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Abstract: In the present work, support vector machines (SVMs) and multiple linear 

regression (MLR) techniques were used for quantitative structure–property relationship 

(QSPR) studies of retention time (tR) in standardized liquid chromatography–UV–mass 

spectrometry of 67 mycotoxins (aflatoxins, trichothecenes, roquefortines and ochratoxins) 

based on molecular descriptors calculated from the optimized 3D structures. By applying 

missing value, zero and multicollinearity tests with a cutoff value of 0.95, and genetic 

algorithm method of variable selection, the most relevant descriptors were selected to build 

QSPR models. MLRand SVMs methods were employed to build QSPR models. The 

robustness of the QSPR models was characterized by the statistical validation and 

applicability domain (AD). The prediction results from the MLR and SVM models are in 

good agreement with the experimental values. The correlation and predictability measure 

by r
2
 and q

2
 are 0.931 and 0.932, repectively, for SVM and 0.923 and 0.915, respectively, 

for MLR. The applicability domain of the model was investigated using William‟s plot. 

The effects of different descriptors on the retention times are described. 
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1. Introduction 

Fungi are major plant and insect pathogens, but they are not nearly as important as agents of disease 

in vertebrates, i.e., the number of medically important fungi is relatively low. Growth of fungi on 

animal hosts produces diseases collectively known as mycoses, while dietary, respiratory, dermal, and 

other exposures to toxic fungal metabolites produce diseases collectively called mycotoxicoses. 

Mycotoxicoses are examples of “poisoning by natural means” and thus are analogous to the 

pathologies caused by exposure to pesticides or heavy metal residues. The symptoms of mycotoxicosis 

depend on the type of mycotoxin; the amount and duration of the exposure; the age, health, and sex of 

the exposed individual; and many poorly understood synergistic effects involving genetics, dietary 

status, and interactions with other toxic insults. Thus, the severity of mycotoxin poisoning can be 

compounded by factors such as vitamin deficiency, caloric deprivation, alcohol abuse, and infectious 

disease status. In turn, mycotoxicoses can heighten vulnerability to microbial diseases, worsen the 

effects of malnutrition, and interact synergistically with other toxins [1]. 

Studies have shown that a number of mycotoxins have carcinogenic properties. Some of them are 

clearly DNA-reactive and for others DNA reactivity may not be the mode of action. When the 

endpoint is cancer, in vitro or in vivo studies may need to be designed to elucidate possible molecular 

events related to gene expression, modifications of relevant proto-oncogenes or tumor suppressor 

genes, and genomic instability, as this will help in gaining an understanding of the mode of action 

underlying the carcinogenic process and in the characterization of hazard. Mycotoxins may also cause 

developmental effects including birth defects, affect the reproductive system, affect the immune 

system, exhibit hormonal activity, affect specific target organs and may be neurotoxic. In addition to 

these diverse organ or site-specific actions, mycotoxins may affect the gastrointestinal system, cause 

skin irritation, have hematological effects and reduce growth [2–4]. 

Mycotoxins usually enter the body via ingestion of contaminated foods, but inhalation of toxigenic 

spores and direct dermal contact are also important routes. Mycotoxins occurring in food commodities 

are secondary metabolites of a range of filamentous fungi, which can contaminate food or food crops 

throughout the food chain. Although many hundreds of fungal toxins are known, a more limited 

number are generally considered to play an important part in food safety and for these a range of 

analytical methods have been developed [5]. 

Microfungi are a rich source of chemical diversity [6–8], and together with the actinomycetes they 

are the source of more than 50% of metabolites utilized by the pharmaceutical industry in either the 

native form or as derivatives [9–12].As only a small part of mycota is known and most fungi produce 

several unknown metabolites, fungi are still one of the most promising microbiotic sources for new 

lead compounds. Therefore, developing theoretical models to predict the property (e.g., retention time) 

of mycotoxins is necessary as they toxicity is very important for humans and animals. 

Since the chemical diversity is very high within the micro-fungi almost all types of chemical 

structure can be expected in an extract, e.g., small acids, alcohols, ketones, alkaloids, antraquinones 

and cyclic peptides. To cope with this broad range of chemical structures, most methods are based on 

reversed- phase liquid chromatography combined with diode array detection (DAD) and atmospheric 

ionization [electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)] mass 

spectrometry (MS). Nearly all methods use water–acetonitrile gradient elution on reversed-phase C18 
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and C8 columns, although methods for very polar and highly ionized components, using perfusion 

chromatography and hydrophilic interaction chromatography have been described [13]. 

