated by a CHOP-10 protein by sequestration 

of the protein was recently presented [33]. Carriere et al. claimed that treatment with these ROS 

generation inducers decreased adipocytes triglyceride content. Since we did not use any drug to induce 

ROS during differentiation process and, ROS and triglyceride content increased, as observed by other 

authors [22], the possible different strategy used by Carriere et al. to evaluate adipocyte differentiation 

process could be responsible for their different results. On the other hand, PPAR γ is a key 

transcription factor involved in adipocyte differentiation, because of its ability to increase the 

responsiveness to insulin [34]; its expression in differentiating cells and MDI-NAC treated cells was 

similar during the first two days of differentiation protocol, only in day 4 we observed a significantly 

lower PPAR γ expression in MDI-NAC treated cells than in differentiating cells (DC). NAC effect 

could be explained as a consequence of its antioxidant effect on C/EBP β expression which could 

affect PPAR γ expression as previously described [35]. These results are in contradiction with those 

reported by Gou et al. [36], but they showed that ROS affected de novo triglyceride synthesis instead 

of adipocyte differentiation pathway, since they added a ROS inducer 6 days after differentiation had 

started and we added NAC at day 0 of differentiation pathway. Therefore, we could speculate that 

effect on endogenous adipogenic factors was largely subevaluated by Gou et al., because PPAR γ 

increase expression is observed at day 4, before any accumulation of triglycerides occurred; 

meanwhile we observed an increase on ROS level during differentiation and NAC deeply affected 

adipogenic factor expression during adipocyte differentiation. Recently, Kim et al. showed that 

replacement of insulin by H2O2, at day 0 of differentiation protocol, could increase C/EBP β and PPAR 

γ expression in 3T3-L1, suggesting that ROS, in the beginning of differentiation pathway, could 

facilitate pre-adipocyte differentitation [19]. We observed that intracellular triglyceride content 

correlates with intracellular GSH content, and GSH levels increased after adipogenic transcriptional 

factors expression took place. Nevertheless, 10 µM NAC addition at day 0 produced an increase in 

intracellular GSH content and a decrease in adipocytes differentiation markers expression, suggesting 

that GSH level should prevent C/EBP β expression increase and therefore PPAR γ increase.  
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IGF–1 and Insulin receptors are structurally similar and mostly have common signaling cascades, 

both insulin and IGF-1 stimulated ROS production, and some authors suggested that IGF-1 exerts its 

effect at least in part via ROS [37]. We could presume that NAC could block initial step of adipocyte 

differentiation via inhibiting insulin by disturbing functional structure of insulin molecule. Therefore, 

we assayed NAC effect on a primary target of insulin cascade signaling such as AKT. We performed 

an experiment to evaluate AKT phosphorylation; we did not observe any significant difference 

between Insulin with NAC treated cells (DCN+I) and Insulin treated cells (I) (Figure 6); therefore, 

insulin was able to provoke AKT phosphorylation in NAC presence. Our results suggested that 

functional structure of insulin molecule was not disturbed by NAC and insulin could act by this 

pathway. In our case, we could explain NAC effect by its capacity as GSH precursor. Indeed, other 

authors demonstrated that GSH could decrease AKT phosphorylation when it was added to 

differentiated adipocytes [28]. 

Figure 6. NAC effect on AKT phosphorylation in 3T3-L1. Representative results from one 

of three independent western blot experiments with similar results are shown. Results are 

expressed as arbitrary units. 

