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Abstract: A new assay system for chitin has been developed. It comprises the  

chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter 

of which was chemically coupled to horseradish peroxidase. With the resulting complex, 

minimal quantities of chitin are photometrically detectable. In addition, the assay allows 

rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the 

rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis) has been 

established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a 

yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence 

protein), has led to the in situ localization of chitin-synthase-GFP molecules within 

chitosomes. 

Keywords: chitin-assay; chitin-binding protein; chitin synthase; electron microscopy; 

polysaccharides 

 

1. Introduction  

The chitin recognition proteins (CHBs) from streptomycetes are small (18–19 kDa) secreted 

proteins, which either highly specifically recognize α chitin (i.e., CHB1, CHB2) or are less selective, 
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such as CHB3 targeting α and β chitin, as well as chitosan, the deacetylated chitin-derivative [1–5]. 

Based on the findings for streptomycetes, we identified the homologous chitin-binding protein (named 

ChbB) from Bacillus amyloliquefaciens ALKO 2718, recognizing α and β chitin, but not chitosan [6]. 

We obtained the corresponding protein (after overexpression of the chbB gene in E. coli in frame with 

six histidine codons) as a homogeneous type in larger quantities, than the Streptomyces CHB1-type 

from its natural host or also after its overexpression in E. coli [7,8]. 

Previously, we had established the use of CHB1 to target specifically only α chitin within biological 

samples including fungi [2]. This method is superior to the use of dyes, i.e., Calcofluor [9], Congo red 

[10] and primulin [11], as these interact with a range of polysaccharides, including cellulose. The 

lectin wheat-germ agglutinin (WGA) recognizes a minimum of three consecutively linked  

N-acetylglucosamine residues within glycoproteins and within crystalline and colloidal chitins [12]; 

thus is less specific than chitin-binding proteins [2,4]. 

The application of CHB1 has recently also allowed deepening our knowledge as to  

chitin-biosynthesis. Having purified chitin synthase I-containing vesicles (chitosomes) [13] from the 

yeast Saccharomyces cerevisiae, we viewed by electron microscopy in the presence of the substrate 

UDP-N-acetylglucosamine, the emergence of nascent chitin-filaments, which can be targeted by the 

CHB1 protein. As a result, we gained new insights as to the generation of chitin in α configuration 

[14]. The possibility to fuse a gene in frame with codons for histidine, strepavidin or the green 

fluorescent protein (GFP), has opened new avenues to rapidly purify, immobilize or localize the 

resulting His-tag, Strep-tag and GFP-fusion proteins [15,16]. 

In this report, we describe a selective assay to identify chitin as well as chitin-synthesizing 

chitosomes. In addition, we immuno-localized by electron microscopy chitinsynthase molecules 

tagged with GFP within purified chitosomes.  

2. Results and Discussion  

2.1. Features of the chbB Fusion Genes and Their Gene Products 

Previously, we had described the gene chbB from Bacillus amyloliquefaciens, encoding the  

chitin-binding protein ChbB (Chitin_bind_3 Superfamily, pfam03067), its fusion with six histidine-codons 

and its cloning, resulting in the plasmid pQEC1 (Figure 1a). The corresponding fusion protein His-tag 

ChbB can be obtained by affinity chromatography in larger quantities [6].  

In order to establish the planned assay system (see following section), we required additionally the 

ChbB protein with another tag, and we selected the Strep (streptavidin)-tag. As prerequisite for this 

goal, we recloned the chbB gene in frame with codons for the Strep-tag, which are present within the 

pASK-IBA7 vector as outlined within the Experimental part. Selected E. coli XL-1 Blue transformants 

had the correct construct pASK-ChbB, which contained the chbB gene in fusion with the codons for 

the Strep-tag (Figure 1b). 

The fusion protein was obtained from the cytoplasm of disrupted cells (Figure 2a, lane 1) by affinity 

chromatography with Strep-Tactin (see Experimental part for details and legend of Figure 2 within 

Chapter 2.2.). We obtained larger quantities (i.e., 1.5 to 2 mg per 1 L induced E. coli culture) of the 
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Strep-tag ChbB fusion protein in pure form (Figure 2a, lane 2). A chitin-binding assay (see 

Experimental part), confirmed that the Strep-tag protein had kept its affinity to chitin. 

Figure 1. Features of the plasmids used. (a) The pQEC1 plasmid contains the chb gene 

(grey arrow) in frame with six codons for histidines (*) within the pQE (– – –) vector.  

