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Abstract: We have shown that the binding free energy calculation from molecular 

dynamics can be adapted successfully to cysteine proteinases, such as arginine-specific 

gingipain (HRgpA) from Porphyromonas gingivalis. The binding free energy obtained is in 

good agreement with the available experimental data for eight benzamidine derivatives 

including urea and ether linker. The calculations showed that the electrostatic energies 

between HRgpA and inhibitors were important in determining the relative affinities of the 

inhibitors to the HRgpA, with an average binding free energy of about −5 kcal/mol. The 

average structures of the eight complexes suggest that benzamidine inhibitors interact with 

Asp387, His435, and Cys468 by hydrogen bonding and with Trp508 by hydrophilic 

interactions that are essential for the activities of benzamidine inhibitors. It can therefore be 

expected that the method provides a reliable tool for the investigation of new HRgpA 

inhibitors. This finding could significantly benefit the future design of HRgpA inhibitors. 
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1. Introduction 

The periodontal ligament derived from connective tissue is continuously turned over in a tightly 

controlled cycle, which is consistently challenged by invasion of pathogenic bacteria, such as 

Porphyromonas gingivalis. They can accumulate on the gum surface and induce an inflammatory 
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response from the host tissue. This immune response, which serves to destroy any foreign bodies, may 

upset homeostasis within the periodontium and lead to gingivitis [1–6]. 

Gingipains are one of the virulence factors that cause the development of periodontitis and 

encourage the excretion of trypsin-like cysteine proteinases from the well established oral pathogen 

Porphyromonas gingivalis, a gram negative anaerobic rod, and a major causative bacterium of adult 

periodontitis. There are three major gingipains: Gingipain K (Kgp), which cleaves exclusively on the 

C-terminal side of lysine residues, and two gingipain R types (HRgpA and RgpB), which are specific 

for Arg-Xaa peptide bonds. HRgpA and Kgp have catalytic and adhesion/hemagglutinin domains 

connected by non-colvalent complexes, but RgpB has only a catalytic domain with a primary  

structure [7–13]. 

The design of irreversible inhibitors for HRgpA generally involves a peptide chain with a so-called 

warhead replacing the scissile peptide bond. The optimal peptide sequence for the inhibitor is derived 

from the best peptide substrate sequence, which can be determined through HRgpA subsite mapping 

using a peptide library. The length of the peptide portion also plays an important role in specificity. It 

is, therefore, possible to design inhibitors specific for HRgpA. The inhibitor can then be used to 

investigate the physiological significance of the HRgpA. The warhead contains a reactive functionality 

that is attacked by the HRgpA’s catalytic nucleophile. Thus far, several warheads for HRgpA have 

been developed. Once a peptide sequence and warhead are determined, a strategic structural analysis 

relationship (SAR) study is performed to optimize the parent compound and its inhibitory potency. 

Since the gingipains play a central role in the pathogenesis of gingivitis and periodontal disease, 

justification exists for developing potent inhibitors as potential therapeutics. 

In the present study, the Poisson Boltzmann Solvent Accessible Surface Area (PB-SASA) method 

was used as a predictive tool to study HRgpA:inhibitor modes of interaction. Eight compounds with 

potent anti-periodontopathogenic activities [14] were selected for the current project. The experimental 

molecular structure of complexes formed between these inhibitors and HRgpA has not previously been 

reported. To determine the most likely model of interaction between the studied benzamidine 

derivatives (used as inhibitors) and HRgpA, the binding free energy was measured experimentally for 

each molecule interacting with HRgpA; in parallel, binding free energies were calculated using the PB-

SASA method for different topological models of HRgpA:inhibitor complexes. A comparison of the 

experimental free energy data with calculated values for the different binding models enabled us to 

propose the most likely mode of interaction of each studied inhibitor with HRgpA. 

