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Abstract: A new aromaticity definition is advanced as the compactness formulation 

through the ratio between atoms-in-molecule and orbital molecular facets of the same 

chemical reactivity property around the pre- and post-bonding stabilization limit, 

respectively. Geometrical reactivity index of polarizability was assumed as providing the 

benchmark aromaticity scale, since due to its observable character; with this occasion new 

Hydrogenic polarizability quantum formula that recovers the exact value of 4.5 a0
3 for 

Hydrogen is provided, where a0 is the Bohr radius; a polarizability based–aromaticity scale 

enables the introduction of five referential aromatic rules (Aroma 1 to 5 Rules). With the 

help of these aromatic rules, the aromaticity scales based on energetic reactivity indices of 

electronegativity and chemical hardness were computed and analyzed within the major 

semi-empirical and ab initio quantum chemical methods. Results show that chemical 

hardness based-aromaticity is in better agreement with polarizability based-aromaticity 

than the electronegativity-based aromaticity scale, while the most favorable computational 

environment appears to be the quantum semi-empirical for the first and quantum ab initio 

for the last of them, respectively.  

Keywords: chemical reactivity principles; polarizability; electronegativity; chemical 

hardness; quantum semi-empirical methods; quantum ab initio methods; aromaticity rules 
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1. Introduction 

In conceptual chemistry, the aromaticity notion stands as one of the main pillars of structural 

understanding of molecular stability and reactivity; it spans all relevant periods of modern chemistry, 

suffering continuous revivals as the development of the physico-mathematical methods allows [1–5]. 

Historically, the custom definition of aromaticity is that it characterizes the planar molecules with 

(4n + 2) -electrons [6], favoring substitution while resisting addition reactions [7,8], corresponds with 

high stability respecting the anti-aromatic structure [9], and ultimately correlates with low 

diamagnetism or magnetic susceptibility [10,11]. However, through the discovery of the non-planar 

feature of the most aromatic structure—benzene [12], along the generalizations of the Hückel rule for 

conjugated systems leading with the conjugated circuits [13,14], topological conjugated structures 

[15–17], up to the aromatic zones of molecular fragments [18,19], the aromaticity concept appears as a 

quite versatile concept that still needs proper quantification. 

The main difficulty in capping the observability character of aromaticity may reside in the fact it 

does not directly relate to the ground state energy of molecules, but rather with their excited and 

valence orbitals–a condition closely related with the  electrons delocalized in the structure. Such 

aromaticity paradox of quantifying molecular stability (that usually is conducted by a Variational 

algorithm towards the ground state) by means of frontier pi electrons, may be considered as the main 

origin for the most inconsistencies and controversial points relating to the aromaticity concept in 

general and of its scales’ realization in particular.  

Still, advancing aromaticity scales that employ certain physico-chemical molecular properties are 

useful at least for understanding whether certain molecular properties are inter-related and whether 

they enter or not the aromaticity sphere of definition. For that, the aromaticity scales should be always 

judged and validated in a comparative manner through concluding merely qualitatively upon the 

benchmarking degree of inter-correlation. This way, the aromaticity concept works best within the 

“transitivity thinking”: if the scale A1 correlates with the scales A2 and A3 with the same degree then 

the properties underlying the last two scales should be as well correlated and they may be regarded as 

different faces of the same molecular property. In short, the aromaticity concept and especially through 

its scales has the role of ordering among the molecular properties in general and of reactivity indices  

in special.  

Returning to the aromaticity definition, it seems that the two main routes for its quantitative 

evaluation are the energetic and geometric ways; although within a Variational approach they should 

be closely related, i.e., minimum global energy corresponds with the geometry optimization, since the 

aromaticity paradox described above the two sides of molecular structures open two different 

approaches for introducing quantitative indices of aromaticity. For instance, based on geometric (also 

extended to topological) criteria, the consecrated harmonic oscillator based-molecular aromaticity 

(HOMA) [20,21] and the recent topological paths and aromatic zones (TOPAZ) [18], as well as the 

ultimate topological index of reactivity (TIR) [16] indices describe in various extent the influence the 

nuclei motion, the molecular fragment conjugation, or the site with the maximum probability (entropy) 

in electrophilic substitution have on aromaticity viewed as increasing (for the first two indices) or 

decreasing (for the last index) as the more delocalized -electrons in question, respectively. On the 

other hand, from the energetic perspective, the resonance energy (RE) or its version reported per 



Int. J. Mol. Sci. 2010, 11             

 

 

1271

concerned -electrons (REPE) [22–24], together with the heat (enthalpy) of formation (as a 

thermodynamic stabilization criterion of energy) [25], give another alternative to quantify aromaticity 

rises with their increase (for the first two indices) and decrease (for the last index), respectively. 

