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Abstract: High intake of dietary fiber is claimed to protect against development of 

colorectal cancer. Barley is a rich source of dietary fiber, and possible immunomodulatory 

effects of barley polysaccharides might explain a potential protective effect. Dietary fiber 

was isolated by extraction and enzyme treatment. A mixed-linked β-glucan (WSM-TPX, 

96.5% β-glucan, Mw 886 kDa), an arabinoxylan (WUM-BS-LA, 96.4% arabinoxylan, Mw 

156 kDa), a mixed-linked β-glucan rich fraction containing 10% arabinoxylan (WSM-TP) 

and an arabinoxylan rich fraction containing 30% mixed-linked β-glucan (WUM-BS) 

showed no significant effect on IL-8 secretion and proliferation of two intestinal epithelial 

cell lines, Caco-2 and HT-29, and had no significant effect on the  

NF-κB activity in the monocytic cell line U937-3κB-LUC. Further enriched arabinoxylan 

fractions (WUM-BS-LA) from different barley varieties (Tyra, NK96300, SB94897 and 

CDCGainer) were less active than the mixed-linked β-glucan rich fractions (WSM-TP and 

WSM-TPX) in the complement-fixing test. The mixed-linked β-glucan rich fraction from 

NK96300 and CDCGainer showed similar activities as the positive control while 

mixed-linked β-glucan rich fractions from Tyra and SB94897 were less active. From these 
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results it is concluded that the isolated high molecular weight mixed-linked β-glucans and 

arabinoxylans from barley show low immunological responses in selected in vitro test 

systems and thus possible anti-colon cancer effects of barley dietary fiber cannot be 

explained by our observations. 

Keywords: arabinoxylan; mixed-linked β-glucan; barley; Caco-2; complement-fixing test; 

dietary fiber; HT-29; IL-8; U937; NF-kappaB 

 

1. Introduction  

Dietary fiber have been claimed to protect against the development of colorectal cancer (CRC) [1], 

but according to several reviews, evidence of such a relationship is scarce [2–4]. CRC is one of the 

most common types of cancer world-wide, and also in Norway, the incidence of CRC has increased 

over the past 50 years. The reason for this is largely unknown, but lifestyle and diet probably 

contribute [5,6].  

Chronic inflammation is associated with increased risk of cancer development [7], and patients with 

inflammatory bowel diseases, such as ulcerative colitis and Crohn’s disease, have increased risk of 

developing CRCs [8]. Plasma levels of the acute phase protein C-Reactive Protein (CRP) which is a 

marker of inflammation, are elevated in persons who subsequently develop CRC [9]. Increased intake 

of dietary fiber reduces CRP levels [10–12] as well as the levels of the proinflammatory cytokines IL-6 

and TNF [13]. Strengthening the immune system’s ability to detect and eliminate cancer cells, a 

process called cancer immunosurveillance [14], on the other hand may have a protective effect. The 

potential of dietary fiber to promote cancer immunosurveillance is currently unknown. However barley 

beta-glucan has been shown to increase the effect of anti-tumor antibodies in mice [15,16]. In general, 

dietary fiber may affect inflammatory processes and immune responses by several mechanisms. 

Amongst the most studied are the mechanisms exerted by butyrate, a short chain fatty acid produced in 

the colon following fermentation of dietary fiber. Butyrate has anti-inflammatory [17], apoptotic, and 

anti-proliferative activities on cancer cells [18,19]. Dietary fiber, depending on their structures, can 

affect the intestinal immune system by being taken up by M-cells in the Peyer’s patches and 

transported to underlying immune cells and other cells. This may result in a local cytokine production 

which can influence T-cells, B-cells, antigen presenting cells and other immune cells. Fiber may also 

be taken up by intestinal macrophages or dendritic cells (i.e., antigen presenting cells) and transported 

to lymph nodes, spleen and bone marrow [20,21]. In addition, direct interaction of fiber with colonic 

epithelial cells or leukocytes may induce changes in immune reactions relevant for inflammation and 

the development of cancer.  