2. Results and Discussion 

The binding of eight benzamidine analog inhibitors (Table 1) to the Porphyromonas gingivalis 

gingipain R (HRgpA), which is the non-covalent complex of the catalytic domain with 

hemagglutinin/adhesion domains derived from the C-terminal extension, was investigated using 

automated docking and binding free energy calculations from molecular dynamics simulations. This 

enables a detailed structural analysis of binding modes and the identification of the key inhibitor-HRgpA 

interactions that contribute to the free energy of binding. The simulated compounds are a subset of the 

inhibitors for which experimental binding affinities have been published by Krauser et al. [14], and 

they were chosen as they include both the least and most potent inhibitors from that series, and they 
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display a fairly wide variety of structural features. All inhibitors share a common benzamidine moiety, 

with substituents consisting of aromatic ring derivatives by urea and ether linkers. 

Table 1. Observed binding free energies for benzamidine derivatives. The experimental 

values of HRgpA:inhibitors binding free energy. Ki is the apparent inhibitory constant [14]. 

ΔGexp is the calculated value of binding free energy according to the equation  

ΔGexp = RT ln(Ki) for T = 298 K. All energy values are reported in kcal/mol. 

Name Compounds Ki (μM) ΔGexp 

Bz1 

 

68.3 −5.676 

Bz2 

 

98.1 −5.461 

Bz3 

 

64.7 −5.708 

Bz4 

 

29.0 −6.183 

Bz5 
 

141.0 −5.247 

Bz6 

 

165.0 −5.154 

Bz7 
 

190.0 −5.070 

Bz8 

 

199.0 −5.043 

2.1. Homology Modeling 

The homology model of HRgpA is more or less structurally identical to the active sites region of the 

crystal structure of gingipain R (RgpB) with a single chain catalytic domain (PDB accession code 

1CVR [15]) with high sequence identity. For the residues that form the inhibitor binding cavity, and 

thus can be expected to be important for correct docking and molecular mechanics interactions, the 

root mean-square deviation (RMSD) of the HRgpA model compared to the RgpB crystal structure is 

0.18 Å when a theoretical model was superimposed on the crystal structure (Figure 1). It also should be 

emphasized here that HRgpA and the template RgpB have identical sequences in the cavity region, 

such that the problem of arbitrarily modeling initial (before molecular dynamics) sidechain rotamers is 

not an issue in this case. 
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2.2. Automated Docking 

Each docking simulation generated 100 docked conformations of each inhibitor. The docking 

procedure generally generated slightly more diverse docking poses for the inhibitors containing urea or 

ether linkers. Encouragingly, out of these 800 poses generated, only a handful fall outside of a 

consensus orientation in which the benzamidine part of the inhibitor is positioned in the binding cavity 

of the HRgpA, which is in close proximity to Asp387, His435, Cys468, and Trp508 (Figure 2). In these 

poses, one of the substituents (generally the largest one) points towards the outside of its cavity. 

Figure 1. Panel A shows the sequence alignment of the amino acid sequences of the 

selected region of HRgpA and the secondary structure alignment. Panel B shows the 

three-dimensional homology model of HRgpA (yellow color) superimposed on the RgpB 

(green color) crystal structure [15] that was used as a template. The color coding follows 

that of the gene name in Panel A. The side chains of the residues proposed to be involved 

in inhibitor binding are shown as sticks in Panel C. 
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Figure 2. Representative binding poses of eight benzamidine analogs in core binding sites 

given by the docking calculation. 

 

Of the top 10 ranking solutions for any given inhibitor, taking only heavy atoms into account, the 

average RMSD compared to that of the top-ranked solution was approximately 2.0 Å, with few poses 

deviating >3.0 Å from the top-ranked pose. Typical results are shown for inhibitor Bz7 in Figure 3. 

Conformations that deviated more did so because the orientation of the substituents was flipped with 

respect to the other poses; however, the benzamidine part remained in the same position. Even for 

inhibitor Bz6, which showed a relatively large diversity in the suggested binding poses, the positioning 

of the benzamidine part of the inhibitor is very well determined; the positions of the benzamidine 

nitrogens–for all but five poses (all of which are among the 10 lowest ranked)–are all situated within 

the van der Waals surface of the top-ranked pose. The smallest compounds, Bz1 and Bz4, showed the 

least deviation between docking poses. In this case, the heavy atoms of the top 20 docking poses were 

all within 1.8 Å RMSD of the highest-ranked pose, with a corresponding average RMSD of 1.5 Å. 