 

We observed an effective and reversible effect of NAC in this system, suggesting that GSH content 

could be primordial to maintain C/EBP β expression inhibition and triglyceride accumulation 

inhibition. Indeed, mice which consumed high-fat diet with NAC had significantly lower body weight 

than high-fat diet water group [38]. Therefore, we could speculate that a minimum level of ROS is 

necessary during differentiation pathway; recently, 4-hydroxynonenal (HNE), a product of lipid 

peroxidation has been proposed by several authors as an intracellular signaling mediator, rather than a 

toxic product of lipid peroxidation [39,40]. HNE promotes a great increase in the expression of PPAR 

γ in human leukemic cells [41,42]. Ristow et al. have shown that transient increase of oxidation stress 

by ROS induced PPAR γ expression in human muscle as well as a secondarily increase expression of 

ROS detoxifying enzymes including SOD 1, SOD 2 and GPx1, suggesting that ROS mediated PPAR γ 

increase as our results. Another kind of antioxidants, which do not impact the amount of GSH, such as 

Vitamin E and C provoked decreased of PPAR γ mRNA [43]. Some authors reported that flavonoids 

and phenolic acids suppress adipogenesis in 3T3-L; o-coumaric acid, rutin and luteolin had the highest 

inhibition on triglyceride accumulation and, also inhibited the expression of PPAR γ during cellular 

differentiation [44,45] Between antioxidants, which do not affect GSH content, one of the most 



Int. J. Mol. Sci. 2011, 12             

 

 

6945 

interesting of them is tocotrienol, which suppress adipocyte differentiation and AKT phosphorylation 

in 3T3-L1 preadipocytes [46]. 

3. Materials and Methods  

3.1. Cell Cultures and Drugs 

Swiss 3T3-L1 (mouse preadipocytes) was obtained from the American Type Culture Collection 

(Rockville, MD, USA). Cells were cultured in Dulbeco Modified Eagle Medium with 25 mM  

glucose (DMEM) supplemented with 10% fetal bovine serum, pH 7.4, at 37 °C, under 5% CO2.  

N-Acetyl-L-Cysteine, fluorescent probe CM-H2DCFDA and all other reagents (except when specified) 

were purchased from Sigma-Aldrich Co, St. Louis, MO, USA.  

3.2. Differentiation of 3T3-L1 Preadipocytes into Adipocytes 

3T3-L1 cells (a subclone derived from the Swiss 3T3 parental line) differentiation can be achieved 

in one week by culturing the cells with MDI medium (a mixture of 0.5 mM 3-isobutyl-1-methyl 

xanthine (M), 0.1 µM dexamethasone (D) and, 2 µM insulin (I)), in 10% FBS-DMEM for 48 h, and 

then transferred to fresh 10% FBS-DMEM containing 2 µM insulin. MDI addition is considered day 0 

of differentiation protocol; after this treatment, 70–80% cells dramatically increased their triglyceride 

content in 10 days, generating refractive droplets easily observable microscopically by conventional or 

dark-field microscopy, or by Oil Red O staining [47]. We considered MDI treated cells which 

undergoing differentiation pathway by the differentiation protocol as differentiating cells (DC) and, 

vehicle treated cells as control cells (CC). In indicated plates 5 or 10 µM N-acetylcysteine (NAC) was 

added at day 0 of differentiation protocol, in this case we added NAC plus MDI medium (DCN).  

At indicated times, according with the experiment, the cells were washed once with 0.01 M 

phosphate buffered saline at room temperature, and 0.5 mL water was added to each culture. Cells 

were scraped and frozen until chemical determinations were performed. Results are the average of four 

different experiments (mean ± SD). In the case of western blot analysis cells were cells were lysed 

with a buffer containing 1% SDS in 60 mM Tris-HCl, boiled for 10 minutes and, centrifuged at  

15,000 rpm at 4 °C for 10 minutes and used to perform the experiment. Results are the average of three 

independent experiments (means ± SD). 

3.3. Determination of Triglyceride 

Triglyceride accumulation was determined using TG color GPO/PAP AA kit (Wiener Laboratory, 

Rosario, Argentina). Results are the average of four different experiments (means ± SD). Triglyceride 

content is expressed as g Tg/g protein or mg Tg/ug DNA. 

