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Abstract: In this study, we examined the cytotoxic effects of curcumin, the yellow pigment 

of Curcuma longa, on the blastocyst stage of mouse embryos, subsequent embryonic 

attachment, and outgrowth in vitro and in vivo implantation by embryo transfer. Mouse 

blastocysts were incubated in medium with or without curcumin (6, 12 or 24 μM) for 24 h. 

Cell proliferation and growth were investigated using dual differential staining, apoptosis 

was analyzed with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling 

(TUNEL), and implantation and post-implantation development of embryos were measured 

by in vitro development analysis and in vivo embryo transfer, respectively. Blastocysts 

treated with 24 μM curcumin displayed significantly increased apoptosis and decreased total 

cell number. Interestingly, we observed no marked differences in the implantation success 

rates between curcumin-pretreated and control blastocysts during in vitro embryonic 

development through implantation with a fibronectin-coated culture dish. However, in vitro 

treatment with 24 μM curcumin was associated with decreased implantation rate and 
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increased resorption of postimplantation embryos in mouse uterus, as well as decreased fetal 

weight in the embryo transfer assay. Our results collectively indicate that in vitro exposure to 

curcumin triggers apoptosis and retards early postimplantation development after transfer to 

host mice. In addition, curcumin induces apoptotic injury effects on mouse blastocysts 

through ROS generation, and further promotes mitochondria-dependent apoptotic signaling 

processes to impair sequent embryonic development. 

Keywords: curcumin; blastocyst; apoptosis; development; ROS 

 

1. Introduction 

Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the 

rhizome of the herb Curcuma longa that is used as a traditional Indian medicine [1] for the treatment 

of wounds, liver ailments, hepatitis and urinary tract diseases, as well as a cosmetic compound [2]. 

Curcumin exerts a wide range of pharmacological effects, including anti-inflammatory, 

anti-carcinogenic, hypocholesterolemic and anti-infection activities [3-8]. As a potential antioxidant, 

curcumin displays anti-proliferative and anti-carcinogenic properties in a variety of cell lines and 

animals [8-12]. Moreover, the efficacy of curcumin in various diseases, including cancer, is well 

established [13]. Recent studies have shown that the anti-tumor activity of curcumin is attributed to its 

ability to induce apoptosis via caspase-3 activation [14,15]. Moreover, various in vivo animal assay 

models and human studies confirm that dietary curcumin is extremely safe and does not exert 

hazardous effects, even at high doses [16-19]. For example, three separate phase I clinical trials 

demonstrate that dietary curcumin administered at doses as high as 12 g per day is well tolerated 

[18-20]. Curcumin displays high pharmacological safety and efficacy, and is thus a potential candidate 

agent for the treatment and prevention of a wide range of human diseases. Importantly, a recent study 

by our group shows that curcumin inhibits methylglyoxal-induced reactive oxygen species (ROS) 

generation and various apoptotic biochemical events in embryonic stem cells and blastocysts isolated 

from pregnant mice [21]. Moreover, another study by our group focusing on the possible effects of 

curcumin on ROS generation, intracellular adenosine triphosphate (ATP) levels and cell death mode in 

osteoblast cells revealed that curcumin induces apoptosis or necrosis in a dose-dependent manner [15]. 

However, while multiple biological functions have been identified for curcumin, the ambiguous issue 

of its activity as an apoptotic inducer or inhibitor and the precise molecular mechanisms underlying 

these actions are yet to be fully determined. To date, virtually no studies have investigated the potential 

of curcumin as a cytotoxic agent against embryo development. 

Apoptosis plays important roles in development and disease [22]. While apoptosis is an established 

contributor to normal embryonic development [23-25], several other studies have shown that 

mechanistically diverse teratogens induce excessive apoptosis in early embryos, leading to 

developmental impairment [21,26-30]. Importantly, a recent investigation by our group revealed that 

curcumin induces apoptotic changes, including c-Jun N-terminal kinase (JNK) activation, caspase-3 
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activation, and cleavage of poly-(ADP-ribose) polymerase (PARP) and p21-activated kinase 2 (PAK2) 

at treatment concentrations less than 25 μM in human osteoblast cells. In contrast, 50–200 μM 

curcumin did not induce apoptosis but triggered necrotic cell death in human osteoblasts [15]. In a 

further study, the curcumin dosage was show to determine its possible effects on ROS generation, 

intracellular ATP levels, and apoptosis or necrosis in osteoblast cells [15]. These findings collectively 

indicate that curcumin promotes apoptosis or necrosis in a dose-dependent manner in human osteoblast 

cells. To our knowledge, the present report is the first to show that the curcumin dosage significantly 

influences the cell death mode of osteoblasts. These novel findings provide important insights into the 

impact of curcumin on other mammalian cell lines, particularly in terms of embryonic stem cells or 

embryonic development.  

Here, we examined whether curcumin has cytotoxic effects and determined the related regulatory 

mechanisms in mouse embryonic development. Our results show that curcumin suppresses embryonic 

cell proliferation during the blastocyst stage predominantly by inducing apoptosis in the inner cell 

mass (ICM). We also monitored subsequent impairment of blastocyst development in vitro and 

following embryo transfer in vivo. However, the mechanisms underlying curcumin-induced apoptosis 

of mouse blastocysts remain to be determined. 

2. Results and Discussion 

To initially examine the possibility of curcumin-induced cytotoxicity, we treated mouse blastocysts 

with 6, 12 or 24 μM curcumin at 37 °C for 24 h, and monitored apoptosis using the TUNEL method. 