However, only a few reports have investigated the quantitative correlation between the molecular 

parameters and the property of retention time of mycotoxins [14]. The computational methods used to 

calculate/predict retention time can be classified into two categories. One approach is to use a 

mathematical equation to correlate retention time with the molecular parameters. The other methods 

are more empirically based on QSPR approaches using multiple linear regression (MLR) and support 

vector machine (SVM) techniques. Of those previous studies that aimed to predict the retention time, 

the most promising method has been to use the QSPR approach: QSPR methods have been 

successfully used to predict many physicochemical properties. The advantage of this approach over 

other methods lies in the fact that the descriptors used can be calculated from the structure alone and 

are not dependent on any experimental properties. Once the structure of a compound is known, any 

descriptor can be calculated, no matter whether it is found or not. This means that once a reliable 

model is established, we can use this method to predict properties of compounds. Therefore, 

quantitative structure- property relationship (QSPR) is a useful tool to predict the retention time, 

avoiding long and tedious separation optimization. QSPR studies can also tell us which of the 

structural factors may play an important role in the determination of retention time. 

After the calculation of molecular descriptors, many different chemometrics methods, such as 

multiple linear regression (MLR), partial least squares regression (PLS), different types of artificial 

neural networks (ANN), genetic algorithms (GAs), and support vector machine (SVM) can be 

employed to derive correlation models between the molecular structures and properties. As a new and 

powerful modeling tool, support vector machine (SVM) has gained much interest in pattern 

recognition and function approximation applications recently. In bioinformatics, SVMs have been 

successfully used to solve classification and correlation problems. SVMs have also been applied in 

chemistry, for example, the prediction of retention index of protein [15], and other QSAR studies. 

Compared with traditional regression and neural networks methods, SVMs have some advantages, 

including global optimum, good generalization ability, simple implementation, few free parameters, 

and dimensional independence [16]. The flexibility in classification and ability to approximate 

continuous function make SVMs very suitable for QSAR and QSPR studies. In the present paper, we 

introduce the applications of support vector regression (SVR) for correlation problems in QSAR and 

compare its performance with MLR method. 

2. Results and Discussion  

54 descriptors were calculated by the ChemOffice software. By applying missing value, zeroand 

multicollinearity tests with a cutoff value of 0.95 and variable selection by genetic algorithm, the 

number of descriptors was reduced to 22.The stepwise regression routine was used to develop the 

linear model for the prediction of the retention time of mycotoxins using calculated structural 

descriptors. The best linear model contained four molecular descriptors. The regression coefficients of 

the descriptors, Mean effect and variable inflation factors (VIF) are listed in Table 1. 

Positive values in the regression coefficients show that the indicated descriptors contribute 

positively to the value of tR, whereas negative values indicate that the greater the value of the 
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descriptor, the lower the value of tR. In other words, increasing the electronic energy (ElcE), dipole 

length (DPLL)and Lowest Unoccupied Molecular Orbital energy (LUMO) will decrease tR, and the 

increase in the C logP increases the extent of tR of the compounds.  

Table 1. Details of the constructed QSPR model. 

Descriptor Coefficient Mean effect VIF
e
 

C logP
a
 2.6951(±0.2248) 5 1.006 

ElcE
b
 -0.0002(±0.0001) 8 1.246 

DPLL
c
 -1.091(±0.2981) -3.875 1.556 

LUMO
d
 -1.6922(±0.5521) 0.594 1.287 

Constant 3.1912(±1.7569) _ _ 

a = The octanol/water partition coefficient 

b = Electronic energy  

c = Dipole length 

d = Lowest Unoccupied Molecular Orbital energy 

e = Variable inflation factors 

 

With comparison of the mean effects of the descriptors appearing in MLR model, it is observed that 

the ElcE of the molecules has the largest effect on the tR of the compound. The mean effect of a 

descriptor is the product of its mean and the regression coefficient in the MLR model [17]. 

Based on the variable inflation factor (VIF) values of the four descriptors shown in Table 1, it has 

been found that the descriptors used in the model have very low inter-correlation. Correlation between 

these descriptors and property as correlation matrix of measured data are given in Table 2. Correlation 

coefficients measure how closely two values (descriptor and property) are related to each other by a 

linear relationship. If a descriptor has a correlation coefficient of 1, it describes the property exactly. A 

correlation coefficient of zero means the descriptor has no relevance. It is seen that C logP is 

positivelycorrelated to the property with a correlation coefficient equal to 0.82126. 