3.4. Glutathione Determination  

Total glutathione (GSH plus GSSG) concentration was determined by a DTNB-GSSG reductase 

recycling procedure. GSH is oxidized by 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) to give GSSG 

with stoichiometric formation of 5-thio-2-nitrobenzoic acid (TNB). GSSG is subsequently reduced to 
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GSH by the action of the highly specific glutathione reductase and NADPH, releasing a second TNB 

molecule and recycling the GSH. Any oxidized GSH (GSSG) initially present in the reaction mixture 

is rapidly reduced to GSH. The rate of TNB formation is followed at 405nm and is proportional to  

the sum of GSH and GSSG present (total glutathione). The amount of GSH is determined from a 

standard curve in which GSH equivalents present is plotted against the rate of change of absorbance at 

405 nm [48]. Results are the average of four different experiments (means ± SD). 

3.5. Determination of Protein and DNA 

Proteins were determined by Bradford method using crystalline bovine serum albumin as standard [49]. 

DNA content was determined at 260 nm [50]. 

3.6. Determination of Superoxide Dismutase 

Enzymatic activity was measured in cell extracts. Superoxide dismutase (SOD, EC 1.15.1.1) was 

determined using RANDOX kit, which follows a method based on that originally described by Mc 

Cord and Fridovich [51]. This method involves the use of xanthine and xanthine oxidase (XO) system 

to generate superoxide radicals (O2
•−

), which react with 2-(4-iodophenyl)-3-(4-nitrophenol)-5-

phenyltetrazolium chloride (INPPT) to form red formazan dye (a). SOD present in the sample compete 

with INPPT for superoxide radicals and inhibits the production of the formazan dye (b). SOD was 

determined measuring the degree of inhibition of formazan dye formation exerted by cell extracts [52]. 

Results are the average of four different experiments (means ± SD). 

3.7. Determination of Glutathione Peroxidase 

Enzymatic activity was measured in cell extracts. Glutathione peroxidase selenium dependent  

(EC 1.11.1.9) was determined using RANDOX kit by a method developed by Paglia and Valentine [53]. 

This method is based on enzyme reaction in which glutathione peroxidase (GPx) catalyzes glutathione 

(GSH) oxidation (a) by cumene hydroperoxide (ROOH) and the product oxidized glutathione (GSSG) 

is used to drive the oxidation of NADPH + H
+
 catalyzed by glutathione reductase, with concurrent 

reduction of GSSG (b). The concentration of GPx is assessed from the decrease in absorption at  

340 nm due to oxidation of NADPH to NADP
+
. Results are the average of four different experiments 

(means ± SD). 

3.8. Measurement of Intracellular ROS Generation 

Cells were washed with 0.01 M phosphate buffered saline at room temperature and then incubated 

in the dark with a cell-permeable non-fluorescent probe CM-H2DCFDA (10 µM in Krebs-Ringer 

bicarbonate buffer) for 30 min at 37 °C. The probe is de-esterified intracellularly and turns to highly 

fluorescent 2',7'-dichlorofluorescin upon oxidation. Fluorescence emission spectra (between 515 and 

540 nm) was monitored in a QuantaMaster Model QM-1 PTI spectrofluorometer, and corrected for 

detector sensitivity and monochromator blaze angle by the software of the equipment, with an 

excitation wavelength at 505 nm. The fluorophore incorporated in cell cultures was  

2',7'-dichlorodihydrofluorescin diacetate, a probe that becomes fluorescent under oxidation and emits 
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green fluorescence. ROS production was determined from a H2O2 standard curve (0.1–5 µM). The 

fluorescence intensities of H2O2 solutions were plotted vs H2O2 nmoles, and it was observed that 

fluorescence intensity increased at higher oxidant concentrations until the system is saturated. Thus, 

the best fittings for a linear regression were obtained with inverted plots. All the experiments were 

measured at room temperature. Results of four independent experiments were normalized by protein 

content (means ± SD). 