Barley (Hordeum vulgare) is an interesting source of dietary fiber and was previously the preferred 

grain for food in the Nordic region; mainly due to its short growing season due to the climate. In 

Norway, barley is still the major cereal crop, but only a part is used for human consumption, the 

majority is used as animal feed. Barley as well as oats are rich in dietary fiber, mainly mixed-linked  

β-glucans and arabinoxylans [22,23]. In these cereals, -glucans are linear β-(13)/(14)-D-

glucopyranosyl polymers referred to as mixed- linked or cereal -glucans [24]. 
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Most of the previous studies on immunomodulatory activities of barley dietary fiber have focused 

on the mixed-linked β-glucans since they are structurally related to fungal and yeast β-glucans that are 

β-(13)-D-glucopyranosyl polymers with β-(16) linked side chains. In vitro and in vivo experiments 

on β-glucan preparations from yeast and fungi have shown immunomodulating properties and a 

potential to increase host resistance against infections [20]. Mixed-linked β-glucans from barley might 

have similar effects, although knowledge on immunomodulatory effects of barley polysaccharides is 

quite limited. Some activities have been reported on commercially available barley β-glucan; Intra 

peritoneal injections of barley -glucan into fish enhanced the leukocyte count, phagocytic activity, 

lysozyme activity, complement activity via the alternative pathway and serum bactericidal activity [25]. 

Czop and Austen [26] found that turbid preparations of barley -glucan activate the alternative 

pathway of the complement system in vitro. In addition, pre-treatment of human monocytes with barley 

β-glucan inhibited phagocytosis of zymosan particles [26]. β-glucans enhance cytotoxicity of 

phagocytes or NK cells towards iC3b-opsonized cells by binding to the lectin site on complement 

receptor 3 (CR3 or CD11b/CD18, Mac-1, M2 integrin) and thereby initiate cytotoxic degranulation 

of NK cells and phagocytosis by other cells [27–29]. Oral administered barley -glucan increased the 

efficacy of photodynamic therapy of Lewis lung carcinoma in mice through binding to CR3 [27], but 

barley β-glucan binds to CR3 with lower affinity than yeast β-glucan [29,30]. Barley -glucans also 

enhance the anti-tumor effect of monoclonal antibodies in mice when administered orally [16,31] by 

being taken up by gastrointestinal macrophages, transported to the spleen, lymph nodes and bone 

marrow where smaller fragments of glucan are bound to CR3 on granulocytes which in turn kill iC3b-

opsonized tumor cells [15]. Barley -glucan can also bind to Dectin-1[32] and activate NF-κB when 

Dectin-1, Syk, CARD9 and Bcl10 are co-expressed in the cells [33]. The transcription factor NF-B 

plays a critical role in immune, cellular stress and inflammatory responses [34].  

Instead of using commercially available dietary fiber from barley in the present study we isolated 

fiber fraction from barley, both mixed-linked β-glucan and arabinoxylan and tested for 

immunomodulatory activities related to inflammation. This involved extraction and the use of specific 

hydrolytic enzymes to isolate pure polysaccharide fractions and determination of biological activities 

by stimulation of the human colon epithelial cell lines Caco-2 and HT-29 followed by measurement of 

cell proliferation and cytokine secretion. In addition, we investigated the fiber`s ability to modulate 

NF-κB activity in monocytes and their influence on the complement system using the 

complement-fixing test [35], all systems involving factors with relevance to inflammatory processes. 

2. Results and Discussion 

2.1. Barley Dietary Fiber Fractions 

-glucan and arabinoxylan samples isolated and purified from the common Norwegian barley 

variety Tyra were the main basis for our investigations. As shown in Table 1, the constituent sugar 

analysis combined with 
1
H-NMR [23] (spectra not shown) revealed that WUM-BS contained 70% 

arabinoxylan and 30% mixed-linked -glucan. Treatment with lichenase (L) and amyloglucosidase (A) 

efficiently removed most of the remaining mixed-linked -glucan from this fraction; the enzyme 

treated fraction WUM-BS-LA contained 96.4% arabinoxylan. Trace amounts of mannose were 
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attributed to the glycoprotein part of the enzyme preparation used. In this fraction, ferulic acid is not 

present due to alkali treatment during the extraction procedure. 

Table 1. Characterization of fiber fractions from Hordeum vulgare var. Tyra: 

monosaccharide composition (mol %) and estimated molecular weight calculated on the 

basis of pullulan standards by GPC-SEC and refractive index detection, as weight average 

(Mw) and number average (Mn) of barley fiber fractions . 