Figure 3. Top 10 docking solutions for inhibitors: (A) Bz1; (B) Bz4; (C) Bz6 and (D) Bz7. 

The average heavy atom RMSD relative to the top-ranked pose is less than 3.0 Å. 
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2.3. Molecular Dynamics 

For each inhibitor, the top five binding poses from the automated docking experiments were chosen 

for further investigation using molecular dynamics. Out of these 40 poses, all but one had the 

benzamidine part of the inhibitor positioned in the pivot region of the cavity. Generally, the inhibitor 

positions are stable during MD simulation, and the average structures from the production phase MD 

deviates relatively little from the docked positions. The heavy atom RMSD of the poses shown during 

MD simulation in Figure 4 are an average of approximately 2.5 Å more than their corresponding 

docked poses. The ether linkers have few or no specific interactions with the protein, and thus are fairly 

flexible during the MD simulations; whereas, the urea portions of the inhibitor are typically more 

stable in their positions, sometimes alternating between equivalent sites on the core cavity. 

2.4. Binding Free Energy 

The calculated values of HRgpA:inhibitors binding free energy for eight benzamidine derivatives 

are presented in Table 2. The binding free energy is dissected according to the approach outlined in the 

Methods section for electrostatic (ΔGelec) and non-electrostatic (ΔGvdW) contributions. The first one 

was calculated by solving the PB equations, the second by using the SASA method. The last column in 

Table 2 reports the total HRgpA:inhibitors binding free energy, which can be compared directly with 

the experimental values of binding free energy presented in Table 1. The contribution of the entropy 

term in our free energy calculations accounts for the reduction of translational and rotational freedom 

of an inhibitor and HRgpA upon binding. The correlation between the lowest calculated free energy of 

binding (obtained from PB-SASA and MD) for each inhibitor and the relative free energy differences 

derived from the experimentally determined kinetic constant values is very good (Figure 5). The 

ranking of the inhibitors also is in very good agreement with experiments. 

Comparing different contributions to the binding free energy in Table 2, one can say that the driving 

forces for inhibitor binding and eventual binding onto HBgpA are electrostatic interactions resulting 

from the burial of interfacial surface area of both HBgpA and the inhibitor. The inhibitors, especially 

Bz06 and Bz07 with relatively long side chains, may be regarded as more flexible than other inhibitors. 

Therefore, one may assume somewhat higher values than were calculated for others. This entropy cost 

is due to the advantage of conformational chain freedom and is calculated to be in the order of 

approximately 1.3–2.2 kcal/mol for less flexible and short chains. Taking into account the entropy 

correction, we find that our calculated values of HRgpA:inhibitor binding free energy are very close to 

the experimental data. 

Although the van der Waals interactions between the HRgpA residues of the core cavity and the 

inhibitors are relatively weak compared to electrostatic forces, they play a key role in determining the 

binding affinities of the inhibitors. In fact, ranking according to ΔGvdW is identical to the ranking 

according to ΔGbind, with the exception of compound Bz7. This inhibitor also has a significantly less 

hydrophilic substituent than the other compounds, and the electrostatic interactions may thus be 

expected to contribute more to binding. Such that, although the electrostatic or polar interactions give a 

larger overall contribution to the calculated binding free energies, that contribution is relatively 

uniform for the different inhibitors as compared to non-polar interactions. In contrast, the relatively 
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large differences in the non-polar contributions are more important in determining the relative potency 

of the inhibitors. 

Figure 4. Comparison between the average structures from the production phase MD 

simulations in the bound state (yellow) and the corresponding docking poses (brown) used 

as starting conformations for the MD simulations. The average structures shown are from 

the simulations that yielded the lowest estimated free energy of binding. 
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Figure 5. The correlation between the free energies of binding of inhibitors (Bz1–Bz8) as 

calculated by molecular dynamics in combination with the PB-SASA method (ΔGcal from 

calculation) versus those derived from the experimental data of Krauser et al. (ΔGexp from 

experiment) [14]. The lowest binding free energy estimate from the five different poses 

simulated for each inhibitor is plotted against the corresponding value calculated from 

experimentally determined Ki-values. 