(b) The pASK–CHbB plasmid; contains the chb gene (grey arrow) in frame with codons 

encoding the Strep-tag (▲) within the pASK-IBA7 vector (▪▪▪▪▪). 

 

2.2. Characteristics of Strep-tag ChbB Coupled with Horseradish Peroxidase  

Horseradish peroxidase (HRP) is a stable hemoprotein (44 kDa) with four disulfide bridges. It is a 

highly stable enzyme, which has high catalytic rates of oxidoreductase-activity with many hydrogen 

donors to reduce hydrogen peroxide. As a result, colorimetric, fluorimetric, chemiluminescent and 

electrochemical assays for HRP activity are available. Additionally, after coupling of HRP with other 

proteins, they acquire HRP-activity [17]. 

In order to establish a sensitive tool to assay for the binding of Strep-tag ChbB, we aimed to 

conjugate it with HRP. The planned scheme included the introduction of sulfhydryl groups in Strep-tag 

ChbB prior to the coupling reaction. The necessity to introduce sulfhydryl-groups was dictated by the 

fact that the introduction of HRP (maleimide-activated) requires the free sulfhydryl groups. The 

sulfhydryl-maleimide coupling is a technique for the preparation of protein-to-protein conjugates. 

Usually, this technique has little effect on the functionality of a protein (summarized in [18]). 

Therefore, we introduced these groups firstly into the protected form. Their number corresponded to 

three moles per mole protein, and they were determined as previously described [19]. Having  

de-protected the sulfhydryls with hydroxylamine, the protein was mixed with HRP-maleimide in 

solution. This had been de-aerated, to prevent the loss of free sulfhydryls. Further analysis by PAGE, 

revealed a heterogeneous size-distribution of products (Figure 2b). Therefore, proteins were subjected 

to gel-filtration (Superdex 200 column) using FPLC; three main peaks were obtained (Figure 2c). 

Immunological studies (dot-blot, not shown) revealed that molecules, which reacted with anti ChbB 

antibodies, were in fractions corresponding to the peaks I, II, and III.  

The proteins of peak I comprised one protein-portion of about 10 kDa, which was likely one 

degradation product. The second most abundant product had a molecular weight considerably larger 

than 175 kDa, and thus must comprise Strep-tag ChbB adducts with at least four to five molecules of 

HRP (Figure 2d, lane I). 
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Figure 2. Analysis of proteins and coupling products. Proteins were separated by  

SDS-PAGE and stained with Commassie Brilliant Blue (a, b) or visualized after silver 

staining (d). The analysis of an aliquot of an extract (lane 1) of induced E. coli  

pASK-CHbB cells of the purified Strep-tag ChbB protein (lane 2), or reference proteins 

(lane M) is presented (a). In order to inspect the coupling products, an aliquot of the 

coupling reaction (see next chapter for details) among ChbB and HRP was inspected (b), 

subsequently separated by gel filtration (c) and a portion of the peak fractions (I, II or III) 

was inspected (d). 

 

Within peak II (Figure 2d, lane II) two smaller proteins, about 43–44 kDa and about 62 kDa, 

corresponding to non-coupled HRP and to one 1:1 adduct of Strep-tag ChbB with HRP, were found. In 

addition, proteins ranging from about 100 to 175 kDa and higher values were present. They were 

deduced to correspond to Strep-tag ChbB, being coupled with three to at least five HRP molecules. 

Within the peak III, non-reacted HRP (about 44 kDa) and a protein (62 kDa) corresponding to one 1:1 

adduct of Strep-tag ChbB with HRP were found. Only very small quantities of higher sized adduct 

were present. Our data are in accordance with those obtained for coupling of IgG (immunoglobulin G) 

with HRP. Here, products were also poly-disperse and followed the Poisson distribution. Thus, the 

degree of substitution ranged from 1.5 to 5.4 and varied according to the ratio of the proteins [18]. We 

performed the chitin binding test using the aliquots of the proteins from the peak-fractions. The values 

of absorbance were 650 units (HRP-maleimide, control), 8200 units (peak I), 25490 units (peak II), 

and 20670 units (peak III). Highest peroxidizing activity, and hence highest level of Strep-tag  

ChbB-HRP, was present within the peak II-fractions. The slightly reduced peroxidizing activity within 

the peak III-fractions correlated with the ratio of the proteins (Figure 2d, lane III and previous 

paragraph) containing a higher quantity of the mono-substituted Strep-tag ChbB-HRP. 