 Monosaccharide Composition (mol%) Molecular Weight (kDa) 

Fraction Glc Man Xyl Ara Mw Mn 

WSM-TP 91.0 0.0 5.8 3.3 1090 599 

WSM-TPX 96.5 0.0 1.9 1.6 886 501 

WUM-BS 30.0 0.0 52.7 17.3 412 98 

WUM-BS-LA 2.0 1.6 66.0 30.4 156 42 

 

WSM-TP was composed of 90% mixed-linked -glucan in addition to 10% co-extracted 

arabinoxylan. Most of the arabinoxylan was removed by enzymatic treatment with xylanase (X). The 

enzyme treated fraction WSM-TPX was composed of 96.5% glucose and only 3.5% arabinoxylan.  

The estimated relative weight average molecular weights (Mw) based on the pullulan series were 

about 886 and 156 kDa for WSM-TPX and WUM-BS-LA, respectively (Table 1). Molecular weight 

decreased during the enzymatic treatment of WSM-TP and WUM-BS from about 1090 and 412 kDa, 

respectively, giving samples with less polydispersities (Mw/Mn). 

All previous studies on immunomodulatory activity of mixed-linked β-glucans from barley have been 

performed on commercially available samples. It should be noticed [20] that choice of isolation method 

may influence polysaccharide characteristics, such as molecular weight and solubility, and thereby their 

biological activities. In addition, co-extracted substances or contaminants of an endotoxin nature that may 

occur during isolation may contribute to significant activities in immunological test systems.  

Potential degradation of dietary fiber during food processing has not been taken into account in this 

study. In addition, the fact that dietary fiber very seldom is eaten alone without subsequent intake of 

several other food constituents makes the picture quite complex and complicated to explore. In the 

present study, all fiber fractions had relatively high molecular weight after isolation, and no attempts 

were made to alter the chain length in either of the samples. This was because we primarily wanted to 

investigate intact carbohydrate dietary fibers with the presumption that dietary fiber remains 

undegraded until reaching the microflora in the colon.  

2.2. Effect on IL-8 Secretion and Cell Proliferation in Caco-2 and HT-29 

To test the inflammatory response of the fiber fractions on gut epithelial cells the modulation of  

IL-8 (CXCL8) secretion from the human intestinal epithelial cell lines Caco-2 and HT-29 cells was 

determined. The concentration used of 1 mg/mL is physiologically relevant as a concentration of  

1 mg/mL barley fiber in the intestine corresponds to the consumption of approximately 20 g barley, an 

amount found, for example, in two slices of barley bread (40% barley flour). In addition, the potential 

toxic effect of the fiber fractions on the Caco-2 and HT-9 cells was determined by measuring the effect 

of the fiber fractions at different concentrations on cell proliferation using the MTT assay.  
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We found that the fiber fractions had no significant effect on the cell proliferation of the human 

intestinal epithelial cell lines Caco-2 and HT-29 cells (Figure 1A, B). It was observed that the  

HT-29 cell line in general secretes considerably higher levels of IL-8 than Caco-2, but the barley fiber 

fractions had no significant effect on this secretion either from Caco-2 (Figure 2A) or HT-29 cells 

(Figure 2B). Only the positive controls, PMII and zymosan increased secretion of IL-8 from both cell 

lines significantly (p = 0.001) compared to the respective controls. Zymosan is a crude extract from 

yeast (Saccharomyces cerevisiae) and contains mainly -glucan but also some mannan [20], protein, 

fat and chitin [36]. Immunomodulatory activities of -glucan from yeast and from other sources have 

been studied extensively, for review on this topic see [37]. PMII is a pectic polysaccharide fraction 

isolated from Plantago major L. leaves, a plant used in traditional medicine to aid the healing of wounds. 

PMII has shown immunomodulatory activities both in vitro and in vivo: Increased resistance against 

bacterial infection in mice, activation of human monocytes and activation of the complement 

system [35,38,39]. PMII is therefore considered useful as positive control in immunological test systems.  

Even though we did not find any direct effect of the barley fiber fractions on the intestinal epithelial 

cell model system, barley fiber may affect inflammatory processes and immune response by other 

mechanisms. As outlined in the introduction, barley fiber may be taken up by intestinal macrophages or 

M-cells and delivered to underlying immune cells where binding of barley β-glucan to the lectin site of 

CR3 on effector cells has been shown to enhance cytotoxic activity [15,27].  