3.9. Western Blot Analysis 

3T3-L1 cells were lysed with a lysis buffer (1% SDS, 60 mM Tris-HCl), boiled for 10 minutes and, 

centrifuged at 15,000 rpm at 4 °C for 10 minutes. Proteins (10 µg of different samples) were then 

separated on 15% SDS-polyacrylamide gel and transferred to nitrocellulose membranes (Amersham, 

GE Healthcare), which were soaked in blocking buffer (BSA 0.1%, Tween 0.4% and EDTA 1mM in 

0.01 M phosphate buffered saline) for 1 hour, and then incubated overnight with a mouse monoclonal 

antibody against PPAR γ (PPAR γ (E-8) purchased from Santa Cruz Biotechnology), with a rabbit 

monoclonal antibody against C/EBP β which recognized LAP protein (C/EBP β (C-19) purchased 

from Santa Cruz Biotechnoloy), with antibodies directed against Akt and phosphoSer
473

-Akt 

(purchased from Cell Signaling Technology) or rabbit anti-β actin antibody (anti-β actin 20–33 

purchased from SIGMA) at 4 °C. Horseradish peroxidase-conjugated secondary antibodies  

(anti-mouse Ig G Santa Cruz Biotechnology or anti-rabbit Ig G SIGMA) and an enhanced 

chemiluminescence (ECL) substrate kit (Amersham ECL Plus Western Blotting Detection System, GE 

Healthcare) were used for detection of specific protein. Adipogenic factors expression (PPAR γ and 

C/EBP β) was normalized by β-actin expression in each sample.  

Samples were obtained at day 1, day 2 and day 4 of differentiation protocol (DC1 and DCN1: day 

one of differentiation protocol, DC2 and DCN2: day two of differentiation protocol, DC4 and DCN4: 

day four of differentiation protocol). In all the cases, expression was normalized by β-actin protein 

expression. Results of each adipogenic factor are the average of three different experiments  

(means ± SD); they are expressed as arbitrary units. 

3.10. Akt Assays 

Akt assays were performed according to the manufacturer’s protocol, using 40 µg of 3T3-L1 lysate 

protein in buffering containing 60 mM Tris (pH 7.4) and 100 mM NaCl for western blot analysis. 

Briefly, the experiment was carried out by culturing the cells were in medium containing 1% FBS 

overnight to reduce basal levels of phosphorylation; then 2 µM insulin or 2 µM insulin with 10 µM 

NAC was added to the cells. After the treatment, the cells were lysed with a lysis buffer (1% SDS,  

60 mM Tris-HCl, 100 mM NaCl), boiled for 10 minutes and, centrifuged at 15,000 rpm at 4 °C for  

10 minutes, and kept in ice until western blot analysis was performed. We used antibodies directed 

against Akt or phosphoSer
473

-Akt; they are expressed as arbitrary units, the results of each assay are 

the average of three independent experiments (means ± SD). 
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3.11. Statistics 

Results are expressed as means ± SD. Statistical analysis was performed by one-way analysis of 

variance followed by post-anova analysis [54]. 

4. Conclusions  

We demonstrated that NAC addition inhibited triglyceride accumulation in adipocytes, by 

preventing the increase of ROS and antioxidant enzyme activities during differentiation. NAC 

increased intracellular GSH content and, as a consequence, the antioxidant reduced the differentiation 

markers expression. Therefore, in this system, NAC seems to exert a beneficial effect on the 

prevention of metabolic changes induced in adipocytes during obesity development. NAC is currently 

used pharmacologically as a mucolytic agent in a variety of respiratory illnesses; however, now it 

appears to also have beneficial effects in conditions characterized by oxidative stress, such as heart 

disease, cigarette smoking and cancer. Here, we evaluated NAC inhibitory effect on trigliceryde 

accumulation, which is relevant not only for gaining insight into pathogenesis of metabolic disorders, 

but also for identifying pathways which might be appropriate targets for pharmacological interventions. 

Diets with antioxidants, such as NAC, could have relevance in regulation of antioxidant system and 

free radical production. 
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