Considering the concentrations of the proteins in the peak II and III, and taking into account the 

presence of a huge quantity of uncoupled HRP in the peak III, we decided to take the fraction 

corresponding to peak II of the chromatogram (now named ChbB-HRP) for the following experiments.  

Further assaying showed that Strep-tag ChbB-HRP bound most efficiently to chitin, but only little 

to chitosan, and not to microcrystalline cellulose and xylan (Table 1). Therefore, the designed HRP 

adduct, was suitable for the further studies (see next chapter). 
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Table 1. Binding ability of the ChbB-HRP conjugate to different polysaccharides. 

Polysaccharide Chitin Chitosan Xylan 
Cellulose 

microcrystalline 

Binding activity, % 100 13.9 No binding No binding 

2.3. His-tag ChbB and Strep-tag ChbB Are Components of a Sensitive Chitin Synthase Assay 

Traditionally, chitin synthase activity has been tested using radioactively labeled substrates [20]. 

The lectin, wheat germ agglutinin (WGA), recognizes three consecutively linked N-acetylglucosamine 

residues including glycoproteins carrying such residues, but also chito-oligomers and high-molecular 

weight chitin [12]. Therefore, WGA (i.e., labeled with dyes or gold-particles) can serve to monitor chitin 

in biological samples, if they are accompanied by proper controls with a chitinase, degrading chitin. 

Later, wheat-germ agglutinin (WGA) served to establish a non-radioactive, high-throughput assay 

to detect chitin [21]. For this, the wells of a microtiter plate were covered with BSA (bovine serum 

albumin), then with the WGA-solution, and finally, a suspension containing commercial chitin, or 

chitin-fibers, being synthesized. Afterwards, commercially available WGA-coupled to horseradish 

peroxidase was added. The addition of HRP-substrate, allowed monitoring HRP activity. We had used 

this assay to score for the presence of chitin-synthesizing chitosomes during their isolation procedure 

from the yeast-cytoplasm, but due to the presence of glycoproteins, the background was relatively high. 

Hence, we aimed to develop a highly specific test for the presence of chitin. Previously, we had 

shown [2,6,14] that the bacterial binding proteins CHB1 and ChbB can serve to identify either α chitin 

or respectively, α and β chitin (for details see Introduction). The His-tag ChbB protein (in contrast to  

His-tag CHB1 protein) can also be gained in larger quantities without aggregation from E. coli. In the 

course of pre-studies, we had shown that the His-tag ChbB protein can be kept immobilized on 

magnetic beads covered by NiNTA on the bottom of a microtiter plate in the presence of a magnet. 

Therefore, it was possible to replace the unselective BSA-layer of the previous test [21], by the 

specific chitin-binding protein His-tag ChbB (Figures 3a, b), which is fixed to the bottom of a  

microtiter-plate, as long as the magnet is present. Onto this layer, a suspension containing crab-chitin 

(as pre-test to establish the system, see Experimental part), was added. Later, crab-chitin was replaced 

by fraction(s) to be tested for freshly synthesized chitin (via chitosomes, see the following  

Chapter 2.4). Due its high selectivity [6,14], only chitin, but neither glycoproteins, nor low molecular-

weight chito-oligomers bind. Hence, this layer is a superior substitute of WGA ([21], and previous 

paragraph). Subsequently, the chitin-containing sample under inspection (Figure 3c) was overlaid with 

the chitin-binding protein ChbB, which contains a Strep-tag in place of a His-tag. As a result, the 

Strep-tag ChbB (Figure 3d) will not bind to the NiNTA, but only to the sample, if it contains indeed 

chitin. In order to monitor the binding rapidly, Strep-tag-ChbB was coupled to HRP (see 2.2 and  

Table 1).  

The use of crab-chitin (per well 100 µL of a chitin-containing solution/10 mg·mL
−1

) together with 

subsequent addition of increasing quantities (0.001 µg·mL
−1

 to 1 µg·mL
−1

 of the Strep-tag ChbB-HRP 

to each well, and the application of the commonly used HRP-substrate (see Experimental part), 

allowed us to photometrically quantify the chitin-trapped Strep-tag-ChbB-HRP (Figure 4,  

Figures 3e, f). To routinely evaluate assays (see next Chapter 2.4), we selected the concentration of  
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1 µg·mL
−1

 of the Strep-tag ChbB-HRP conjugate, as the chitosome-containing fractions were known to 

vary, and lead to only small quantities of chitin-fibers [14].  