Figure 1. The effect of fiber fractions extracted from the barley variety Tyra on cell 

proliferation of (A) Caco-2 cells and (B) HT-29 cells. Cells were incubated with three 

different concentrations of the respective fiber fraction in cell culture medium for 24 hours 

before cell proliferation was measured. Each bar represents the mean of at least three 

experiments performed in triplicate (as % of medium control) ± SD.  
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Figure 1. Cont. 

 

Figure 2. IL-8 secretion from Caco-2 (A) and HT-29 (B) cells in response to treatment with 

fiber fractions extracted from the barley variety Tyra, zymosan and PMII (all 1 mg/mL). Cells 

were incubated with fiber of the respective fiber fractions in cell culture medium for 24 hours 

before IL-8 secretion was measured. Each bar represents the average ± SD of one 

representative experiment from a total of three independent experiments. * p < 0.05. 
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Figure 2. Cont. 

 

2.3. The Ability of the Fiber Fractions to Modulate NF-B Activity in Monocytes 

The nuclear transcription factor kappa B (NF-B) plays a central role in inflammatory response [40]. 

Thus, to further study the effect of the fiber fractions on the immune response, the ability of the fiber 

fractions to modulate basal and LPS-induced NF-B activity was tested using the U937-3B-LUC 

monocytic cell line stably transfected with a luciferase reporter containing three NF-B binding sites. It 

has been shown that this model system correlates well with in vivo NF-B activity [41,42] Due to the 

limitations of the test system, lower concentrations of the samples (0.1, 0.2 and 0.4 mg/mL) were used 

compared to experiments with the Caco-2 and HT-29 cell lines. However, as the U937-3B-LUC cell 

line is quite sensitive, the response is still considered relevant. The activities of the different fiber 

fractions were compared to the positive control, PMII [39]. Of the different fiber fractions only the 

highest concentration of WUM-BS had a significant effect on basal NF-B activity (p = 0.004) 

(Figure 3A), giving an increase of the activity to 270% compared to control. The apparent dose 

response from 0.1 mg/mL to 0.4 mg/mL of all fractions of the basal NF-B activity was statistically not 

significant compared to the control. However, all concentrations of PMII significantly increased basal 

NF-B activity (p < 0.001) in the test system compared to the control. None of the fiber fractions had 

significant effect on the LPS-induced NF-B activity, only the highest concentration of PMII increased 

the LPS-induced NF-B activity significantly (p = 0.013) (Figure 3B).  
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Figure 3. The effect of the fiber fractions extracted from the barley variety Tyra on basal  

(A) and LPS-induced (B) NF-B activity. U937-3xκB-LUC cells were incubated with 0.1, 0.2 

or 0.4 mg/mL as indicated of the respective fiber fraction in cell culture medium for 6.5 hours 

before luciferase activity was measured. For LPS-induction, 1 g/mL LPS was added after 

30 min, and the cells incubated further for six hours before the luciferase activity was measured. 

Each bar represents the mean of at least three experiments performed in triplicate ± SD.  

* p < 0.05. 

 

 

 

Only high concentrations of a fraction containing 70% arabinoxylan and 30% mixed-linked  

β-glucan (WUM-BS) increased the activity of the pro-inflammatory transcription factor NF-B in 

A 

B 
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monocytes. This fraction was obtained after alkaline extraction of a water insoluble residue. Neither 

pure arabinoxylan nor pure mixed-linked β-glucan was active in this test system. Some biological 

effects of β-glucans are initiated by binding to Dectin-1 on macrophages and dendritic cells. Barley  

β-glucan has previously been found to activate NF-B when Dectin-1, Syk, SARD9 and Bcl10 were 

co-expressed in the cells [33], and it was concluded that Dectin-1 was involved in these activities. 

However, binding to Dectin-1 requires β-glucans with a minimum of 10- or 11- mer 1,3-linked glucose 

oligomers [43] which are structural elements not found in barley. Barley β-glucans only contain single 

1,3-linked glucose units separating two or three 1,4-linked glucose oligomers [44]. Transcription factor 

NF-B can be activated via many different pathways including proinflammatory cytokines, TLR 

activation, for example, by LPS and by T-cell activation [40]. As shown in Figure 3B, LPS induced 

NF-B activity was not significantly altered by any of the barley fractions indicating that the basal 

activity observed after stimulation of 0.4 mg/mL WUM-BS may be due to contamination by LPS. In 

any case, the activity found in Figure 3A cannot be due to either arabinoxylan or mixed-linked 

-glucan since other fractions containing higher levels of mixed-linked -glucan (WSM-TP and 

WSM-TPX) and arabinoxylan (WUM-BS-LA) were inactive in the test system. The positive control 

PMII increased LPS induced activity but to a lesser extent than measured with PMII alone (Figure 3A). 