 

Table 2. The calculated values for binding free energies of HRgpA complexed with 

benzamidine analogs. The electrostatic portion was calculated within the PB approach; the 

nonelectrostatic contribution was calculated using SASA methods. The binding portion is 

the sum of electrostatic and non-electrostatic contributions. All energy values are presented 

in kcal/mol. The uncertainties are the standard error of the mean calculated with 200 

snapshots (50 snapshots for entropic calculations). 

Name ΔGelec ΔGvdW ΔGnonp/sol ΔGelec/sol −TΔS ΔGbind 

Bz1 −25.89 ± 0.09 −13.88 ± 0.12 −3.42 ± 0.01 24.14 ± 0.01 12.36 ± 0.28 −6.69 ± 0.10 

Bz2 −25.11 ± 0.01 −13.81 ± 0.12 −3.45 ± 0.01 24.24 ± 0.03 12.61 ± 0.54 −5.52 ± 0.14 

Bz3 −25.21 ± 0.11 −14.33 ± 0.12 −3.31 ± 0.01 23.23 ± 0.01 12.79 ± 0.31 −6.83 ± 0.11 

Bz4 −26.21 ± 0.10 −15.02 ± 0.13 −3.28 ± 0.01 23.05 ± 0.04 12.38 ± 0.63 −9.08 ± 0.18 

Bz5 −24.26 ± 0.11 −13.52 ± 0.07 −3.34 ± 0.01 23.51 ± 0.02 13.63 ± 0.55 −4.68 ± 0.15 

Bz6 −26.03 ± 0.10 −13.37 ± 0.16 −3.18 ± 0.01 24.31 ± 0.02 14.25 ± 0.39 −4.02 ± 0.14 

Bz7 −25.55 ± 0.08 −13.78 ± 0.11 −3.45 ± 0.01 24.61 ± 0.05 14.57 ± 0.71 −3.60 ± 0.12 

Bz8 −25.16 ± 0.09 −13.03 ± 0.13 −3.04 ± 0.01 24.15 ± 0.03 13.69 ± 0.59 −3.39 ± 0.17 

The compound with the highest calculated binding affinity (Bz4) has a strong electrostatic 

interaction with the active sites of HBgpA and water in the bound state. The electrostatic contribution 

for the predicted model of binding Bz4 is more negative than others. This means that protonated chains 

of Bz4 prefer to stay in the HBgpA subsite and in bulk solvent equally. From this point of view, the 

relatively high calculated binding affinity for compound Bz4 is surprising, given its structural 

similarity to Bz1 and Bz5 and the similar binding poses suggested by the docking procedure. Indeed, 

based solely on the differences in structure between Bz1, Bz4, and Bz5, one might even suggest that 

given the nature of the binding site, Bz4 would be expected to be the best inhibitor of the three. Since 
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Bz1 and Bz5 are identical, except for the urea linker in Bz1 and the ester linker in Bz5, and since the 

binding site is a highly hydrophilic cavity, the less polarized ester linker would be less sensitive to 

solvation and the binding site than the urea linker. 

If only inhibitor-water interactions are taken into account, a clear picture emerges in which the five 

benzyl-containing compounds (Bz1, Bz2, Bz5, Bz6, and Bz7) lose energy in electrostatic interactions 

with water when transitioning from the free state to the bound state; whereas, the rest of the inhibitors 

have roughly as strong polar interactions with water in both the free and the bound states. 

3. Computational Methods 

3.1. Homology Modeling and Docking 

The generation of a three-dimension homology model of gingipain R type A (HRgpA) from 

porphyromonas gingivalis using MODELLER (www.salilab.org) was based on the complex crystal 

structure of gingipain R type B (RgpB), using its peptidyl inhibitor (PDB accession code 1CVR [15]) 

as a template. Only the catalytic domain (residues 225–652, HRgpA numbering, which is the catalytic 

domain) of HRgpA was included in the model. In this region, the sequence similarity between RgpB 

and HRgpA is approximately 90%, and the sequences align without any gaps at all, which allows the 

construction of a very reliable homology model. Next, the system was prepared for docking and 

molecular dynamics (MD) simulations. 