Table 2. Correlation matrix for MLR model. 

 tR C logP ElcE DPLL LUMO 

tR 1     

C logP 0.821263 1    

ElcE -0.21234 0.05977 1   

DPLL -0.07144 0.004813 -0.32903 1  

LUMO -0.12041 -0.05044 0.000773 -0.45025 1 

 

After establishing models by MLR, the support vector machines were used to compare the 

performance of MLR based on the same subset of descriptors. Similar to other multivariate statistical 

models, the performances of SVM for regression depend on the combination of several parameters. 

They are capacity parameter C, ε of ε-insensitive loss function, the kernel type K, and its corresponding 

parameters. C is a regularization parameter that controls the tradeoff between maximizing the margin 
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and minimizing the training error. If C is too small, then insufficient stress will be placed on fitting the 

training data. If C is too large, then the algorithm will overfit the training data. The linear kernel 

function was used for the SVR model in our study for investigation of the linear relationship between 

the theoretical molecular descriptors and the retention time. The optimal value for ε depends on the 

type of noise present in the data, which is usually unknown. Even if enough knowledge of the noise is 

available to select an optimal value for ε, there is the practical consideration of the number of resulting 

support vectors. ε-insensitivity prevents the entire training set meeting boundary conditions and so 

allows for the possibility of sparsity in the dual formulation‟s solution. So, choosing the appropriate 

value of ε is critical from theory. To find an optimal ε, the root mean squares error (RMSE) on LOO 

cross-validation on different ε was calculated. The curve of RMSE versus the epsilon (ε) is shown in 

Figure 1. The optimal ε was found to be 0.014. The other important parameter is regularization 

parameter C, whose effect on the RMSEis shown in Figure 2. The optimal C was found to be 4. 

Figure 1. The selection of the optimal epsilon for SVM (C = 4). 

 

 

Figure 2. The selection of the optimal capacity factors for SVM (ε = 0.01). 

 

 

Satisfied with the robustness of the QSPR model developed using the training set, we applied the 

QSPR model to an external data set of 17 mycotoxins comprising the test set. The predicted results are 

given in Table 3.The squared correlation coefficient between experimental and predicted tR values for 

the test set for both models is significant. Figure 3 shows the quality of the fit. Also the random 

distribution of residuals about zero mean in Figure 3 confirms the good predictive ability of the models. 
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Figure 3. tR estimated by MLR (top panel) and SVM (bottom panel) modeling versus 

experimental values and residual versus experimental tR. 

 

Table 3. Comparison of experimental and predicted values of tR for prediction set by MLR 

and SVM models. 

No. 
Exp. ( tR) MLR model SVM model 

 Pred. (tR) RE (%) Pred. (tR) RE (%) 

21 5.1 4.97 2.55 5.03 1.37 

4 6.6 6.91 -4.7 7.99 -21.06 

23 7.4 7.03 5 8.35 -12.84 

41 8.59 8.88 -3.38 10.08 -17.35 

3 10.33 9.44 8.62 10.25 0.77 

38 10.51 11.43 -8.75 12 -14.18 

24 11.28 12.03 -6.65 12.37 -9.66 

27 13.69 11.51 15.92 11.74 14.24 

34 14.15 11.48 18.87 12.53 11.45 

13 15.03 14.52 3.39 15.18 -1 

25 15.56 14.61 6.11 14.79 4.95 

37 17 14.29 15.94 15.08 11.29 

11 18.02 15.7 12.87 16.37 9.16 

46 18.6 18.91 -1.67 19.39 -4.25 

65 20 22.66 -13.3 22.11 -10.55 

29 21.12 22.61 -7.05 20.43 3.27 

55 21.6 20.74 3.98 19.84 8.15 

 

The statistical parameters calculated for the MLR and SVM models are represented in Table 4. In 

this table, statistical parameters root mean squared error of prediction (RMSEP),standard error of 

prediction (SEP),relative error of prediction (REP%) and the others parameters obtained by applying 

the MLR and SVM methods to the test set indicate a good external predictability of the QSPR models. 

The results also show that both MLR and SVM methods could model the relationship between tR and 

their electronic and thermodynamic descriptors, while model using SVM based on these same sets of 

descriptors produced an even better model with a better predictive ability than the MLR model.SVM 

performs better on the whole due to embodying the structural risk minimization principle and the 

advantage over other techniques of converging to the global optimum and not to a local optimum. 
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Table 4. The statistical parameters obtained by applying the MLR and SVM methods to 

the prediction set. 