This shows that PMII is active per se, but confirms presence of LPS. Previously, it has been shown that 

PMII can activate monocytes and induce secretion of TNF [39]. One might speculate that secreted 

TNF in turn activate NF-B [40], alternatively PMII may bind to NF-B activating receptors directly. 

2.4. Complement Fixing Test 

Purified β-glucan (WSM-TPX) and arabinoxylan (WUM-BS-LA) from Tyra were tested for activity 

in the complement-fixing test. Both showed lower activities than the positive control, PMII. At 

1 mg/mL WSM-TPX was significantly more active than WUM-BS-LA (p = 0.009) (Figure 4). 

β-glucans and purified arabinoxylans from other barley varieties [45] were also subjected to this 

test. As shown in Figure 4, all arabinoxylan fractions (WUM-BS-LA) had relatively low activity 

compared to the positive control. Arabinoxylan isolated from Tyra, NK96300 and SB94897 had very 

similar activities; the one from CDC Gainer was almost inactive.  

Starch-free mixed-linked -glucans that had not been subjected to a xylanase treatment (WSM-TP) 

containing additional small amounts of arabinoxylan, had the highest activity in this test system. Such 

WSM-TP samples originating from CDC Gainer and NK96300 showed activity at the same level as the 

positive control, while similar fractions from Tyra and SB94897 were less active (p < 0.035). Figure 4 

furthermore shows that a xylanase purification step of WSM-TP into purified mixed-linked -glucan 

(WSM-TPX) did not alter the complement-fixing activity significantly.  

In general, all mixed-linked β-glucan rich fractions had a significantly higher complement-fixing 

activity than the arabinoxylan-rich fractions (p < 0.027).  

According to Figure 4 the fractions can be listed as follows with regard to decreasing activity in the 

complement fixing test: PMII = WSM-TP CDC Gainer = WSM-TP NK96300 > WSM-TP Tyra = 

WSM TPX Tyra = WSM TP SB94897 > WUM BS-LA Tyra = WUM-BS-LA NK96300 = WUM-BS-

LA SB94897 > WUM-BS-LA CDC Gainer. 
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Figure 4. Complement fixing test of fiber fractions isolated from barley varieties. Each bar 

represents % activity (mean values of triplicates ± SD) of the positive control PMII 

measured at 1 mg/mL. The fractions are arabinoxylan (WUM-BS-LA) and mixed-linked 

β-glucan rich fractions (WSM-TP and WSM-TPX) from the barley varieties Tyra, 

NK96300, SB94897 and CDC Gainer. Activity bars denoted with the same letter (a, b or c) 

are not significantly different, p < 0.05.  

 

Mixed-linked β-glucans from barley have previously shown to activate the complement system via 

the alternative pathway [26], the present study demonstrates an effect also on the classical pathway. 

The complement system provides a first line of protection against potential harmful invaders and is 

part of the innate immune system. It consists of a group of serum proteins that are activated in a 

cascade mechanism. Many of these proteins are pro-enzymes that are activated by proteolytical 

cleavage which in turn activate the next step in the cascade. Activation can be initiated by three 

pathways; the classical pathway, the alternative pathway or the lectin pathway, and is important for 

initiating inflammation, activation of leucocytes, lysis of target cells and opsonisation [46,47]. The test 

system employed has some limitations since it does not distinguish between activation and inhibition 

of the complement cascade, only a ―consumption‖ of complement activity is registered. From previous 

studies however, it is established that PMII, the positive control, is an activator of the complement 

system [35], and it has also shown to protect against bacterial infection in vivo [38].  