Curcumin clearly induced apoptosis in mouse blastocysts at a concentration of 24 μM (Figure 1A). 

Quantitative analysis revealed 7.5-fold higher apoptosis in curcumin-treated blastocysts versus 

untreated controls (Figure 1B), confirming curcumin-induced apoptosis in mouse blastocysts. 

Figure 1. Curcumin induces apoptosis in mouse blastocysts. (A) Mouse blastocysts were 

treated with curcumin (Cur; 6, 12 or 24 μM) for 24 h or left untreated, and apoptosis 

examined using TUNEL staining. The results were visualized using light microscopy. 

TUNEL-positive cells are depicted in black. (B) The mean number of apoptotic 

(TUNEL-positive) cells per blastocyst was calculated as five to eight determinations. 

Values are presented as means ± SEM. *** P < 0.001 versus the control group. 
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We further used differential staining for cell counting to examine proliferation in blastocysts treated 

with 6, 12 or 24 μM curcumin or left untreated for 24 h. The results revealed significantly lower total 

and ICM cell numbers in curcumin-treated blastocysts (24 μM) versus controls (Figure 2A). Annexin 

V and PI staining were further used to detect the cell death modes in ICM or TE or both. We observed 

significantly higher numbers of Annexin V-positive/PI-negative (apoptotic) cells in the ICM of treated 

blastocysts versus controls, but no differences in the TE (Figure 2B). Thus, it seems that curcumin 

induces significant apoptosis in the ICM but not TE of mouse blastocysts. These results further 

indicate that curcumin impairs the developmental potential of blastocysts by inducing ICM apoptosis. 

Figure 2. Effects of curcumin on blastocyst viability. Mouse blastocysts were treated with 

curcumin (Cur; 6, 12 or 24 μM) for 24 h or left untreated. (A) The total number of cells per 

blastocyst and cell numbers in the inner cell mass (ICM) and trophectoderm (TE) were 

counted. (B) The percentages of Annexin V-positive/PI-negative cells in the blastocysts of 

each group were examined. Data are based on at least 250 blastocyst samples from each 

group. Values are presented as means ± SEM of six determinations. *** P < 0.001 versus 

the control group. 
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We further analyzed the effects of curcumin on embryonic preimplantation, implantation and 

postimplantation development in vitro. Untreated control morulas displayed ~78% development into 

blastocysts, whereas only 32.5% of the 24 μM curcumin-treated morulas developed into blastocysts 

under our in vitro experimental conditions (Figure 3A). To analyze the effects of curcumin on 

implantation and postimplantation events in vitro, blastocysts were treated with 6, 12 or 24 μM 

curcumin (250–300 blastocysts for each group) or left untreated, and the implantation rate and 

subsequent development for 8 days in culture were analyzed. The implantation rate of and attachment 

to the fibronectin-coated dish were similar in the curcumin-treated group and the untreated control 

group (Figure 3B). Importantly, curcumin-pretreated blastocysts displayed a lower incidence of 

postimplantation developmental milestones compared with control blastocysts (Figure 3B). The results 

indicate that curcumin affects the in vitro potential of blastocysts to develop features of 

postimplantation embryos. 
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Figure 3. In vitro development of mouse embryos exposed to curcumin at the blastocyst 

stage. (A) Mouse morulas were treated with curcumin (Cur; 6, 12 or 24 μM) for 24 h or left 

untreated, and cultured for an additional 24 h at 37 °C. Blastocysts were counted and 

percentages calculated. (B) Mouse blastocysts were treated with curcumin (Cur, 6, 12 or 

24 μM) for 24 h or left untreated, and observed in culture for 7 days post-treatment. 

Blastocysts were identified as attachment only, ICM (+), ICM (++), and ICM (+++) via 

morphological assessment, as described in Materials and Methods. Values are presented as 

means ± SEM of eight determinations. *** P < 0.001 versus the control group. 
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To further determine the effects of curcumin on blastocyst development in vivo, we transferred 

mouse blastocysts subjected to curcumin pretreatment or left untreated, and examined the uterine 

content at 13 days post-transfer (day 18 post-coitus). The implantation ratio in the curcumin-pretreated 

group (24 μM) was significantly lower than that of the untreated control group (Figure 4A). In addition, 

embryos that implanted but failed to develop were subsequently resorbed. Early resorption was 

visualized as small dark moles with no distinct structures, whereas late resorptions resembled placentas 

with no fetal structure. The proportion of implanted embryos that failed to develop normally (early and 

late resorption groups) was significantly higher in the 24 μM curcumin-pretreated group versus the 

control group (Figure 4A). Interestingly, no differences in placental weight were evident between the 

curcumin-treated and untreated groups (Figure 4B), but fetal weight was lower in the curcumin-treated 

group. Moreover, previous and recent experiments by our group reveal that 35–40% of fetuses weigh 

more than 600 mg, with the average weight of total surviving fetuses being ~600 ± 12 mg in the 

untreated control group at day 18 of pregnancy in a mouse embryo transfer assay [27,31-34]. Fetal 

weight is an important indicator of developmental status, and the average fetal weight of the untreated 

control group was thus used as a key indicator for measuring the development status of 

curcumin-treated blastocysts. The results show that only about 11% of the fetuses in the 24 μM 

curcumin-pretreated group weighed more than 600 mg (an indicator of successful embryonic and fetal 

development), in contrast to 44% of control fetuses (Figure 4C). Thus, curcumin exposure at the 

blastocyst stage poses a potential risk to postimplantation development. 
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Figure 4. Effects of curcumin on mouse blastocysts on in vivo implantation, resorption, 

fetal survival and fetal weight. (A) Mouse blastocysts were treated with curcumin (Cur, 6, 

12 or 24 μM) for 24 h or left untreated. Implantations, resorptions and surviving fetuses 

were analyzed, as described in Materials and Methods. The percentage of implantations 

represents the number of implantations per number of transferred embryos × 100. The 

percentage of resorptions or surviving fetuses denotes the number of resorptions or 

surviving fetuses per number of implantations × 100. (B) Placental weights of 40 recipient 

mice were measured. (C) Weight distribution of surviving fetuses on day 18 post-coitus. 