Figure 3. Characteristics of the chitin-detecting system. A magnet (grey bar) was placed 

beneath a well (white bar) of a microtiter plate and NiNTA agarose (light bluish bar) was 

added (a). A suspension of a His-tag ChbB protein (green ovals) was pipetted (b). The 

suspension with the chitin-containing sample (black wavy lines) was added (c). The 

addition of the solution (d) with the Strep-tag ChbB-HRP (light yellowish) and the 

substrates (blue dots, e) followed by H2SO4 (yellow dots) terminated the reaction (f). 

 

Figure 4. Determination of chitin-binding activity of the Strep-tag ChbB-HRP. 100 µL of a 

chitin-containing solution (10 mg·mL
−1

) was added to each of the four vials. Subsequently, 

a different concentration of the Strep-tag ChbB-HRP was applied to each vial. Then, they 

were washed five-times with H2O, subsequently the HRP substrate and  

5 min later, H2SO4 was added. The solutions were centrifuged, pipetted out to the 

multiwell plate and the absorbance at 450 nm was measured. The binding activity for 

Strep-tag ChbB-HRP at the concentration 1 µg·mL
−1

 was set as 100%. 
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2.4. Application of the Chitin-assay to Refine the Isolation of Chitosomes  

Based on previous studies, it is known that chitosomes from the yeast Saccharomyces cerevisiae 

wild type (WT) can be purified based on their sedimentation and flotation properties [20]. With this 

procedure, we analyzed the S. cerevisiae mutant strain, lacking the gene for the chitin synthase III, and 

succeeded for the first time to demonstrate the presence of chitin-synthase I activity within their 

purified chitosomes [14]. 

As a control, we gained chitosomes firstly according to the previously established isolation-procedure 

[14,20] by scoring for their active chitin-synthase within microtiter wells by applying the refined assay 

(see previous chapter and Figure 3). 

The highest chitin-synthesizing activity was present in those fractions which had a buoyant density 

of 1.15–1.16 g·cm
−3

. The analysis by electron microscopy showed that size and appearance of the 

chitosomes corresponded to those gained previously, and they produced chitin-fibers upon addition of 

the required substrate. Together, the data showed that the newly established assay-system allowed the 

detection of active chitosomes very reliably and speedily (for details see next chapter and  

Figures 5 and 6). 

Figure 5. Analysis of the efficiency of the flotation gradient. Portions of fractions were 

assayed for the synthesis of chitin. The fraction with highest chitin-synthesizing activity 

was inspected by electron microscopy at two different magnifications (a, b). Some 

chitosomes are labeled by white arrows.  

 

In the course of further studies, we altered several parameters including volume of tubes, rotor 

speed, and time for centrifugation, as well as different order of sedimentation and flotation. As a result, 

we found that it is best, to keep the procedure for gaining a cleared cytoplasm-extract as reported 

earlier (see [14] and Experimental part). However, a large improvement occurred when the cleared 

cytoplasm-extract was immediately placed into an empty tube, covered with the sucrose gradient and 

subjected to floatation in an ultracentrifuge (Figures 5a, b).  
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Figure 6. Analysis of the sedimentation gradient. After fractioning (bottom to top, and 

reverse numbering), a portion of each second fraction was assayed for the presence of 

chitin-synthase activity with the assay documented in Figure 3. The sample (fraction 13 

arrow) in (a) contained highly pure chitosomes, which were visualized by electron 

microscopy at two different magnifications (b, c). Having incubated the chitosomes (c) 

with substrates, fibers (d, e) were generated as a result of chitin synthase activity. 

Chitosomes in b, which are enlarged in c, and the chitosome in e, are labeled by white 

arrows. Chitin-fibers are marked by black arrows in c, d, and e. 

 

Thus, in contrast to the earlier use of sedimentation as a first step, we could apply a 10–20 fold 

larger sample-volume in one tube. In addition, inspection by the established test as well as by electron 

microscopy revealed that chitosome-containing fractions 33 to 37 % sucrose (fraction 13 in Figure 6a) 

had a higher purity compared to the conventional protocol, as they were already devoid of other 

cellular organelles. Therefore, we subjected these chitosomes-containing fractions to velocity 

sedimentation as the second step (see Experimental part). As controlled by the established enzymatic 

test and electron microscopy, the chitosomes had a high purity and intactness (Figures 6b, c). During 

the second centrifugation (Figure 6a) mainly individual chitosomes, (which we were interested to 

study), were separated (fraction 13) from those that were associated with too high (fraction 17 and 21) 

or low (fraction 5 and 9) amounts of membranous or fibrilliar-appearing structures (not shown). Using 
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the procedure described above, we were also successful to gain chitosomes from S. cerevisiae  

wild-type (not shown). 