The mixed-linked -glucan fractions tested were more active than the arabinoxylan fractions. The 

reason for the differences in activity of the different -glucans might be due to differences in their 

primary structure. The ratio of (14)/(13) linkages present varies between the different barley 

varieties tested. NK96300 has the highest ratio (2.76) followed by CDC Gainer (2.59), Tyra (2.48) and 

SB94897 (2.30) [23]. The varieties with the highest (14)/(13) ratio have the highest activity in the 

complement fixing test, but statistical analysis shows no significant correlation between linkage ratio 

and activity or between molecular weight of the WSM-TP fractions and activity. Mw of WSM-TP 

fractions from NK96300, CDC Gainer and SB94897 were estimated to 1040, 1130 and 1040 kDa, 

respectively. The estimated molecular weights of the WSM-TP fractions were significantly higher than 

the corresponding arabinoxylan (WUM-BS-LA) fractions (p < 0.001). Mw of the WUM-BS-LA 
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fractions from NK96300, CDC Gainer and SB94897 were estimated to 214, 203 and 190 kDa, 

respectively. The WUM-BS-LA fractions from different barley varieties tested had in general low 

activities in the complement fixing test. However, when both these arabinoxylan fractions and the more 

active -glucan rich fractions were included in the statistical test a significant positive correlation was 

found between molecular weight and activity (p = 0.002). On the other hand, when these two classes of 

dietary fiber are evaluated separately there is no correlation between activity and their estimated 

molecular weights. Contamination of LPS does not affect this test system [48], so activity is not 

attributed to presence of endotoxin. 

The arabinoxylans from different barley varieties tested had in general low activities in the 

complement fixing test leaving this hemicellulose type of dietary fiber non-responsive in all the test 

systems in the present study. To our knowledge, high molecular weight arabinoxylans have not been 

ascribed immunomodulatory activities. On the other hand arabinoxylan oligosaccharides have been 

studied for prebiotic properties [49] and have been shown to reduce preneoplastic lesions in the colon 

of rats treated with a carcinogen [50].  

3. Experimental Section  

3.1. Isolation of Fiber Fractions 

Fiber fractions were extracted from four barley varieties; NK96300, Tyra, CDC Gainer and 

SB94897 basically as previously described [51]. Briefly; milled (0.5 mm) barley samples (48 g) were 

extracted and washed with boiling ethanol. This removed low molecular weight constituents and is 

promoting the denaturation of endogenous hydrolytic enzymes such as β-glucanase. Following 

defatting with hexane, extraction with boiling water gave a water soluble material (WSM) and a 

residue of water insoluble material (WUM). WSM was furthermore treated with 7 mL amylase 

(Termamyl 120 L, Type L, Novozymes ) and 75 mg protease (Porcine Pancreatine, SIGMA) filtered 

and recovered with alcohol precipitation resulting in the starch free fraction designated WSM-TP.  

In an attempt to remove small amounts of co-extracted arabinoxylan, WSM-TP was treated with a 

xylanase. WSM-TP Tyra (1 g) was dissolved in sodium acetate buffer pH 4.5, and 10 µL (21 U) endo  

-xylanase (β-xylanase M6, Megazyme) was added at 40 °C and left for 3 h with gentle stirring. 

Polysaccharide material was precipitated with isopropanol and centrifugated at 1000 × g for 10 min. 

The pellet was redissolved in water, dialyzed against distilled water using a dialyzing tube with cut off 

12,000–14,000 (Medicell Int. Ltd); freeze dried and designated WSM-TPX. 

Base soluble material (WUM-BS) was then extracted from the previous water insoluble residue 

(WUM) with 1 M NaOH added 1% NaBH4. Co-extracted mixed-linked -glucans and starch were 

removed by adding 50 U lichenase (Lichenase EC 3.2.1.73, Megazyme) and 400 µL amyloglucosidase 

(Amyloglucosidase for Total Dietary Fiber Assay EC 3.2.1.3, SIGMA) as described elsewhere [51] 

giving fractions designated WUM-BS-LA. 
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3.2. Monosaccharide Composition 

Methanolysis combined with TMS-derivatisation and GC were performed according to the method 

of Chambers & Clamp [52] with modifications as previously described [53] using 4 M HCl in 

anhydrous methanol for 24 h at 80 °C.  

3.3. 
1
H-NMR  

1
H-NMR spectra of selected samples were obtained on a Varian Mercury 300 system. 

Approximately 4 mg of freeze dried material was solubilized in 0.7 mL D2O, transferred to NMR glass 

tubes and acquired at 80 °C with typically 64 scans. Further details of the method are described in 

Knutsen & Holtekjolen [23] . 