Surviving fetuses were obtained by embryo transfer of control and curcumin-pretreated 

blastocysts, as described in Materials and Methods (320 total blastocysts across  

40 recipients). *** P < 0.001 versus the curcumin-free group. 
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In light of previous reports and our recent finding that ROS effectively induces apoptosis [27,35,36], 

we further used the fluorescent dye DCF-DA to measure the ROS content in curcumin-treated mouse 

blastocyst cells. As shown in Figure 5A, 24 μM curcumin directly induced an increase in fluorescence 

intensity in mouse blastocysts, compared with untreated control cells. Expression changes in Bax and 

Bcl-2 are additionally relevant to the mitochondria-dependent apoptotic pathway [37,38], with high 

and low Bax/Bcl-2 ratios associated with lower and higher apoptotic thresholds, respectively. 

Accordingly, we determined whether curcumin induces apoptosis via modulation of Bax and Bcl-2 

expression. Immunostaining experiments revealed increases and decreases in the Bax and Bcl-2 levels, 

respectively, upon curcumin treatment of mouse blastocysts (Figure 5B). Further investigation of the 
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effects of curcumin on mitochondrial membrane potential (MMP) changes in mouse blastocyst cells 

revealed that treatment with 24 μM curcumin suppressed DiOC6(3) uptake into the mitochondria of 

mouse blastocyst cells, indicative of significant MMP loss (Figure 5C). In addition, 24 μM curcumin 

significantly stimulated caspase-3 activation, an important indicator of apoptosis (Figure 5D).  

Figure 5. Effects of curcumin on ROS generation and mitochondria-dependent apoptotic 

processes in mouse blastocysts. Mouse blastocysts were treated with curcumin (Cur, 6, 12 

or 24 μM) or left untreated for 24 h. (A) ROS generation was detected by staining with  

20 μM DCF-DA fluorescence dye. (B) Bax and Bcl-2 expression levels were determined 

by immunostaining with anti-Bax and anti-Bcl-2 antibodies, respectively. The protocol is 

described in “Materials and Methods”. (C) To examine mitochondrial membrane potential 

changes, embryos were incubated with 40 nM DiOC6(3) at 37 °C for 1 h and analyzed 

under a fluorescence microscope. (D) Activation of caspase-3 was analyzed by 

immunostaining with anti-activated caspase-3 antibody for 3 h, followed by a secondary 

antibody conjugated with peroxidase (1:100) for 1 h. Finally, 20 μL of DAB-substrate 

solution was added to embryos, and incubated for 2 min at room temperature. Cells with 

activated caspase-3 are presented in black. 

 

 

(B) 
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Figure 5. Cont. 

 

 

To further determine the role of ROS and apoptotic associated events in curcumin-induced 

apoptosis, we assessed the effects of a commonly used ROS scavenger, N-acetyl cysteine (NAC), as 

well as various caspase-specific inhibitors on curcumin-treated mouse blastocysts. Pretreatment of 

cells with NAC (500 μM) attenuated curcumin-induced apoptosis (Figure 6A). Moreover, pretreatment 

with caspase-9 (Z-LEHD-FMK) and caspase-3 (Z-DEVD-FMK) specific inhibitors effectively blocked 

apoptosis, while the caspase-8 inhibitor Z-IETD-FMK had no effect (Figure 6A). Importantly, 

treatment with 24 μM curcumin was associated with a lower implantation ratio, and failure of further 

development was effectively blocked by NAC and inhibitors of caspase-9 and caspase-3 by embryo 

transfer. The group pretreated with the caspase-8 inhibitor displayed no significant differences 

compared with the untreated control (Figure 6B). In addition, fetal weight was lower in the 24 μM 

curcumin-treated group, which was effectively rescued upon pretreatment with NAC and specific 

caspase-9 and -3 inhibitors (Figure 6C). Based on these data, we suggest that curcumin triggers ROS 

generation, in turn, activating mitochondria-dependent apoptotic processes in mouse blastocyst cells.  

We have previously shown that curcumin induces osteoblast apoptosis at doses of 12.5–25 μM and 

necrosis at doses greater than 50 μM [15]. Interestingly, curcumin is able to both stimulate and inhibit 

apoptotic signaling. For instance, curcumin induces apoptosis in human melanoma (30–60 μM for 24 h) 

[39], human leukemia HL 60 (10–40 μM for 16–24 h) [40,41], AK-5 tumor (10 μM for 18 h) [14,42] 

and MCF-7 breast cancer cells (25 μM for 24 h) [43]. Conversely, curcumin (10 μM for 12 h) inhibits 

dexamethane-induced apoptosis in rat thymocytes, chemotherapy-induced apoptosis in breast cancer 

cells [44,45], and methylglyoxal-triggered apoptosis in mouse embryonic stem cells [21]. Our novel 

results, along with previously published findings, indicate that the treatment protocol (i.e., treatment 