Moreover, other groups of methods in aromaticity evaluation are developed by employing the 

molecular magnetic [17,26–30] as well as based on electron delocalization [31–37] properties. It is 

therefore clear that the aromaticity scale is neither unique in trend nor in quantification and deserves 

further geometrical-energetic comparative investigation.  

In this context, wishing to provide a fresh geometrical vis-à-vis of energetic aromaticity discussion, 

the present paper introduces the atoms-in-molecules compactness form of aromaticity that is then 

specialized both at geometrical level though the polarizability information and within the energetic 

framework though the electronegativity and chemical hardness reactivity indices. Following this,they 

will be used for ordering ten basic organic compounds, aromatic annulens, amines, hydroxyarenes, and 

heterocycles with nitrogen, against the corresponding aromaticity within most common semi-empirical 

and ab initio quantum chemical methods. The present considerations and results aim to further clarify 

the relationship between the electronegativity and chemical hardness in modeling the molecular 

stability/reactivity/aromaticity, as well the “computational distance” among their output furnished by 

various quantum mechanical schemes used in structural chemistry. For all these, the aromaticity is 

involved both as the motif and the tool having overall the manifestly unifying character among the 

fundamental concepts and computational schemes of chemistry.  

2. Methods  

2.1. Quantum Compactness Aromaticity 

Modeling the chemical bond is certainty key for describing the chemical reactivity and molecular 

structures’ stability. Yet, since the chemical bond is a dynamic state, for the best assessment of its 

connection with the stability and reactivity, the pre- and post-bonding stages are naturally considered.  

For the pre-bonding stage, the atomic spheres are considered in the atoms-in-molecule (AIM) 

arrangement, while for the post-bonding stage the molecular orbitals (MOL) of the already formed 

molecule are employed, see Figure 1; consequently, their ratio would model the compactness degree of 

a given property of AIM in respect to its counterpart at the MOL level of the chemical bond. 

Therefore, the actual compactness index of aromaticity and takes the general form 

   
 















statestransition

prevailsMOL

prevailsAIM

yAromaticit
MOL

AIM

......1

......1,1

......,11,

...

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 (1)

that becomes workable once the property Π is further specified. Note that for the Equation (1) to be 

properly implemented, the chemical property Π should be equally defined and with the same meaning 

for the atoms and molecules, for consistency; such that what is compared is the chemical manifestation 

of the same property of bonding in its pre- or post-stage of formation. In other terms, Equation (1) may 

be regarded as a kind of “chemical limit” for the chemical bond that may be slightly oriented towards 

its atom constituents or to its molecular orbitals prescribing therefore the propensity to reactivity or 

stability, respectively.  
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It is worth considering also the quantitative difference between AIM and MOL properties of 

bonding, in which case the result may be regarded as the first kind of absolute aromaticity–for this 

reason, it is evaluated essentially between pre- and post-bonding stages and not relative to a referential 

(different) molecule [38], while the present approach promotes the compactness version of the 

aromaticity as the measure associated with the molecular stability in analog manner the compactness 

of rigid spheres in unit cells provides the crystal stability orderings. Yet, the proper scale hierarchy of 

compactness aromaticity, i.e., the qualitative tendency respecting the quantitative yield of Equation 

(1), is to be established depending on the implemented chemical property. In what follows, both the 

geometrically- and energetically-based reactivity indices will be considered, and their associate AIM 

compactness aromaticity formula and scales formulated. Moreover, once various quantum methods in 

evaluating the MOL denominator property in Equation (1) are considered, they will become fully 

quantum. 

Figure 1. Heuristic representation of the concept of atoms-in-molecule (AIM) 

compactness aromaticity (for the benzene pattern) as the ratio of the pre-bonding atomic 

spheres’ based molecule to the (vis-à-vis) post-bonding molecular orbitals  

(MOL) modeling.  

 

2.2. Reactivity Indices-Based Aromaticity  

2.2.1. Geometric Index of Reactivity: Polarizability 

Since it has been already shown [39] that the polarizability α of a conducting sphere of radius r is 

equal to r3, for the atomic dipole systems the induced perturbation on the electronic cloud the actual 

formula should be corrected as [40]: 
3rKDuttaHati

Atom   (2)

with K a dipole related constant that has to be set out.  