3.4. HPLC 

GPC-SEC was performed using a DIONEX P680 pump with a Spectraphysics AS3500 auto injector 

and a Shimadzu RID6A refractive index detector controlled with Chromeleon 6.80 software. Serially 

connected Shodex OHPack SB-806-HQ and SB 804-HQ columns were connected to a Shodex 

OHPack SB-LG precolumn and eluted at 40 °C with 50 mM Na2SO4 (0.5 mL/min), and samples  

(1 mg/mL) were injected using a 100 µL loop. Relative molecular weight averages (Mw and Mn) were 

estimated offline by the software WINGPC −6.2 using pullulan molecular weight standards ranging 

from Mp 342 to 1,520,000 Da for calibration. Software and standards were obtained from PSS 

(Polymer Standards Service GmbH, Mainz, Germany). 

3.5. Cell Cultures 

The Caco-2 cell line (obtained from the American Type Culture Collection (ATCC), and a generous 

gift from Professor Kirsten Sandvig, Norwegian Radium Hospital) and HT-29 cell line (obtained from 

ATCC, and a generous gift from Professor Tor Lea, Norwegian University of Life Sciences) were 

grown in DMEM medium containing 10% fetal calf serum, 1% non-essential amino acids, 100 U/mL 

penicillin, and 100 mg/mL streptomycin. The U937-3xkB-LUC cell line (a generous gift from 

Professor Rune Blomhoff, University of Oslo) was grown in RPMI-1640 medium supplemented with 

10% fetal bovine serum, 2 mM L-glutamine, 50 U/mL penicillin, 50 mg/mL streptomycin and 

75 µg/mL hygromycin (Sigma-Aldrich, St. Louis, MO). The cells were maintained at 37 °C and 5% 

CO2 in a humidified incubator. If not otherwise stated, all solutions were obtained from Invitrogen 

(Carlstad, CA).  

3.6. Measurement of Cell Proliferation and IL-8 Secretion 

For IL-8 secretion, cells were plated in 12-well plates. For cell proliferation, cells were plated in  

96-well plates. Cells were plated at a concentration of 1.0 × 10
5
 cells/mL (Caco-2) and 

1.5 × 10
5
 cells/mL (HT-29) and incubated until they reached 80 % confluency (48 h). The fiber 

fractions were solubilized in water by boiling for 20 min, aliquoted, freeze dried and re-solubilized in 

growth medium to treatment concentrations of 0.5–3 mg/mL. A yeast derived beta-glucan (Zymosan A 
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Z4250 Sigma) and PMII, a plant polysaccharide fraction from Plantago major L with known immune 

stimulating activity [35,38,39] were used as positive controls for IL-8 secretion. Cells were incubated 

24 h with 1.5 mL (12-well plates) or 100 µL (96-well plates) growth medium or solubilized fiber 

fractions in duplicate (12-well plates) or triplicate (96-well plates). At the end of the incubation, the 

plates were processed for measurement of either cell proliferation or IL-8 secretion. 

Cell proliferation was determined using the colorimetric MTT assay (Roche Diagnostics GmbH, 

Mannheim, Germany) that measures the ability of metabolic active cells to cleave tetrazolium sodium 

salt to purple formazan crystals [54]. The resulting purple precipitate in each cell was dissolved in 

100 μL isopropanol containing 0.04 M HCl, and the absorbance measured at 562 nm using Titertek 

Multiscan plus MK II plate reader (Labsystems, Finland). IL-8 concentrations in the cell culture 

supernatants were determined using an enzyme linked immunosorbent assay (ELISA). Monoclonal 

mouse anti-human IL-8 antibody (BD Bioscience Pharmingen, San Diego, CA) suspended in coating 

buffer (0.1 M Carbonate/Bicarbonate buffer pH 9.6) was added to MaxiSorp
TM 

ELISA plates (Nunc, 

Roskilde, Denmark) and incubated over night at 4 °C. Plates were washed three times with PBS 

containing 0.01% Tween-20 and unspecific binding-sites were blocked by incubating with 5% BSA in 

PBS for 1 h at room temperature. After washing five times with PBS-Tween, samples and human 

recombinant IL-8 standards (BD Bioscience Pharmingen,) diluted in working strength high performance 