(C) 
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period and dosage) determines the effects of curcumin on various cell types. Moreover, during the 

complex and precisely orchestrated process of embryonic development, chemical or physical injury 

can affect normal development and lead to malformation or miscarriage of the embryo. Thus, it is 

important to examine the possible teratogenic effects of various agents, including natural chemical 

compounds contained in food that are significant potential apoptotic inducers, such as curcumin. In the 

present study, we investigated whether curcumin adversely affects the blastocyst stage of mouse 

embryos and subsequent early postimplantation embryonic development. We report for the first time 

that treatment with 24 μM curcumin for 24 h induces apoptosis in mouse blastocysts (Figure 1). Based 

on this finding, we further analyzed the effects of curcumin on embryonic development by incubating 

blastocysts in medium containing 6, 12 or 24 μM curcumin for 24 h. Our results show that curcumin 

suppresses cell viability in mouse blastocysts via apoptosis (Figures 1 and 2). Dual differential staining 

further showed that this curcumin-induced cell loss and apoptosis occurs primarily in the ICM (Figure 2).  

Figure 6. Effects of ROS scavengers and caspase inhibitors on in vivo implantation, 

resorption, fetal survival and fetal weight in curcumin-treated embryos. Mouse blastocysts 

were pretreated with 400 μM N-acetyl cysteine (NAC), 300 μM Z-IETD-FMK (IETD), 

300 μM Z-LEHD-FMK (LEHD) or 300 μM Z-DEVD-FMK (DEVD) for 1 h or left 

untreated. Blastocysts were further incubated with curcumin (Cur, 24 μM) for another 24 h. 

(A) Apoptosis was examined using TUNEL staining, as described in Figure 1.  

(B) Implantations, resorptions and surviving fetuses were analyzed by embryo transfer, as 

described in Materials and Methods and Figure 4. (C) The weight distribution of surviving 

fetuses on day 18 post-coitus. Surviving fetuses were obtained by embryo transfer of 

control and curcumin-pretreated blastocysts (320 total blastocysts across 40 recipients). 

*** P < 0.001 versus the curcumin-free group and #P < 0.001 versus 24 μM 

curcumin-treated group. 
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Figure 6. Cont. 
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The TE arises from the trophoblast at the blastocyst stage and develops into a sphere of epithelial 

cells surrounding the ICM and blastocoel. These cells contribute to the placenta and are required for 

development of the mammalian conceptus [46], indicating that reduction in the TE cell lineage may 

reduce implantation and embryonic viability [47,48]. However, in our experiments, curcumin induced 

cell apoptosis only in the ICM and not TE, and did not have deleterious effects on embryonic 

attachment and outgrowth in vitro. Importantly, we observed a lower implantation rate of 

curcumin-pretreated embryos in the mouse uterus compared with the untreated control group in vivo 

using the embryo transfer assay (Figures 2-4). Previous studies have shown that a ~30% or greater 

reduction in the number of cells in the ICM is associated with high risk of fetal loss or developmental 

injury, even in cases where the implantation rate and TE cell numbers are normal [49]. In addition, the 

ICM cell number is essential for proper implantation, and reduction in this cell lineage may decrease 

embryonic viability [47,48,50]. While apoptosis is responsible for eliminating unwanted cells during 

normal embryonic development, this process does not normally occur at the blastocyst stage [51,52]. 

Excessive apoptosis before or during the blastocyst stage is likely to delete important cell lineages, 

affecting embryonic development and potentially leading to miscarriage or embryonic malformation 

[53]. Thus, in view of the observation that curcumin reduces the cell number and increases apoptosis 

specifically in the ICM of mouse blastocysts, we investigated the possibility that curcumin causes 

embryonic implantation and mortality and/or developmental delay in postimplantation mouse embryos 

in vitro and in vivo (Figure 2). Our results show that curcumin-treated blastocysts suffer from 

decreased embryonic development and increased embryonic death in vitro and implantation in vivo 

(Figures 3 and 4). 

Mechanistically, our data emphasize that curcumin directly evokes intracellular oxidative stress 

(Figure 5A), leading to ROS-mediated apoptosis in mouse blastocyst cells (Figure 6A). In addition, 

these effects seem to involve the mitochondria-dependent apoptotic pathway, as evident from 

curcumin-induced changes in the intracellular levels of Bcl family members (Bax and Bcl-2) and loss 

of mitochondrial membrane potential (Figure 5B). Our findings are consistent with previous data 

showing that curcumin induces apoptosis via activation of the mitochondrial pathway in human 

osteoblasts [15]. Given that recent studies have shown that the addition of specific compounds to 
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commonly used cell culture media triggers generation of ROS, such as hydrogen peroxide [54,55], we 

co-incubated curcumin and culture medium, and measured ROS using the ferrous iron 

oxidation-xylenol orange method [54]. No artifactual ROS generation was detected under these 

conditions (data not shown). Importantly, a well-known ROS scavenger, NAC, effectively prevented 

curcumin-induced apoptosis in mouse blastocysts (Figure 6A). We further determined the precise 

mechanisms of curcumin-triggered apoptosis in mouse blastocysts (Figures 5 and 6). Our results 

collectively demonstrate that curcumin triggers apoptosis in ICM cells of mouse blastocysts, leading to 

impairment of embryo development via ROS generation, which stimulates downstream processes 

through the mitochondria-dependent pathway. 