All the benzamidine derivatives that were used as inhibitors were energy-minimized with the 

MMFF force field [16] before docking. Automated docking of the inhibitors was performed using the 

flexible docking (FD) module [17] in Discovery Studio 2.0 (Accelrys Inc.). To predict optimized 

binding poses for flexible inhibitors in a flexible binding site of HRgpA, the FD module was used in 

combination with ChiFlex to generate side chain conformations of HRgpA; CatConf/CAESAR was 

used for building diverse low energy conformations of inhibitors; LibDock was used for computing 

hotspot locations; ChiRotor was used for modifying side chain conformations of HRgpA; and 

CDOCKER was used to determine annealing and minimizing inhibitor poses. The active site radius 

was set to 7.0 Å, centered near a point on the symmetry axis of the center of mass (CM) of the binding 

cavity. This positioning of the docking sphere enables the inhibitors to explore different docking 

conformations within the entire cavity. LigandFit [18] was then set to terminate the docking if the top 

three poses for an inhibitor were within 1.5 Å RMSD. The docking procedure was performed, and the 

complexes were again solvated for molecular dynamics and free energy calculations. 

3.2. Molecular Dynamics Simulation 

All MD calculations were conducted using the program AMBER with the modified all-hydrogen 

AMBER parameter set [19–22]. Partial atomic charges were assigned to the inhibitors, analogous with 

the charges specified in the fragment library. A 30 Å simulation sphere was used for both simulations 

in the bound and unbound states with inhibitors. The same sphere center was used as was described for 

the docking procedure, and it was again solvated with TIP3 water [23]. All atoms outside the 30 Å 

sphere were tightly restrained throughout the simulations. Water molecules at the surface of the sphere 

were subjected to radial and polarization constraints to mimic the properties of bulk water [24]. Before 
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data collection, each simulation system was heated in a stepwise manner from 10 to 300 K with all 

solute heavy atoms subject to strong (10–25 kcal/mol Å
2
), harmonic positional restraints. Next, all 

simulations of the inhibitors in the bound state were equilibrated without restraints for 500 ps, 

followed by 250 ps of production phase MD. The final structure of the HRgpA:inhibitor complex was 

obtained after the equilibration step was used as a starting structure for the binding free energy 

calculation. To assess the problem of conformational sampling when simulating the inhibitors in the 

unbound state in water, 10 replicate water simulations of 5 ns each were performed for each inhibitor, 

with starting conformations generated by high temperature MD. For all production phase MD, a 1-fs 

time step was used along with the SHAKE procedure for all solvent bonds [25]. Non-bonded 

interactions across the simulation sphere boundary were excluded. A non-bonded cutoff of 10 Å was 

used, with electrostatic interactions outside the cutoff treated with the local reaction field multipole 

expansion [26], except for the inhibitor, which had no cutoff applied to any of its interactions. 

3.3. Free Energy Calculation 

Binding affinities were calculated using MD in combination with the Poisson Boltzmann Solvent 

Accessible Surface Area (PB-SASA) method [27–35], which uses simulations of the HRgpA:inhibitor 

complex to calculate the change in free energy associated with binding to the protein, according to the 

following equation: ΔGbind = ΔGMM + ΔGsolv − TΔS, where ΔGbind is the binding free energy, ΔGMM is 

the molecular mechanical energy, ΔGsolv is the solvation energy, and TΔS is the entropy contribution. 