In order to localize chitin synthase within chitosomes, we isolated chitosomes from the S. cerevisiae 

mutant YBR023C-GFP having the chromosomally inserted fusion gene CHS3-gfp. The resulting 

chitinsynthase molecules carry one GFP-tag at the C-terminus. Inspection of chitosome-containing 

samples by fluorescence-microscopy (data not shown) revealed that the GFP-based fluorescence was 

too low to be detectable. 

Figure 7. Localization of chitin-synthases within chitosomes. Chitosomes were isolated 

from S. cerevisiae containing a fusion of the CHS3 gene with the gfp gene treated with 

primary anti GFP antibodies, then with secondary gold-labeled antibodies and inspected 

(a). The control (b) was done in the same fashion except that the incubation with the 

primary antibodies was left out. Some chitosomes are labeled by a white arrow (a, b). 

Bound secondary antibodies are visible as evenly round, electron dense particles within the 

chitosomes (a).  

 

It was found to be most appropriate to incubate chitosomes directly with anti GFP primary 

antibodies, which can be raised easily against GFP (green fluorescence protein, see Introduction and [16]), 

and which are available commercially. The subsequent treatment was done with gold-labeled 

secondary antibodies (see Experimental part). Six to eight labels were found within individual 

chitosomes (Figure 7). Based on these results, it can be concluded that we detected the GFP-tag per 

molecule of the fusion-protein. As one CHS3-fusion comprises one GFP-tag, the number of  

gold-labels must correlate to the number of CHS3-molecules. This is the first report to evaluate the 

number of CHS3-molecules within a chitosome. 

As strains containing gfp-CHSI or gfp-CHS2 cannot be purchased, we did not perform the  

immuno-localization of the S. cerevisiae chitin synthases of type I and II. 

3. Experimental Section  

3.1. Strains, Plasmids, Growth Conditions 

The Escherichia coli strain XL-1 Blue was from Stratagene. E. coli XL-1 Blue containing the 

pQE16-based construct pQEC1 carrying the chbB gene, was described earlier [6]. The E. coli plasmid 

pASK-IBA7 including codons for a Strep-tag, was from IBA GmbH. Saccharomyces cerevisiae wild 
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type (WT) or the mutant 4BR023, lacking the chitin-synthase III gene (CHS3), was from a strain 

collection (Entian, Frankfurt). S. cerevisiae mutant YBR023C-GFP carrying chromosomally inserted 

gfp-fusion CHS3-gfp was from Invitrogen, which encodes the chitin synthase 3 with a GFP portion at 

its C-terminal end. E. coli strains containing plasmids were cultivated at 37 °C in Luria Bertani 

medium (LB, containing 10 g of trypton, 5 g yeast extract, and 1 g NaCl per L of water, pH 7.5 [22]). 

If necessary, E. coli strains were grown on a solid LB medium containing 1.4% agar. S. cerevisiae 

strains were grown at 30 °C on a yeast malt extract medium (YM, comprising 4 g of yeast extract, 10 g 

of malt extract, and 4 g of glucose per L of water, pH 6.5). 

3.2. Re-cloning of the chbB Gene and Its Analysis  

The plasmid pQEC1, carrying the chbB gene in frame with six histidine codons [6], was isolated 

using the QIAprep
®
Spin Miniprep Kit (Qiagen) according to the supplied instructions. The chbB gene 

was amplified by PCR with the Taq polymerase (New England Biolabs) using the primer A 

(GACAGGATCCCACGGGTATATAAAAGAG, including a BamHI recognition site) and the primer 

B (CGTTAAGCTTTTATTTTGTGAGGTTTAC, including a HindIII site). The PCR-product obtained 

was loaded onto an agarose gel (0.8%) in TBE buffer (0.89 M boric acid,  

25 mM Na2EDTA in 0.89 M Tris-HCl, pH 8.0), excised and purified with the MinElute Gel Extraction 

kit (Qiagen). After cleavage with BamHI and HindIII, the fragment was ligated with  

BamHI/HindIII-digested pASK-IBA7. The ligation mixture was transformed into E. coli XL-1 Blue by 

electroporation. The resulting ampicillin-resistant colonies were inspected as to the presence of the 

designed construct pASK-ChbB using restriction enzymes. Then, DNA-sequencing was performed 

using the ready reaction mix and the ABI PRISM equipment (PE. Biosystems) by U.Coja (Department 

of Botany, University Osanbrück). Sequence analysis done with the Clone Manager Suite 7 software. 