3. Experimental Section 

3.1. Chemicals  

Curcumin, Pregnant mare‟s serum gonadotropin (PMSG), Bovine serum albumin (BSA), sodium 

pyruvate and puerarin were purchased from Sigma (St. Louis, MO, USA). Human chorionic 

gonadotropin (hCG) was obtained from Serono (NV Organon Oss, the Netherlands). The TUNEL in 

situ cell death detection kit was obtained from Roche (Mannheim, Germany) and CMRL-1066 

medium was from Gibco Life Technologies (Grand Island, NY, USA). Z-DEVD-FMK, Z-LEHD-FMK 

and Z-IETD-FMK were from Calbiochem (La Jolla, CA, USA). 

3.2. Collection of Mouse Morulas and Blastocysts 

ICR mice were from National Laboratory Animal Center (Taiwan, ROC). This research was also 

approved by the Animal Research Ethics Board of Chung Yuan Christian University (Taiwan, ROC). 

All animals received humane care, as outlined in the Guidelines for Care and Use of Experimental 

Animals (Canadian Council on Animal Care, Ottawa, 1984). All mice were maintained on breeder 

chow (Harlan Teklad chow) with food and water available ad libitum. Housing was in standard 

28 cm × 16 cm × 11 cm (height) polypropylene cages with wire-grid tops and kept under a 

12 h day/12 h night regimen. Nulliparous females (6-8 weeks old) were superovulated by injection of 

5 IU PMSG followed 48 hours later by injection of 5 IU hCG, and then mated overnight with a single 

fertile male of the same strain. The day a vaginal plug was found was defined as day 0 of gestation. 

Plug-positive females were separated for experimentation. Morulas were obtained by flushing the 

uterine tubes on the afternoon of gestation day 3, and blastocysts were obtained by flushing the uterine 

horn on day 4; in both cases the flushing solution consisted of CMRL-1066 culture medium containing 

1 mM glutamine and 1 mM sodium pyruvate. The concentration of glucose in this medium was 5 mM. 

Expanded blastocysts from different females were pooled and randomly selected for experiments.  

3.3. Curcumin Treatment and TUNEL Assay 

Blastocysts were incubated in medium containing with or without 6, 12, or 24 μM curcumin for 

24 h. For apoptosis detection, embryos were washed in curcumin-free medium, fixed, permeabilized 
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and subjected to TUNEL labeling using an in situ cell death detection kit (Roche Molecular 

Biochemicals, Mannheim, Germany) according to the manufacturer‟s protocol. Photographic images 

were taken under brightfield illumination using a fluorescence microscope. 

3.4. Curcumin Treatment and Cell Proliferation 

Blastocysts were incubated with or without culture medium containing indicated concentrations of 

curcumin (6-24 μM) for 24 h. And then, blastocysts were washed with curcumin-free medium and dual 

differential staining was used to facilitate counting of cell numbers in the inner cell mass (ICM) and 

trophectoderm (TE) [47]. Blastocysts were incubated in 0.4% pronase in M2–BSA medium (M2 

medium containing 0.1% bovine serum albumin) for removal of the zona pellucida. The denuded 

blastocysts were exposed to 1 mM trinitrobenzenesulphonic acid (TNBS) in BSA-free M2 medium 

containing 0.1% polyvinylpyrrolidone (PVP) at 4 °C for 30 min, and then washed with M2 medium 

(Sigma) [56]. The blastocysts were further treated with 30 μg/mL anti-dinitrophenol-BSA complex 

antibody in M2-BSA at 37 °C for 30 min, and then with M2 medium supplemented with 10% whole 

guinea-pig serum as a source of complement, along with 20 μg/mL bisbenzimide and 10 μg/mL 

propidium iodide (PI), at 37 °C for 30 min. The immunolysed blastocysts were gently transferred to 

slides and protected from light before observation. Under UV light excitation, the ICM cells (which 

take up bisbenzimidine but exclude PI) appeared blue, whereas the TE cells (which take up both 

fluorochromes) appeared orange-red. Since multinucleated cells are not common in preimplantation 

embryos [57], the number of nuclei was considered to represent an accurate measure of the  

cell number. 

3.5. Annexin V Staining 

Blastocysts were incubated in 0, 6, 12 or 24 μM curcumin for 24 h, washed with curcumin-free 

culture medium, and then stained using an Annexin V-FLUOS staining kit (Roche), according to the 

manufacturer's instructions. Briefly, the blastocysts were incubated in M2-BSA for removal of the zona 

pellucida, washed with PBS plus 0.3% BSA, and then incubated for 60 min with a mixture of 100 μL 

binding buffer, 1 μL fluorescein isothiocyanate (FITC)-conjugated Annexin V and 1 μL PI. After 

incubation, the embryos were washed and photographed using a fluorescence microscope under 

fluorescent illumination. Cells staining Annexin V+/PI- were considered apoptotic, while those 

staining Annexin V+/PI+ were considered necrotic.  

3.6. Morphological Analysis of Embryonic Development 

Blastocysts were cultured according to a modification of the previously reported method [58]. 