SVM MLR Parameters 

1.341 1.504 RMSEP 

9.719 10.902 REP
a 
(%) 

1.382 1.551 SEP
b
 

0.932 0.915 q
2
 

0.931 0.923 R
2
 

0.0118 0.001 (R
2
-R0

2
)/R

2
 

0.0011 0.0108 (R
2
-R'0

2
)/R

2
 

0.833 0.894 rm
2
 

0.891 0.996 k 

1.045 0.926 k' 

4 4 NDS
c
 

a = Relative error of prediction. 

b = Standard error of prediction. 

c = Number of descriptors. 

 

2.1. Definition of the Applicability Domain of the Model 

Once a QSPR model is obtained, another crucial problem is the definition of its applicability 

domain (AD). For any QSPR model, only the predictions for chemicals falling within its AD can be 

considered reliable and not model extrapolations. There are several methods for defining the AD of 

QSPR models [18], but the most common one is determining the leverage values for each compound 

[19]. To visualize the AD of a QSPR model, the plot of standardized residuals versus leverage values 

(h)(the William‟s plot) was exploited in this study, which played a double role. Firstly, it described the 

impacts of the objects on models by the values of their leverages. Leverage indicates a compound‟s 

distance from the centroid of X. The leverage of a compound in the original variable space is defined 

as [20]: 

ℎ𝑖  =  𝑥𝑖
𝑇(𝑋𝑇𝑋)−1𝑥𝑖         (1) 

where xi is the descriptor vector of the considered compound and X is the descriptor matrix derived 

from the training set descriptor values. The warning leverage (h*) is defined as [18]: 

ℎ
٭

 =  
3𝑃

𝑛
        (2) 

where n is the number of training compounds, p is the number of model variables plus one. The 

leverage (h) greater than the warning leverage (h
*
) suggested that the compound was very influential 

on the model. Secondly, it presented the Euclidean distances of the compounds to the model measured 

by the cross-validated standardized residuals. The cross-validated standardized residuals greater than 

three standard deviation (s) units classified the compound as a response outlier. 

The Williams plot for the presented SVM model is shown in Figure 4.From this plot, the 

applicability domain is established inside a squared area within ±3 standard deviations and a leverage 
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threshold h
*
 of 0.3. For making predictions, predicted tR data must be considered reliable only for those 

compounds that fall within this AD on which the model was constructed. It can be seen from Figure 4 

that the majority of compounds in the data set are inside this area. However, only one compound in 

prediction set(squares at 0.33 h) slightly exceeds the critical hat value that the developed SVM model 

has good generalizability and predictivity for the compound with descriptor values significantly far 

from the centroid of the descriptor space. Also, compound 2 in the training set is wrongly predicted 

(>3 s), but with lower leverage values (h < h
*
).These erroneous predictions could probably be 

attributed to wrong experimental data rather than to molecular structures [19]. 

Figure 4. Williams plot of standardized residual versus leverage. 

 

 

2.2. Interpretation of Descriptors 

By interpreting the descriptors in the regression model, it is possible to gain some insight into 

factors that are likely to govern the retention time of mycotoxins. In regard to this point that all the 

descriptors in the final model together attributethe same property or activity, each one of the 

descriptors or their related coefficient takes into account a definitive amount of variance within 

property. However it can be concluded that the interpretation of a combination set of the descriptors 

would be much better than considering the result of the single descriptors. Of the four descriptors, C 

logP is thermodynamic and LUMO, DPLL and ElcE are electronic descriptors. 

The octanol/water partition coefficient (C logP) characterizes the effectiveness of hydrophobicity of 

the compounds. C logP values can be calculated from molecular structure by summation of fragment 

values, which captures the nature of the hydrophobic regions of the molecule separately from 

hydrophilic regions. In the other words, it can be estimated from hydrophobic contributions of the 

chemical groups present in complex molecules [21,22]. The fact that similar descriptors have been 

reported to correlate with partition coefficients of different compounds suggests that this correlation 

model has wider applications [23]. A positive value in the regression coefficient for C logp 
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demonstrates that with the increase of C logp, the value of tR increases as well. In reversed-phase 

chromatography, compounds with higher hydrophobicities would make stronger interactions with 

mobile phase, which lead to having larger tR within the compounds. 