3.3. Purification of the Strep-tagged ChbB Protein 

The E. coli XL-1 Blue strain containing the plasmid pASK-ChbB was grown at 37 °C in LB 

medium supplemented with ampicillin (100 µg·mL
−1

). The synthesis of the Strep-tag ChbB fusion 

protein was induced by addition of anhydrotetracycline (0.2 µg·mL
−1

) during the logarithmic phase  

(OD600 = 0.5–0.6), and the cultivation continued for 2 h. Cells were collected by centrifugation, and 

suspended in washing buffer (100 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, pH 8.0). After 

disruption of the cells by sonication (5 × 10 s, with intervals 10 s. Branson sonifier 250) and 

subsequent centrifugation, the gained cytoplasmic extract was mixed with 500 µL of Strep-Tactin 

(IBA GmbH, Germany) and incubated overnight at 4 °C. Having placed the mixture into a column, 

washing with five column-volumes of washing buffer followed. Then, the Strep-tag ChbB protein was 

released with elution buffer (100 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 2.5 mM desthiobiotin, 

pH 8.0). 

3.4. Production and Purification of the His-tag ChbB Protein 

The His-tag ChbB fusion protein was produced from E. coli XL-1 Blue with the plasmid pQEC1 as 

described earlier [6]. 
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3.5. Coupling of Strep-tag ChbB to the Horse Radish Peroxidase (HRP), Purification, and 

Identification of the Conjugate 

The coupling reaction of the Strep-tag ChbB protein to horse radish peroxidase (HRP, [17]) was 

done by introducing sulfhydryl groups according to an earlier established method [18] with slight 

modifications, followed by the coupling itself, applying instructions from the supplier of maleimide-

activated HRP (Sigma). Therefore, a solution comprising purified Strep-tag ChbB (see the previous 

chapter) was dialysed against 50 mM sodium-potassium phosphate buffer, pH 7.5, containing 1 mM 

EDTA (Buffer D) at 4 °C. N-hydroxysuccinimide ester of S-acetylthioacetic acid (Sigma) was 

dissolved shortly prior to use in DMFA (30 mg·mL
−1

), and 10 µL of this mixture were added to  

each mL of protein-containing solution. After reacting for 30 min, dialysis occurred against Buffer D 

at 4 °C. To each mL of protein-solution 100 µL of 0.5 M hydroxylamine (in 50 mM sodium phosphate,  

25 mM EDTA, pH 7.5) were added. The mixture was kept at room temperature for 2 h, and then, 

dialysis (against 0.15 M NaCl, 0.1 M sodium phosphate, pH 7.0, Buffer R) followed. The resulting 

solution with the Strep-tag ChbB protein (0.27 mg·mL
−1

), which had the introduced SH groups, was  

de-aerated with nitrogen. The protein containing solution was mixed with maleimide-activated HRP 

(in de-aerated Buffer R) to achieve a 1:1 molar ratio, and kept for 3 h at room temperature with 

constant mixing. The reaction was terminated by addition of β-mercaptoethanol (final concentration  

1.5 mM), and was stirred for 15 min. Then dialysis was done against 50 mM potassium phosphate 

buffer, pH 6.5 (CHS Buffer) and used for the following experiments.  

The formation of the expected product was controlled on a polyacrylamide gel electrophoresis using 

a 12.5% gel. If the reaction had been satisfactory, the Strep-tag ChbB-HRP conjugate was purified 

with an FPLC system using the Superdex 200 packed column (Pharmacia Biotech). As a liquid phase, 

de-aerated 50 mM potassium phosphate buffer, pH 6.5, was applied at flow rate 0.5 mL·min
−1

. The 

purified adduct was named Strep-tag ChbB-HRP. 

To identify the complex in the course of the purification procedure, small portions of the fractions 

were analyzed by dot-blot analysis. For this, a Fluorotrans membrane (0.2 µm, Pall Corporation) was 

washed for 1 min in methanol, then, for 10 min in PBS buffer (140 mM NaCl, 2.5 mM KCl, 1.5 mM 

KH2PO4, 8 mM Na2HPO4, pH 7.3). A 5 µL aliquot of each selected peak-fraction was spotted onto the 

membrane, and subsequently, this was blocked in 5% skim milk powder containing PBS buffer for 1 h. 