The molecular mechanical energy is calculated by the following equation: ΔGMM = ΔGelec + ΔGvdW, 

where ΔGelec and ΔGvdW represent electrostatic and van der Waals energies, respectively. In the  

PB-SASA method, the difference in interaction energies between the inhibitors and their surrounding 

residues are used to calculate the free energy of binding through the equation. MD simulations of the 

interacting molecules were conducted in water at T = 298 K and P = 1 atm using TIP3 water. The free 

energy of HRgpA:inhibitors association in aqueous solution (ΔGsolv) can be divided into polar 

(electrostatic) (ΔGelec_solv) and non-polar (non-electrostatic) (ΔGnpol_solv) terms [36]. The  

Poisson-Boltzmann equations have been shown to provide an accurate description of the electrostatic 

interactions between receptor and ligands. This approach was used in the present study to calculate 

electrostatic contributions to the binding free energy, while non-polar contributions were calculated 

using the SASA method [37–39]. Additionally, the transfer of a molecule from a phase of ε = 4 to a 

phase of ε = 78 justifies the application of the microscopic surface tension coefficient used in the 

SASA methods. 

4. Conclusions 

We have reported homology modeling, automated docking of benzamidine derivatives as inhibitors, 

and binding free energy calculations from molecular dynamics simulations of the gingipain R 

(HRgpA). The 2.0 Å crystal structure of the very closely related gingipain R (RgpB) [14] was used as a 

template for the homology modeling. Automated docking of eight benzamidine derivatives with known 

binding affinities was performed using the resulting three-dimensional model. For the top five docking 

solutions for each inhibitor, the structural and thermodynamic stabilities of the docked complexes were 

investigated further using the PB-SASA method in combination with MD simulations. The results 
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from these simulations strongly suggest that all of the inhibitors bind to the RgpB in a manner similar 

to that of the benzamidine moiety of the inhibitors binding into HRgpA. Of the 800 suggested docking 

poses generated by automated docking, only a handful are positioned in a manner significantly 

different from the top-ranked poses, and the deviating poses are typically among the lowest ranked for 

that inhibitor. Furthermore, the inhibitors are found to be structurally stable in their docked positions 

during unrestrained MD simulations. 

The bisbenzamidine inhibitors contain two aromatic rings linked by spacers with differing lengths 

and chemical characteristics. The bisbenzamidine inhibitors containing a urea moiety linking the two 

aromatic rings, such as compounds Bz1–4, were better inhibitors for both HRgpA and RgpB. Those 

bisbenzamidines which contain the less polar ether linker, such as Bz5–8, were less efficient inhibitors. 

Both isoforms of gingipain R showed a strong preference for the amidino group in the 4 position of the 

aromatic ring rather than at the 3 position [14]. Bisbenzamidine Inhibitors, which had a urea linker and 

the amidine substituent at the 3 position, were poorer inhibitors. 

The accurate characterization of solvation effects is critical in the thermodynamic process of 

protein-ligand binding. The calculation of solvation free energies is a more tractable problem than 

predicting binding free energies, since the solvent molecules equilibrates more quickly around a ligand 

than around the binding site of the protein. The prediction of solvation free energies also provides a 

surrogate for the biologically relevant process of transferring a ligand from solution (high-dielectric 

environment) to the binding site of a protein (low-dielectric region) and, therefore, is an important step 

toward predicting accurate binding free energies. In the present study, the values of the free energy for 

HRgpA:bisbenzamidine complexes in TIP3 model are found to be in reasonably good agreement with 

the experimental values. From the present investigation, we conclude that the complexes in the TIP3 

model are able to accurately describe the interaction between HRgpA and bisbenzamidine derivatives. 

But, further work on conducting the simulation in other water models such as TIP4P, SPC, and SPC/E 

models, could help to bring the accuracy level of binding free energy predictions to the point where 

they can provide substantial value. 

In this work, the predicted binding modes of benzamidine derivatives to HRgpA are strongly 

supported by the following facts: The high sequence identity between RgpB and HRgpA in the binding 

region; a consensus docking pose for all inhibitors, which is also found to be stable during MD 

simulations; and an excellent correlation between observed and calculated binding affinities, where the 

latter were obtained from detailed all-atom energetic calculations.  

Therefore, this model for benzamidine analog inhibitor binding to HRgpA, based on the RgpB 

template, is one of the few currently available examples of detailed three-dimensional models for how 

drug-like compounds interact with Arg-gingipain with the hemaglutaminine domain. 
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