The other descriptors (LUMO, DPLL and ElcE) are electronic and their regression coefficient is 

negative, it means that as they increase, tR decreases. In particular, electronic parameters are 

considered important in the establishment of QSAR models and are helpful to quantify different types 

of intermolecular and intramolecular interactions, as these interactions are usually responsible for 

properties of chemical and biological systems [24]. Dipole length is the electric dipole moment divided 

by the elementary charge. Electric dipole is a vector quantity, which encodes displacement with 

respect to the centre of gravity of positive and negative charges in a molecule. Dipole length encodes 

information about the charge distribution in molecules and is important for modeling polar 

interactions. Large substituents decrease the DPLL valuem which is not desirable [25,26]. The ElcE 

descriptor has the largest effect on the tR of the compounds. The ElcE is the total electronic energy 

given in electron volt at 0 °C [27]. Involvement of electronic factors suggests the occurrence of either 

charge transfer or dipolar interactions. The transfer of a pair of electrons from the HOMO to the 

LUMO is, by definition, a reaction between a Lewis acid and a Lewis base. Thus, the parameter 

LUMO is a measure of the ability of a molecule to interact with the π and n-electron pairs of the other 

molecules. The reduction in energy in molecular orbital is the driving force for chemical bond 

formation [28].The negative sign of the corresponding regression coefficient between tR and LUMO 

indicates that, tR increase with decrease in the magnitude of LUMO index. The present results 

reinforce previous findings [29,30]. 

3. Experimental Section 

3.1. Data Set 

The data set for this investigation was extracted from a work reported by Nielsen et al. [13]. These 

data are listed in Table 5. It can be seen from the table that the data set is diverse, consisting of 

aflatoxins, trichothecenes, roquefortines and ochratoxins. This data set was randomly divided into two 

groups: training (calibration) and prediction (test) sets. The training and prediction sets consisted of  

50 and 17 molecules, respectively. The values of tR were used as the dependent variables.  

Table 5. Experimental retention time (tR) of 67compounds. 

NO. Compound tR(min) NO. Compound tR(min) 

Aflatoxins and their precursors 

1 Aflatoxicol I 12.45 9 Austocystin A 21.57 

2 Aflatoxin B1 11.50 10 Averufin 25.65 

3 Aflatoxin B2 10.33 11 5-Methoxysterigmatocystin 18.02 

4 Aflatoxin B2 α 6.60 12 Dihydroxysterigmatocystin 17.70 

5 Aflatoxin G1 10.16 13 Methoxysterigmatocystin 15.03 

6 Aflatoxin G2 8.97 14 Sterigmatocystin 18.91 

7 Aflatoxin G2α 5.00 15 Norsolorinic acid 31.08 

8 Aflatoxin M1 7.21 16 Parasiticol 10.73 
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Table 5. Cont. 

NO. Compound tR (min) NO. Compound tR (min) 

Trichothecenes 

17 Nivalenol 1.27 27 HT-2 Toxin 13.69 

18 Fusarenone X 2.35 28 T-2 Toxin 17.06 

19 Deoxynivalenol 1.54 29 Acetyl-T-2 toxin 21.12 

20 3-Acetyldeoxynivalenol 5.21 30 Trichodermin 16.13 

21 15-O-Acetyl-4-

deoxynivalenol 

5.10 31 Trichodermol 9.69 

22 Scirpentriol 1.82 32 7-α-Hydroxytrichodermol 2.59 

23 15-Acetoxyscirpenol 7.40 33 Verrucarol 2.89 

24 Diacetoxyscirpenol 11.28 34 4,15-Diacetylverrucarol 14.15 

25 3α-

Acetyldiacetoxyscirpenol 

15.56 35 Trichothecin 16.29 

26 Neosolaniol 3.19 36 Trichothecolone 3.63 

37 Trichoverrol A 10.16    

Roquefortines ,ergot amines and related alkaloids 

38 Agroclavine-I 17.00 51 Ergotamin 19.60 

39 Auranthine 10.51 52 Fumigaclavine C 21.40 

40 Aurantiamine 10.49 53 Marcfortine A 19.59 

41 Aurantioclavine 14.30 54 Marcfortine B 17.39 

42 Chanoclavine-I 8.59 55 Meleagrin 18.90 

43 Costaclavine 17.00 56 Oxalin 21.60 

44 Cyclopenin 11.60 57 Pyroclavine 14.81 

45 Cyclopenol 6.20 58 Roquefortine C 20.50 

46 Cyclopeptin 12.05 59 Roquefortine D 6.09 

47 Dihydroergotamin 18.60 60 Rugulovasine A and B 8.43 

48 Elymoclavine 5.34 61 Secoclavine 20.40 

49 Epoxyagroclavine-I 10.00 62 α-Ergocryptin 19.20 

50 Ergocristine 25.10    

Ochratoxins 

63 Ochratoxin α 5.60 66 Ochratoxin B-ethyl ester 19.41 

64 Ochratoxin A-methyl ester 22.49 67 Ochratoxin α-methyl ester 16.16 

65 Ochratoxin B-methyl ester 20.00    

 

3.2. Descriptor Generation and Reduction 

The molecular structures of data set were sketched using the ChemDraw Ultra module of the CS 

ChemOffice 2005 molecular modeling software version 9, supplied by Cambridge Software Company. 