Historically, while a direct expansion of the Schrödinger differential equation in powers of eigen-

energy, firstly done by Waller and Epstein [41,42], gives an analytic value of the polarizability of  

4.5 a.u., the same value was found by variational method by Hassé through employing the Hydrogen 

ground state modified wave-function [43] 
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 BzrAzss  11
*
1   (3)

In modern times of quantum mechanics, the exact static dipole polarizabilities for the excited S 

states of the Hydrogen atom are determined by using the reduced free-particle Green's function method 

developed by McDowell and Porter [44] with the general formula for the polarizabilities found  

to be [45]: 

  3
0

24

2

72
a

nnMcDowell
n


  (4)

or with an even more general formula developed by Delone and Krainov [46] followed by 

Krylovetsky, Manakov, and Marmo [47]: 

  3
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nl   (5)

The last two formulas give both the same celebrated Hydrogen static Polarizability of 3
0)2/9( a , 

where a0 is the Bohr radius.  

Yet, another Hydrogenic Polarizability formulation can be actually elegantly developed from the 

first principles of quantum mechanics; it looks like (see Appendix for the complete derivation): 

    22222
2

3
0 12

2
llnn

Z

aPutz
nl   (6)

that immediately recovers the Hydrogen exact limit: 
3o

3
00,1 A667.0

2

9




 aHydrogen

ln  (7)

Overall, from above discussion we can assume the universal atomic constant K = 4.5 for atoms, 

while the atoms-in-molecule polarizability may be written as the atoms in molecule superposition 

providing the contributing atomic radii is known: 

 
A

A
A

AAIM r 35.4  (8)

The ansatz of summation of the atomic polarizabilities in molecular polarizability relays on the fact 

they associate with the deformation (or softness) property of electronic frontier distribution that is 

additive in overlapping phenomena. 

On the other hand, for the molecular polarizability in post-bonding stage one may use the volume 

information: 
3o

3 A
4

3
~~ 



 Vr


  (9)

to advance the molecular (MOL) working expression throughout the normalizing factor involving the 

number of valence electrons: 

 
3o

A
1

4

3




  MOLMOL V

eValence
  (10)



Int. J. Mol. Sci. 2010, 11             

 

 

1274

that specializes for aromatics to the number of pi-electrons: 

 
3o

A
1

4

3




  MOL

Aromatics
MOL V

e
  (11)

With atoms-in-molecule pre-bonding and the post-bonding molecular polarizabilities the related 

aromaticity geometrically based index may be constructed as their ratio: 

MOL

AIM
POLA




  (12)

The aromaticity scale is set upon the polarizability relation with the deformability power describing 

the molecular stability; as such, the higher MOL-polarizability respecting the AIM counterpart, the 

more flexible is the post-bonding molecular system against the external influences; consequently, as 

APOL decreases molecular stability increases.  

2.2.2. Energetic Indices of Reactivity: Electronegativity and Chemical Hardness 

In the same line as we proceeded with polarizability, we now set the AIM and MOL versions of 

energy based electronegativity and chemical hardness reactivity indices.  

For electronegativity, the addition of atomic electronegativities χA in pre-bonding stage of a 

molecule is driven by the resumed formula [48,49]: 




A A

A

AIM
AIM n

n



  
(13a)

where the total atoms in molecule nAIM is the sum of the nA atoms of each A-species present in the 

molecule: 

AIM
A

A nn   (13b)

On the other hand, the electronegativity in the post-bonding stage of molecular state may be 

formulated through employing its relation with the total energy of a given system or state with N 

(valence) electrons [50–55], followed by the successive transformations: 

NMOL N

E



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by means of central difference approximation, the ionization potential and electronic affinity 

specializations: 

NN EEI  11  (15a)

iN EEA  11  (15b)

while ending with considering the Koopmans’ frozen core approximation [56] 

)1(1 HOMOEI   (16a)

)1(1 LUMOEA   (16b)

allowing therefore writing the MOL electronegativity in terms of highest occupied (HOMO) and 

lowest unoccupied (LUMO) frontier highest occupied and lowest unoccupied molecular orbitals, 

respectively. 

The two forms of electronegativities, given by Equations (13) and (14), are next combined, 

according with the AIM-MOL aromaticity recipe of Equation (1), to provide the compactness 

electronegativity-based aromaticity index: 

MOL

AIM
ELA




  (17)

Now, the electronegativity reactivity principle under the form of electronegativity equalization in 

molecule [57,58] is used for establishing the behavior of the aromaticity scale based on Equation (17). 

Accordingly, though aromaticity is described as the ratio of AIM to MOL electronegativity, it is clear 

that the pre-bonding stage of atomic electronegativity equalization (electronic flowing) into the 

molecular unified orbitals is the dominant phenomena, so that it is expected to prevail. Therefore, the 

aromaticity index of electronegativity Equation (17) is higher as the molecular stability (formation) is 

better realized; in short, as AMOL increases, a more aromatic molecular system is assumed. 