Briefly, embryos were cultured in 4-well multidishes at 37 °C. For group culture, four embryos were 

cultured per well. The basic medium consisted of CMRL-1066 supplemented with 1 mM glutamine 

and 1 mM sodium pyruvate plus 50 IU/mL penicillin and 50 mg/mL streptomycin (hereafter called 

culture medium). For treatments, the embryos were incubated with 0, 6, 12 or 24 μM curcumin for 
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24 h. Thereafter, the embryos were cultured for 3 days in culture medium supplemented with 20% fetal 

calf serum, and for 4 days in culture medium supplemented with 20% heated-inactivated human 

placental cord serum, for a total culture time of 8 days from the onset of treatment. Embryos were 

inspected daily under a phase-contrast dissecting microscope, and developmental stages were 

classified according to established methods [59,60]. Under these culture conditions, each hatched 

blastocyst attached to the fibronectin and grew to form a cluster of ICM cells over the trophoblastic 

layer via in a process called TE outgrowth. After a total incubation period of 96 h, morphological 

scores for outgrowth were estimated. Growing embryos were classified as either „attached‟ or 

„outgrowth‟, with the latter defined by the presence of a cluster of ICM cells over the trophoblastic 

layer. As described previously [61], ICM clusters were scored according to shape, ranging from 

compact and rounded ICM (+++) to a few scattered cells (+) over the trophoblastic layer.  

3.7. Blastocyst Development Following Embryo Transfer 

To examine the ability of expanded blastocysts to implant and develop in vivo, the generated 

embryos were transferred to recipient mice. ICR females (white skin color) were mated with 

vasectomized males (C57BL/6J; black skin color; from National Laboratory Animal Center, Taiwan, 

ROC) to produce pseudopregnant dams as recipients for embryo transfer. To ensure that all fetuses in 

the pseudopregnant mice came from embryo transfer (white color) and not from fertilization by 

C57BL/6J (black color), we examined the skin color of the fetuses at day 18 post-coitus. To assess the 

impact of curcumin on postimplantation growth in vivo, blastocysts were exposed to 0, 6, 12 and 

24 μM curcumin for 24 h, and then 8 embryos were transferred in parallel to the paired uterine horns 

of day 4 pseudopregnant mice. The surrogate mice were killed on day 18 post-coitus, and the 

frequency of implantation was calculated as the number of implantation sites per number of embryos 

transferred. The incidence rates of resorbed and surviving fetuses were calculated as the number of 

resorptions or surviving fetuses, respectively, per number of implantations. The weights of the 

surviving fetuses and placentae were measured immediately after dissection. 

3.8. Immunofluorescent Embryo Stain 

Mouse blastocyst cells were fixed by formaldehyde, permeabilized by Triton X-100, blocked by 

bovine serum albumin (5 mg/mL in PBS), and incubated with anti-Bax or anti-Bcl-2 antibodies 

(40 mg/mL) at room temperature for 3 h. After washing three times with PBS, embryos were incubated 

with second antibody conjugated with FITC or Rhodamine (TRITC) (1:100) at room temperature for 

1 h and then observed under a fluorescence microscope. 

3.9. Statistics 

The data were analyzed using one-way ANOVA and t-tests and are presented as the mean ± SEM, 

with significance at P < 0.05. 
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4. Conclusions 

In summary, we show for the first time that curcumin induces apoptosis only in the ICM of mouse 

blastocysts through ROS- and mitochondria-dependent pathways, leading to decreased embryonic 

development and viability. These findings imply that curcumin is a potential hazardous risk factor for 

normal embryonic development. 

Acknowledgments 

This work was supported by grants (NSC95-2311-B-033-001-MY3 and NSC98-2311-B-033-001- 

MY3) from the National Science Council of Taiwan, ROC. 

References and Notes 

1 Nadkarni, K.M. Indian Materia Media; Popular Prakashan: Bombay, India, 1976; pp. 414-417. 

2 Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M.C. Potential anticancer activity of turmeric 

(Curcuma longa). Cancer Lett. 1985, 29, 197-202. 

3 Barthelemy, S.; Vergnes, L.; Moynier, M.; Guyot, D.; Labidalle, S.; Bahraoui, E. Curcumin and 

curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency 

virus long terminal repeat. Res. Virol. 1998, 149, 43-52. 

4 Ramirez-Tortosa, M.C.; Mesa, M.D.; Aguilera, M.C.; Quiles, J.L.; Baro, L.; Ramirez-Tortosa, 

C.L.; Martinez-Victoria, E.; Gil, A. Oral administration of a turmeric extract inhibits LDL 

oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. 

Atherosclerosis 1999, 147, 371-378. 

5 Ramsewak, R.S.; DeWitt, D.L.; Nair, M.G. Cytotoxicity, antioxidant and anti-inflammatory 

activities of curcumins I-III from Curcuma longa. Phytomedicine 2000, 7, 303-308. 

6 Kim, M.K.; Choi, G.J.; Lee, H.S. Fungicidal property of Curcuma longa L. rhizome-derived 

curcumin against phytopathogenic fungi in a greenhouse. J. Agric. Food Chem. 2003, 51, 

1578-1581. 

7 Reddy, R.C.; Vatsala, P.G.; Keshamouni, V.G.; Padmanaban, G.; Rangarajan, P.N. Curcumin for 

malaria therapy. Biochem. Biophys. Res. Commun. 2005, 326, 472-474. 

8 Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: 

Problems and promises. Mol. Pharm. 2007, 4, 807-818. 

9 Huang, M.T.; Lou, Y.R.; Ma, W.; Newmark, H.L.; Reuhl, K.R.; Conney, A.H. Inhibitory effects of 

dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res. 1994, 

54, 5841-5847. 

10 Jiang, M.C.; Yang-Yen, H.F.; Yen, J.J.; Lin, J.K. Curcumin induces apoptosis in immortalized NIH 

3T3 and malignant cancer cell lines. Nutr. Cancer 1996, 26, 111-120. 

11 Jee, S.H.; Shen, S.C.; Tseng, C.R.; Chiu, H.C.; Kuo, M.L. Curcumin induces a p53-dependent 

apoptosis in human basal cell carcinoma cells. J. Invest. Dermatol. 1998, 111, 656-661. 