Each molecule was “cleaned up” and energy minimization was performed using Allinger‟s MM2 force 

filed and further geometry optimization was done using semiempirical AM1 (Austin Model) 

Hamiltonian and PM3 methods by default on the 3D-structure of molecules. A total of 54 molecular 

descriptors of differing types based on 3D structures were calculated to describe compound structural 

diversity. The descriptors calculated accounts three important properties of the molecules:  
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(a) thermodynamic, (b) electronic and (c) steric, as they represent the possible molecular interactions 

which determined the retention time of the studied molecules. 

After the calculation of molecular descriptors, any parameter which is not calculated (missing 

value) for any number of the compounds in the data set is rejected in the first step. Some of the 

descriptors were rejected because they contained a value of zero for all the compounds and have been 

removed (zero tests).In order to minimize the effect of colinearity and to avoid redundancy, we used 

amulticollinearity test with a cutoff value of 0.95, and subsequently discarded 10 parameters. Finally, a 

total set of 44 remaining descriptors were achieved and used to select the optimal subset of descriptors 

that have a significant contribution to the tR property. 

3.3. Descriptor Selection and Model Building 

The basic strategy of QSPR analysis is to find optimum quantitative relationships between the 

molecular descriptors and desired property, which can then be used for the prediction of the property 

from only molecular structures. One of the most important problems involved in QSPR studies is to 

select optimal subset of descriptors that have significant contribution to the desired property. The  

well-known genetic algorithm is just a well-accepted method for solving this kind of problems. 

After correlation analysis of the descriptors, we used MLR analysis on the molecular descriptors 

that resulted in genetic algorithm (GA) variable selection procedure. The GA-algorithm applied in this 

paper uses a binary representation as the coding technique for the given problem; the presence or 

absence of a descriptor in a chromosome is coded by 1 or 0. The GA performs its optimization by 

variation and selection via the evaluation of the fitness function (RMSECV). The algorithm used in 

this paper is an evolution of the algorithm described in Ref. [31], whose parameters are reported in 

Table 6. In our study, a genetic algorithm procedure was used for selection of descriptors using the 

PLS Toolbox (version 2.0, Eigenvector Company, USA). The GA is implemented in MATLAB 

(version 7.1, MathWorks, Inc.). By performing GA, 22 descriptors were retained for next analysis step. 

Table 6. Parameters of genetic algorithm (GA). 

Cross-Validation                                                         Random subset 

Number of subsets                                                                   4 

Population size                                                                       64 

Mutation rate                                                                        0.005 

Window width                                                                         2 

Initial term%                                                                         20% 

Maximum generation                                                            100 

Convergence (%)                                                                    50 

Cross-over                                                                            Double 

 

Finally, descriptor-screening methods were used to select the most relevant descriptor to establish 

the models for prediction of the molecular property. Here, the stepwise regression method was used to 

choose the subset of the molecular descriptors. 

After the descriptor was selected, multiple linear regression (MLR)[32] was used to develop the 

linear model of the property of interest, which takes the form below: 
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𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛                                  (3) 

In this equation, y is the property, that is, the dependent variable, x1-xn represent the specific 

descriptor, while b1- bn represent the coefficients of those descriptors, and b0 is the intercept of the 

equation. The statistical evaluation of the data was obtained by the software SPSS. The SPSS software, 

(SPSS Ver. 11.5, SPSS Inc.), performed MLR analysis and variable selection by using stepwise 

method for the variable selection and modeling.  