Serum containing anti ChbB antibodies [6] was diluted 1:5000 in PBS and incubated for 2 h with the 

membrane. After washing 3 × 10 min in PBS, incubation continued for 2 h with anti rabbit antibodies 

conjugated with alkaline phosphatase (Sigma) diluted 1:5000 in PBS.  

Then, the membrane was washed twice with PBS and once in substrate buffer (25 mM Tris-HCl, 

pH 8.3). It was subsequently stained with naphtol-AS-E-phosphate (4 mg·400 µL
−1

 DMSO)/Fast violet 

B salt (20 mL, 1 mg·mL
−1

 in substrate buffer) in darkness until the color appeared. Moreover, the 

fractions were tested for a binding capacity to the crab chitin (see following chapters). For this 

purpose, they were diluted before test with CHS Buffer to a protein-concentration of 1 µg·mL
−1

. 
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3.6. Determination of Protein Concentration and the Quantity of Sulfhydryl Groups  

Protein concentration was determined as described earlier [23]. The incorporation of sulfhydryl 

groups was estimated using Ellman’s reagent [19].  

3.7. Binding Test and Determination of the Sensitivity 

The ChbB-HRP conjugate (diluted to 1 µg·mL
−1

 in 50 mM Tris-HCl, pH 7.5 containing 1% BSA) 

was tested as to its binding activity [6] for the ground crab chitin (Sigma), chitosan (Sigma), xylan 

(Sigma) and microcrystalline cellulose (Sigma); 1 mg of each of these compounds had been suspended 

in
.
100 µL CHS buffer. After incubation for 1 h at room temperature with constant mixing, the 

Eppendorf tubes were centrifuged, and the pellet was washed 5 times with water. The identification of 

the bound ChbB-HRP conjugate was done as described [21] using as substrate a mixture of  

3,3’,5,5’-tetramethylbenzidine (TMB) and H2O2 (0.8 mM TMB in DMSO, 2.15 mM H2O2 in 100 mM 

citrate/acetate buffer, pH 3.7). The absorbance of the colored reaction product was measured using a 

Tecan Sunrise
™

 microplate reader at 450 nm. HRP-maleimide served as a reference. The sensitivity of 

the ChbB-HRP was tested with ground crab chitin (2 mg) by varying the concentration of the  

ChbB-HRP complex from 0.001 µg·mL
−1

 to 1 µg·mL
−1

.  

3.8. Isolation of Chitosomes 

The S. cerevisiae strain under study (WT, 4BR023, YBR023C-GFP having CHS3-gfp) was grown 

(5 L YM-medium) until OD600 = 0.8–0.9 was reached. Cells were suspended, disrupted (Ribi press) 

and cell debris was removed as described [14]. The supernatant was subjected to ultra-centrifugation as 

described [14,20]. The pellet was discarded, the supernatant was filtered through 0.22 µm Millipore 

filter, and adjusted to a concentration of 50% sucrose in CHS buffer containing 10 mM MgCl2 

(CHSMg buffer). The resulting 20 mL were placed into an empty (32 mL) centrifuge tube, then, 1 mL 

of 48% in CHSMg buffer was carefully added on top, and it was covered with 10 mL of a sucrose 

gradient (20–46%) in the same buffer. After ultra-centrifugation (60000 rpm, 4 °C, 16 h) using a Ti70 

rotor (Beckmann), the gradient was fractionated in 0.5 mL portions. Those with the buoyant density of  

1.15–1.16 g·cm
−3

 [14], which corresponded to 35–37% sucrose, were incubated with the substrate 

UDP-N-acetylglucosamine [14], and tested for resulting chitin using the ChbB-HRP conjugate (see 

previous chapter). Chitin-synthesizing fractions were diluted to the sucrose-concentration of 9%, and 

loaded onto the 10 mL sucrose gradient 12.5–65%. After ultra-centrifugation (55000 rpm, 4 °C, 3.5 h), 

using a TFT65.13 rotor and Centrikon T-1065 centrifuge (Kontron Instruments), the gradient was 

fractionated in 0.5 mL portions. Each second fraction was monitored using the ChbB-HRP conjugate 

(see below), and subsequently by electron microscopy.  

3.9. Well-assay for Chitin Synthase Activity of Chitosomes, and Detection of Chitin Fibers  

50 µL of the fraction was supplemented with 50 µL of the reaction mixture (GlcNAc 80 mM,  

UDP-GlcNAc 4 mM, MgCl2 10 mM in CHS buffer), and incubated for 10 min with 10 µL of trypsin  

(2 mg·mL
−1

 in 50 mM Tris-HCl, pH 7.5) at 30 °C. Afterwards, the action of trypsin was blocked with 
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10 µL of SoyBean trypsin inhibitor (3 mg·mL
−1

 in 50 mM Tris-HCl, pH 7.5). The reaction continued 

for an additional 16 h at 30 °C. All operations were performed in the standard 96-well plate.  