12 Mahmoud, N.N.; Carothers, A.M.; Grunberger, D.; Bilinski, R.T.; Churchill, M.R.; Martucci, C.; 

Newmark, H.L.; Bertagnolli, M.M. Plant phenolics decrease intestinal tumors in an animal model 

of familial adenomatous polyposis. Carcinogenesis 2000, 21, 921-927. 



Int. J. Mol. Sci. 2010, 11             

 

2853 

13 Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. 

Exp. Med. Biol. 2007, 595, 1-75. 

14 Khar, A.; Ali, A.M.; Pardhasaradhi, B.V.; Begum, Z.; Anjum, R. Antitumor activity of curcumin is 

mediated through the induction of apoptosis in AK-5 tumor cells. FEBS Lett. 1999, 445, 165-168. 

15 Chan, W.H.; Wu, H.Y.; Chang, W.H. Dosage effects of curcumin on cell death types in a human 

osteoblast cell line. Food Chem. Toxicol. 2006, 44, 1362-1371. 

16 Qureshi, S.; Shah, A.H.; Ageel, A.M. Toxicity studies on Alpinia galanga and Curcuma longa. 

Planta Med. 1992, 58, 124-127. 

17 Lao, C.D.; Demierre, M.F.; Sondak, V.K. Targeting events in melanoma carcinogenesis for the 

prevention of melanoma. Expert Rev. Anticancer Ther. 2006, 6, 1559-1568. 

18 Lao, C.D.; Ruffin, M.T.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; 

Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC 

Compl. Altern. Med. 2006, 6, 10. 

19 Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; 

Ming-Shiang, W.; Yu, H.S.; Jee, S.H.; Chen, G.S.; Chen, T.M.; Chen, C.A.; Lai, M.K.; Pu, Y.S.; 

Pan, M.H.; Wang, Y.J.; Tsai, C.C.; Hsieh, C.Y. Phase I clinical trial of curcumin, a 

chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 

21, 2895-2900. 

20 Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on 

the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64, 

353-356. 

21 Hsuuw, Y.D.; Chang, C.K.; Chan, W.H.; Yu, J.S. Curcumin prevents methylglyoxal-induced 

oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J. Cell. Physiol. 

2005, 205, 379-386. 

22 Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267, 

1456-1462. 

23 Brill, A.; Torchinsky, A.; Carp, H.; Toder, V. The role of apoptosis in normal and abnormal 

embryonic development. J. Assist. Reprod. Genet. 1999, 16, 512-519. 

24 Lotz, K.; Proff, P.; Bienengraeber, V.; Fanghaenel, J.; Gedrange, T.; Weingaertner, J. Apoptosis as 

a creative agent of embryonic development of bucca, mentum and nasolacrimal duct. An in vivo 

study in rats. J. Craniomaxillofac. Surg. 2006, 34 Suppl 2, 8-13. 

25 Weingaertner, J.; Proff, P.; Bienengraeber, V.; Gedrange, T.; Fanghaenel, J.; Lotz, K. In vivo study 

of apoptosis as a creative agent of embryonic development of the primary nasal duct in rats. J. 

Craniomaxillofac. Surg. 2006, 34, S3-S7. 

26 Huang, F.J.; Shen, C.C.; Chang, S.Y.; Wu, T.C.; Hsuuw, Y.D. Retinoic acid decreases the viability 

of mouse blastocysts in vitro. Hum. Reprod. 2003, 18, 130-136. 

27 Chan, W.H. Ginkgolide B induces apoptosis and developmental injury in mouse embryonic stem 

cells and blastocysts. Hum. Reprod. 2006, 21, 2985-2995. 

28 Shang, E.H.; Wu, R.S. Aquatic hypoxia is a teratogen and affects fish embryonic development. 

Environ. Sci. Technol. 2004, 38, 4763-4767. 

 

 



Int. J. Mol. Sci. 2010, 11             

 

2854 

29 Detmar, J.; Rabaglino, T.; Taniuchi, Y.; Oh, J.; Acton, B.M.; Benito, A.; Nunez, G.; Jurisicova, A. 

Embryonic loss due to exposure to polycyclic aromatic hydrocarbons is mediated by Bax. 

Apoptosis 2006, 11, 1413-1425. 

30 Chang, Y.J.; Chan, W.H. Methylglyoxal has injurious effects on maturation of mouse oocytes, 

fertilization, and fetal development, via apoptosis. Toxicol. Lett. 2010, 193, 217-223. 

31 Huang, F.J.; Hsuuw, Y.D.; Lan, K.C.; Kang, H.Y.; Chang, S.Y.; Hsu, Y.C.; Huang, K.E. Adverse 

effects of retinoic acid on embryo development and the selective expression of retinoic acid 

receptors in mouse blastocysts. Hum. Reprod. 2006, 21, 202-209. 

32 Chan, W.H. Impact of genistein on maturation of mouse oocytes, fertilization, and fetal 

development. Reprod. Toxicol. 2009, 28, 52-58. 

33 Chan, W.H.; Shiao, N.H. Cytotoxic effect of CdSe quantum dots on mouse embryonic 

development. Acta Pharmacol. Sin. 2008, 29, 259-266. 

34 Chan, W.H.; Shiao, N.H. Effect of citrinin on mouse embryonic development in vitro and in vivo. 

Reprod. Toxicol. 2007, 24, 120-125. 

35 Chan, W.H. Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of 

survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochem. 