3.4. Theory of SVM 

The foundation of support vector machines (SVM) has been developed by Vapnik, and they are 

gaining popularity due to many attractive features and promising empirical performance [33]. The 

formulation embodies the structural risk minimization (SRM) principle [32,33], which has been shown 

to be superior to the traditional empirical risk minimization (ERM) principle, employed by 

conventional neural networks. SRM minimizes an upper bound on VC dimension (“generalization 

error”), as opposed to ERM that minimizes the error on the training data. It is the difference that equips 

SVM with good generalization performance, which is the goal in statistical learning. Originally, SVM 

were developed for classification problems [34], and now, with the introduction of ε-insensitive loss 

function, SVM have been extended to solve nonlinear regression estimation [36]. 

Compared to other neural network regressors, there are three distinct characteristics when SVM are 

used to estimate the regression function. First of all, SVM estimate the regression using a set of linear 

functions that are defined in a high dimensional space. Second, SVM carry out the regression 

estimation by risk minimization where the risk is measured using Vapnik‟s ε-insensitive loss function. 

Third, SVM use a risk function consisting of the empirical error and a regularization term which is 

derived from the SRM principle. 

In support vector regression (SVR), the basic idea is to map the data x into a higher-dimensional 

feature space F via a nonlinear mapping Φ, and then to do linear regression in this space. Therefore, 

regression approximation addresses the problem of estimating a function based on a given data set  

G = {(xi,di)}i
n
 (xi is the input vector, di is the desired value, and n is the total number of data patterns). 

SVM approximate the function using the following 

y = f(x) = wΦ(x) + b      (4) 

where Φ(x) denotes the element wise mapping from x into feature space. The coefficients w and b are 

estimated by minimizing 

𝑅𝑆𝑉𝑀𝑠 (𝐶)  =  𝐶
1

𝑛
 𝐿𝑒 𝑑𝑖 , 𝑦𝑖 +

1

2
||𝑤||𝑛

𝑖 = 1

2
   

(5) 

𝐿𝜀 𝑑, 𝑦  =  { 
 𝑑 − 𝑦 − 𝜀|𝑑 − 𝑦| ≥ 𝜀

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (6) 

In Equation 5, RSVMs is the regularized risk function, and the first term 𝐶
1

𝑛
 𝐿𝑒 𝑑𝑖 , 𝑦𝑖 

𝑛
𝑖 = 1

 
is the 

empirical error (risk). They are measured by the ε-insensitiveloss function (Lε) given by Equation 6. 

This loss function provides the advantage of enabling one to use sparse data points to represent the 

decision function given by Equation 4. The second term 
1

2
||w ||

2
, on the other hand, is the regularization 

term. C is referred to as the regularized constant, and it determines the tradeoff between the empirical 
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risk and the regularization term. Increasing the value of C will result in the relative importance of the 

empirical risk with respect to the regularization term to grow. 

ε is called the tube size, and it is equivalent to the approximation accuracy placed on the training data 

points. Both C and ε are user-prescribed parameters.  

Finally, by introducing Lagrange multipliers (ai, ai
٭
) andexploiting the optimality constraints, the 

decision functiongiven by Equation 4 has the following explicit form: 

𝑓  𝑥, 𝑎𝑖 , 𝑎𝑖
٭
  =   ( 𝑎𝑖 − 𝑎𝑖

٭
)𝐾 𝑥, 𝑥𝑖 + 𝑏                     (7) 

Based on the Karush-Kuhn-Tucker (KKT) conditions of quadratic programming, only a number of 

coefficients (ai, ai
٭
) will assume nonzero values, and the data points associated with them could be 

referred to as support vectors. In Equation 7, the kernel function K corresponds to K(x, xi) = Φ(x).Φ(xi). 

One has several possibilities for the choice of this kernel function, including linear, polynomial, 

splines, and radial basis function. The elegance of using the kernel function lies in the fact that one can 

deal with feature spaces of arbitrary dimensionality without having to compute the map Φ(x) explicitly. 

The overall performances of SVM models were evaluated in terms of root mean square error 

(RMSE), which was defined as below: 

𝑅𝑀𝑆𝐸 =  
 (𝑦𝑘−𝑦^𝑘) 2

𝑛𝑠
𝑖=1

𝑛𝑠
                                                     (8) 

where yk is the desired output, y
^
k is the predicted value and ns is the number of samples in the analyzed 

set.  

The predictive power of the models developed on the calculated statistical parameters standard error 

of prediction (SEP) and relative error of prediction (REP %) as follows: 

𝑆𝐸𝑃 =   
 (𝑦 𝑖−𝑦𝑖  )

2𝑛
𝑖 = 1

𝑛−1
 

0.5

                                                            (9) 

𝑅𝐸𝑃(%)  =  
100

𝑦 
 

1

𝑛
 (𝑦 𝑖 − 𝑦𝑖  )

2𝑛
𝑖 = 1  

0.5
                                     (10) 

where 𝑦 𝑖 , 𝑦𝑖  and 𝑦 are the predicted, experimental and mean activity property, respectively. 