For chemical hardness description, the AIM pre-bonding formulation happens to have the same 

analytical form as that found for the AIM electronegativity [59]: 




A A
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AIM n

n



  
(18)

while the MOL version is constructed based on the previous orbital energy prescriptions of Equations 

(15) and (16) as applied to the second order derivation of the total energy respecting to the total 

number of electrons in a given state towards the working HOMO-LUMO formulation [60–62]: 
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2
11 AI 

  

2
)1()1( HOMOLUMO EE 

  (19)

It nevertheless resembles the idea that as the frontier gap between the HOMO and the LUMO orbitals 

is larger as the molecular system is more stable, i.e., less engaged into chemical reactions through its 

frontier electrons [63–66]. 

Combining Equations (18) and (19) into the general aromaticity definition of Equation (1) one has 

also the compactness chemical hardness-based aromaticity index 

MOL

AIM
HardA




  (20)

with the scale trend fixed by the maximum hardness principle [59,67], abstracted from above MOL 

chemical hardness; in other words, the chemical reactivity described by chemical hardness is driven by 

the post-bonding stage in molecular formation requiring that a molecules is as stable as its  

HOMO-LUMO gap increases. Consequently, the aromaticity scale based on Equation (20) is arranged 

from the lowest to highest values that parallels the increasing reactivity and decreasing aromaticity; in 

short, smaller AHard, bigger aromaticity character for a molecular system. 

However, while atomic electronegativity and chemical hardness in evaluating AIM schemes of 

Equations (13) and (18) may be implemented by appealing various benchmarking scales [53,54,68], 

the molecular orbital energies in computing MOL counterparts Equations (14) and (19) require 

dedicated computations for each concerned molecule; as such, for better understanding and 

interpreting the obtained electronegativity- and chemical hardness-based aromaticity scales it is worth 

shortly reviewing the main quantum schemes mainly used in computing the (post-bonding) molecular 

spectra.  

2.3. Quantum Methods for Molecular Orbitals 

2.3.1. General Mono-Electronic Orbitals’ Equations 

Following the Dirac’s quote, once the Schrodinger equation: 

 EH   (21)

was established “The underlying physical laws necessary for the mathematical theory of a large part of 

physics and the whole of chemistry are thus completely known” [69].  

Unfortunately, the molecular spectra based on the eigen-problem Equation (21) is neither directly 

nor completely solved without specific atoms-in-molecule and/or symmetry constraints and 

approximation. As such at the mono-electronic level of approximation the Schrodinger Equation (21) 

rewrites under the so called independent-electron problem: 

with the aid of effective electron Hamiltonian partitioning: 

iii
eff
i EH    (22)
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
i

eff
iHH  (23)

and the correspondent molecular monoelectronic wave-functions (orbitals) fulfilling the conservation 

rule of probability: 

1)(2 rr di  (24)

However, when written as a linear combination over the atomic orbitals the resulted MO-LCAO 

wave-function: 




  ii C  (25)

replaced in Equation (22) followed by integration over the electronic space allows for matrix version 

of Equation (22): 

      ECSCH eff   (26)

having the diagonal energy-matrix elements as the eigen-solution 

 








ji

jiE
EEE i

ijiijij ...0

...
  (27a)

to be found in terms of the expansion coefficients matrix (C), the matrix of the Hamiltonian elements: 

   dHH eff  (28)

and the matrix of the (atomic) overlapping integrals: 

   dS  (29)

where all indices in Equations (27)–(29) refers to matrix elements since the additional reference to the 

“i” electron was skipped for avoiding the risk of confusion. 

Yet, the solution of the matrix equation (26) may be unfolded through the Löwdin orthogonalization 

procedure [70,71], involving the diagonalization of the overlap matrix by means of a given unitary 

matrix (U), (U)+(U) =(1), by the resumed procedure: 

      USUs   (30a)

     2/12/1   iiii ss  (30b)

       UsUS 2/12/1  (30c)

              ECSSHSCS eff  2/12/12/12/1  (27b)

However, the solution given by Equation (27b) is based on the form of effective independent-electron 

Hamiltonians that can be quite empirically constructed–as in Extended Hückel Theory [72]; such 

“arbitrariness” can be nevertheless avoided by the so called self-consistent field (SCF) in which the 

one-electron effective Hamiltonian is considered such that to depend by the solution of Equation (25) 
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itself, i.e., by the matrix of coefficients (C); the resulted “Hamiltonian” is called Fock operator, while 

the associated eigen-problem is consecrated as the Hartree-Fock equation: 

iii EF    (31)