J. 2007, 404, 317-326. 

36 Chan, W.H. Citrinin induces apoptosis in mouse embryonic stem cells. IUBMB Life 2008, 60, 

171-179. 

37 Yu, F.; Watts, R.N.; Zhang, X.D.; Borrow, J.M.; Hersey, P. Involvement of BH3-only proapoptotic 

proteins in mitochondrial-dependent Phenoxodiol-induced apoptosis of human melanoma cells. 

Anticancer Drugs 2006, 17, 1151-1161. 

38 Criollo, A.; Galluzzi, L.; Chiara Maiuri, M.; Tasdemir, E.; Lavandero, S.; Kroemer, G. 

Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 2007, 1, 3-18. 

39 Bush, J.A.; Cheung, K.J., Jr.; Li, G. Curcumin induces apoptosis in human melanoma cells 

through a Fas receptor/caspase-8 pathway independent of p53. Exp. Cell Res. 2001, 271, 305-314. 

40 Kuo, M.L.; Huang, T.S.; Lin, J.K. Curcumin, an antioxidant and anti-tumor promoter, induces 

apoptosis in human leukemia cells. Biochim. Biophys. Acta 1996, 1317, 95-100. 

41 Anto, R.J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B.B. Curcumin (diferuloylmethane) 

induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its 

suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 2002, 23, 143-150. 

42 Bhaumik, S.; Anjum, R.; Rangaraj, N.; Pardhasaradhi, B.V.; Khar, A. Curcumin mediated 

apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS 

Lett. 1999, 456, 311-314. 

43 Choudhuri, T.; Pal, S.; Agwarwal, M.L.; Das, T.; Sa, G. Curcumin induces apoptosis in human 

breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002, 512, 334-340. 

44 Jaruga, E.; Bielak-Zmijewska, A.; Sikora, E.; Skierski, J.; Radziszewska, E.; Piwocka, K.; Bartosz, 

G. Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. 

Biochem. Pharmacol. 1998, 56, 961-965. 

45 Somasundaram, S.; Edmund, N.A.; Moore, D.T.; Small, G.W.; Shi, Y.Y.; Orlowski, R.Z. Dietary 

curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res. 

2002, 62, 3868-3875. 



Int. J. Mol. Sci. 2010, 11             

 

2855 

46 Cross, J.C.; Werb, Z.; Fisher, S.J. Implantation and the placenta: Key pieces of the development 

puzzle. Science 1994, 266, 1508-1518. 

47 Pampfer, S.; de Hertogh, R.; Vanderheyden, I.; Michiels, B.; Vercheval, M. Decreased inner cell 

mass proportion in blastocysts from diabetic rats. Diabetes 1990, 39, 471-476. 

48 Kelly, S.M.; Robaire, B.; Hales, B.F. Paternal cyclophosphamide treatment causes 

postimplantation loss via inner cell mass-specific cell death. Teratology 1992, 45, 313-318. 

49 Tam, P.P. Postimplantation development of mitomycin C-treated mouse blastocysts. Teratology 

1988, 37, 205-212. 

50 Chen, C.C.; Chan, W.H. Impact effects of puerarin on mouse embryonic development. Reprod. 

Toxicol. 2009, 28, 530-535. 

51 Hardy, K. Cell death in the mammalian blastocyst. Mol. Hum. Reprod. 1997, 3, 919-925. 

52 Hardy, K.; Stark, J.; Winston, R.M. Maintenance of the inner cell mass in human blastocysts from 

fragmented embryos. Biol. Reprod. 2003, 68, 1165-1169. 

53 Byrne, A.T.; Southgate, J.; Brison, D.R.; Leese, H.J. Analysis of apoptosis in the preimplantation 

bovine embryo using TUNEL. J. Reprod. Fertil. 1999, 117, 97-105. 

54 Long, L.H.; Clement, M.V.; Halliwell, B. Artifacts in cell culture: Rapid generation of hydrogen 

peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin, and 

quercetin to commonly used cell culture media. Biochem. Biophys. Res. Commun. 2000, 273, 

50-53. 

55 Halliwell, B. Oxidative stress in cell culture: An under-appreciated problem? FEBS Lett. 2003, 

540, 3-6. 

56 Hardy, K.; Handyside, A.H.; Winston, R.M. The human blastocyst: Cell number, death and 

allocation during late preimplantation development in vitro. Development 1989, 107, 597-604. 

57 Gardner, R.L.; Davies, T.J. Lack of coupling between onset of giant transformation and genome 

endoreduplication in the mural trophectoderm of the mouse blastocyst. J. Exp. Zool. 1993, 265, 

54-60. 

58 Huang, F.J.; Wu, T.C.; Tsai, M.Y. Effect of retinoic acid on implantation and post-implantation 

development of mouse embryos in vitro. Hum. Reprod. 2001, 16, 2171-2176. 

59 Witschi, E. Characterization of developmental stages. Part II. Rat. In Biology Data Book, 2nd ed.; 

Federation of American Societies of Experimental Biologies: Washington, DC, USA, 1972; 

pp. 178-180. 

60 Armant, D.R.; Kaplan, H.A.; Lennarz, W.J. Fibronectin and laminin promote in vitro attachment 

and outgrowth of mouse blastocysts. Dev. Biol. 1986, 116, 519-523. 

61 Pampfer, S.; Wuu, Y.D.; Vanderheyden, I.; De Hertogh, R. In vitro study of the carry-over effect 

associated with early diabetic embryopathy in the rat. Diabetologia 1994, 37, 855-862. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