All calculations in this work were carried out by using Matlab (V 7.1, The Mathworks, Inc.) and the 

SVM toolbox developed by Gunn [37]. 

3.5. Validation Test 

The main goal in QSPR studies is to obtain a model with the highest predictive ability. In order to 

evaluate the predictive ability of our QSPR model, we used the method described by Golbraikh and 

Tropsha [38] and Roy and Roy [39]. The determination coefficient in prediction (q
2

test) was calculated 

using the following equation [39]: 

𝑞𝑡𝑒𝑠𝑡
2  =  1 −

 (𝑦𝑝𝑟𝑒𝑑 𝑡𝑒𝑠𝑡
−𝑦𝑡𝑒𝑠𝑡 )2

 (𝑦𝑡𝑒𝑠𝑡 −𝑦)2          (11) 

where ypredtest and yTest are the predicted values based on the QSPR equation (model response) and 

experimental activity values, respectively, of the external test set compounds. 𝑦 is the mean activity 

value of the training set compounds. Further evaluation of the predictive ability of the QSAR model 
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for the external test set compounds was done by determining the value of 𝑟𝑚
2  using the following 

equation [39]: 

𝑟𝑚
2  =  𝑟2 (1 − | 𝑟2 − 𝑟0

2 |)      (12) 

where r
2
 is the squared Pearson correlation coefficient for regression calculated using Y = a + bx; „„a‟‟ 

is referred to as the y-intercept, „„b‟‟ is the slope value of regression line, and 𝑟0
2  is the squared 

correlation coefficient for regression without using y-intercept and the regression equation was y = bx. 

Both r
2
 and 𝑟0

2 between experimental and predicted values for the external test set compounds were 

calculated using the regression of analysis Toolpak option of Excel. If 𝑟𝑚
2  value for a give model is 

>0.5, it indicates the good external predictability of the developed model. 

The values of k and k', slopes of the regression line of the predicted property versus actual property 

and vice versa, were calculated using the following equations [38]: 

𝑘 =  
 𝑦𝑖𝑦 𝑖

 𝑦 𝑖
2 𝑘 ′  =  

 𝑦𝑖𝑦 𝑖

 𝑦𝑖
2              (13) 

where 𝑦 𝑖  and 𝑦𝑖  are the predicted and experimental property, respectively. The values of k and k' are 

within the specified range of 0.85 and 1.15 [36]. The value of  r2 − r0
2 r2   and  r2 − r0

2′ r2   are less 

than 0.1 (stipulated value)[38]. 𝑟0
2 and 𝑟0

2′  are correlation coefficient of regression between the 

predicted and experimental property of compounds in the test set and vice versa without using  

y-intercept. 

To further check the inter-correlation of descriptors variance inflation factor (VIF) analysis was 

performed. The VIF value is calculated from 1 1 − r2, where r
2
 is the multiplecorrelation coefficient 

of one descriptor‟s effect regressed on the remaining molecular descriptors. If the VIF value is larger 

than 10, information of the descriptor could be hidden by correlation of descriptors [40]. 

4. Conclusions 

In recent years, attention has been paid to QSAR/QSPR methods as an interesting complement, or 

even as an expensive, time consuming alternative, to laboratory data. In this paper, new QSPR models 

have been developed for predicting the tR of a diverse set of mycotoxins from the molecular structure 

alone. We have compared two linear models, MLR and SVM, with the data set. The obtained results 

show that both MLR and SVM methods could model the relationship between tR and their electronic 

and thermodynamic descriptors; on the same sets of descriptors, using SVM based produced a better 

model with a better predictive ability than the MLR model.SVM exhibit the better overall performance 

due to embodying the structural risk minimization principle and some advantages over the other 

techniques of converging to the global optimum and not to a local optimum. By performing model 

validation, it can be concluded that the presented model is a valid model and can be effectively used to 

predict the tR of mycotoxins with an accuracy approximating the accuracy of experimental tR 

determination. Moreover, the mechanism of the model was interpreted, and the applicability domain of 

the model was defined. It can be reasonably concluded that the proposed model would be expected to 

predict tR for new organic compounds or for other organic compounds for which experimental values 

are unknown. Additionally, the presented method could also identify and provide some insight into 

what structural features are related to the tR property of organic compounds. 
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