ELISA (HPE) buffer from Sanquin (Amsterdam, Netherlands) were added to the plates, which were then 

incubated for 1.5 h at room temperature followed by washing five times with PBS-Tween. Plates were then 

incubated for 1 h with biotinylated mouse anti-human IL-8 monoclonal antibody (BD Bioscience 

Pharmingen) in HPE buffer. After another washing step streptavidin-horseradishperoxidase conjugate (BD 

Bioscience Pharmingen) in HPE buffer was added and incubated at room temperature for 30 min. Plates 

were then washed five times with 30 sec between each wash. Color developed after addition of 

3,3’,5,5’-tetramethylbenzidine (Sigma-Aldrich) in 0.05 M Phosphate-Citrate-Buffer containing H2O2. 

After 10 min the reaction was stopped by addition of 1 M H2SO4, and absorbance was measured at 

450 nm using the Titertek Multiscan plus MK II plate reader (Labsystems, Finland). The detection 

limit of the IL-8 ELISA was 2 pg/mL. 

3.7. NF-kB Activity Assay 

In order to measure NF-B activity the U937-3xB-LUC cell line were transferred to RPMI 

medium with 2 % fetal bovine serum and seeded out in 96 well plates. The fiber fractions extracted 

from the barley variety Tyra were mixed with highly purified water (Milli-Q, 18.2 M to a final 

concentration of 1 mg/mL in Precellys CK14 homogenization tubes (Bertin Technologies, Montigny le 

Bretonneux, France), solubilized using the Precellys 24 homogenizer (Bertin Technologies) followed 

by boiling the samples for 5 min, and then freeze dried. The resulting freeze dried fiber fractions were 

dissolved in medium with 2% serum to a concentration of 4 mg/mL. PMII from Plantago major L. 

leaves was used as positive control [35,38,39]. This final solution of the fiber fractions was diluted 

directly in the wells giving the final concentrations of 0.1, 0.2 and 0.4 mg/mL. To measure basal NF-B 

activity, cells were incubated with fiber fractions or vehicle control for 6.5 hours. To measure 

lipopolysaccharide (LPS)-induced NF-κB activity, cells were pre-incubated with fiber fractions or vehicle 

control for 30 min, then 1 µg/mL lipopolysaccharide isolated from E. coli 0111:B4 (Sigma-Aldrich, St. 
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Louis, MO, U.S.) was added to the cells and the incubation continued for 6 hours. Cell viability for 

these cells was determined with the use of the CellTiter-Glo Luminiscent Cell Viability Assay 

(Promega, Madison, WI, U.S.) with cut-off value of 10% non-viable cells. The NF-B activity was 

determined by measuring the luciferase activity after addition of Bright-Glo
TM

 Reagent (Pomega, 

Madison, WI, U.S.) in accordance to the manufacturer’s instructions. Luminescence was detected for 1 

sec using the Glomax96 Microplate Luminometer (Promega, Madison, WI, U.S.).  

3.8. Complement Fixing Test 

Human complement proteins were incubated with fiber fractions that might either activate or inhibit 

activation of the complement proteins. In both situations complement activity is depleted with a 

negative influence on a balanced hemolysis system involving antibody-sensitized sheep red blood cells 

and a human serum diluted to give 50% hemolysis. The degree of hemolysis was measured as 

absorbency at 405 nm. Fiber fractions were tested in triplicates using PMII, a polysaccharide fraction 

from Plantago major L. as positive control [35,39]. 

3.9. Statistics 

Analysis of significant differences was tested by one-way analysis of variance (ANOVA) with 

Dunnett’s comparisons with a control and Pearson correlation analysis using Minitab Version 16. 

Differences were considered significant when p < 0.05. 

4. Conclusions  

From the experiments presented, it is concluded that purified high molecular weight mixed-linked 

β-glucans from barley have quite low immunological responses and do not affect proliferation and 

secretion of IL-8 of the colon epithelial cell lines Caco-2 and HT-29, or NF-kappaB activity in the 

monocytic cell line U937-3B-LUC but are active in the complement-fixing test. High molecular 

weight barley arabinoxylans have neglectible activities in all test systems mentioned. Taken together 

the results do not support that barley dietary fiber protect against the development of CRC through the 

immune responses or inflammatory responses tested. Still, one cannot overrule that such effects may 

occur through other mechanisms that may be shown in other test systems. 
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