To test for the presence of synthesized chitin, 3 µL of the ChbB His-tag protein (1 µg·mL
−1

) were 

added to each well, and was incubated for 30 min together with 10 µL Ni-NTA magnetic beads 

(Qiagen), which had been pre-washed with CHS buffer. While the beads were held on a magnet, two 

washes were done with CHS buffer. Afterwards they were resuspended in 13 µL CHS buffer, and 

transferred to the well containing the sample, to be inspected for chitin-synthase activity (see above). 

After incubation for 1 h at room temperature with shaking, the well was washed twice with CHS 

buffer, while the 96-well plate was kept on the magnetic device. A portion of 100 µL ChbB-HRP  

(1 µg·mL
−1

 in CHS buffer) was added to each well, and incubated with shaking at room temperature 

for 1 h. The plate was washed five times with distilled water. To each well, 100 µL of the freshly made 

HRP-substrate (0.8 mM 3,3’,5,5’-tetramethylbenzidine in DMSO, 2.15 mM H2O2 in 100 mM 

citrate/acetate buffer, pH 3.7) was added, and incubated with shaking for 5 min. The addition of  

100 µL 0.5 M H2SO4 terminated the reaction. The developed yellow color was measured using the 

Tecan Sunrise microplate absorbance reader (Tecan, Austria) at 450 nm.  

3.10. Electron Microscopy and Immuno-localization 

Electron microscopy was done as described [14], except that contrasting was done with 3% solution of 

phosphotungstic acid as outlined earlier [24]. Analyses were done with the EM 902A microscope (Zeiss). 

For immunological studies, the samples were prepared as follows. Onto each grid, which had been 

pre-incubated with 2% BSA for 1 h, a drop of the sample was placed. The excess of the liquid was 

removed with the filter paper. After incubation for 30 min at RT, each grid was covered with a droplet 

of anti GFP antibodies (produced in rabbit, Sigma), which had been diluted 1:100 in PBS containing 

2% BSA and incubated overnight. After six washes with 2% BSA in PBS, the grids were incubated for 

4 h with diluted 1:100 anti rabbit antibodies, which had been marked with colloidal gold (10 nm). 

After three washes with PBS, the grids were contrasted with 3% phosphotungstic acid and analyzed 

using the EM 902A microscope (Zeiss). 

4. Conclusions  

The presented test system relies on the chitin-binding protein ChbB carrying either a His-tag or a 

Strep-tag, to the latter of which HRP had been coupled. The ChbB-HRP complexes proved to be 

considerably more specific for nascent chitin than the previously described WGA-HRP adduct [21] or 

an assay depending on radioactively labeled substrate [25]. Thus, the newly established test system 

allows a simultaneous and highly improved scoring of many fractions for the presence of active chitin 

synthase provoking the synthesis of chitin filaments of either α- or β-type. As a result, the presented 

test allowed refining the procedure to gain active nano-machineries for chitin biosynthesis 

(chitosomes). Due to their hydrophobic properties, chitin synthases are difficult to purify to 

homogeneity [25–27]. Hence, the analysis of their biochemical properties and the identification of 

accessory compounds will depend on a high quality and quantity of chitosomes. In the yeast  

S. cerevisiae, the chitin synthase CHS3 generates the chitin at the lateral cell wall and at the base of the 

emerging bud, which is retained at the bud scar of the mother after cell division. Our new finding that 
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6–8 CHS3-GFP molecules are located within one chitosome suggests their cooperative action to 

generate nascent chitin. In addition to S. cerevisiae, chitosomes have been previously found in the 

human-pathogen Candida albicans and several fungi including Mucor rouxii, Neurospora crassa, 

Blastocladiella emersonii, Phycomyces blakesleeanus, and, Agaricus bisporus (for review, see [13]). 

In future, it will be interesting to apply our knowledge to fungi, which are of biotechnological 

importance, or which are pathogens. 

In addition, chitin [28] is present within the exoskeleton of different organisms including insects, 

molluscs, coelenterate and protozoa [29,30]. If the presented strategy will be applied to different 

organisms producing chitin, the limited current knowledge on the mode of chitin biosynthesis 

[14,25,26,27,29,30] is expected to multiply considerably. 
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