In matrix representation Equation (31) looks like: 

        ECSCCF   (32)

that may be iteratively solved through diagonalization procedure starting from an input (C) matrix or–

more physically appealing–from a starting electronic distribution quantified by the density matrix: 


occ

i
iiCCP   (33)

with major influence on the Fock matrix elements: 

    



 


 

2

1
PHF  (34)

Note that now the one-electron Hamiltonian effective matrix components HµV differ from those of 

Equation (28) in what they truly represent, this time the kinetic energy plus the interaction of a single 

electron with the core electrons around all the present nuclei. The other integrals appearing in Equation 

(34) are generally called the two-electrons-multi-centers integrals and are written as: 

   2122
12

11 )()(
1

)()( rrrrrr dd
r

DCBA
   (35)

From definition (35), there is immediate to recognize the special integral J = (µµ|vv as the Coulomb 
integral describing repulsion between two electrons with probabilities 2

  and 2
 .  

Moreover, the Hartree-Fock Equation (32) with implementations given by Equations (33)–(34) are 

known as Roothaan equations [73] and constitute the basics for closed-shell (or restricted Hartree-

Fock, RHF) molecular orbitals calculations. Their extension to the spin effects provides the equations 

for the open-shell (or unrestricted Hartree-Fock, UHF) known also as the Pople-Nesbet Unrestricted 

equations [74].  

2.3.2. Semi-empirical Approximations 

The second level of approximation in molecular orbital computations regards the various ways the 

Fock matrix elements of Equation (34) are considered, namely the approximations of the integrals (35) 

and of the effective one-electron Hamiltonian matrix elements HµV. 

The main route for such an endeavor is undertaken through neglecting at different degrees certain 

differential overlapping terms (integrals)–as an offset ansatz–although with limited physical 

justification–while the adjustment with experiment is done (post-factum) by fitting parameters–from 

where the semi-empirical name of such approximation. Practically, by emphasizing the (nuclear) 

centers in the electronic overlapping integral (29): 

 111 )()( rrr dS BA
   (36)
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the differential overlap approximation may be considered by two situations. 

 By neglecting the differential overlap (NDO) through the mono-atomic orbitalic constraint: 

    (37a)

leaving with the simplified integrals: 

    111 )()( rrr dS AA  (37b)

    AB
BBAA

BBAA dd
r

    2122
12

11 )()(
1

)()( rrrrrr  (37c)

thus reducing the number of bielectronic integrals, while the tri- and tetra-centric integrals are all 

neglected; 

 By neglecting the diatomic differential overlap (NDDO) of the bi-atomic orbitals: 

AB
AABA     (38a)

that implies the actual simplifications: 

  AB
AA

AB dS   111 )()( rrr  (38b)

   2122
12

11 )()(
1

)()( rrrrrr dd
r

CCAA
CDAB    (38c)

when overlaps (or contractions) of atomic orbitals on different atoms are neglected.  

For both groups of approximations specific methods are outlined below. 

2.3.2.1. NDO Methods 

The basic NDO approximation was developed by Pople and is known as the Complete Neglect of 

Differential Overlap CNDO semi-empirical method [75–78]. It employs the approximation (37) such 

that the molecular rotational invariance is respected through the requirement the integral (37c) depends 

only on the atoms A or B where the involved orbitals reside–and not by the orbitals themselves. That is 

the integral γAB in (37b) is seen as the average electrostatic repulsion between an electron in any orbital 

of A and an electron in any orbital of B: 
AB

BAB ZV   (39)

In these conditions, the working Fock matrix elements of Equation (34) become within RHF 

scheme: 










 

AB

AB
BB

AA
AA

CNDOCNDO PPPHF  2

1
 (40a)

ABCNDOCNDO PHF  2

1
  (40b)
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From Equations (40a&b) follows there appears that the core Hamiltonian has as well the diagonal and 

off-diagonal components; the diagonal one represents the energy of an electron in an atomic orbital of 

an atom (say A) written in terms of ionization potential and electron affinity of that atom [79]: 

  AA
A

CNDO ZAIU  





 

2

1

2

1
 (41a)

added to the attraction energy respecting the other (B) atoms to produce the one-center-one-electron 

integrals: 





AB

AB
CNDOCNDO VUH   (41b)

overall expressing the energy an electron in the atomic orbital φμ would have if all other valence 

electrons were removed to infinity. The non-diagonal terms (the resonance integrals) are 

parameterized in respecting the overlap integral and accounts (through βAB parameter averaged over 

the atoms involved) on the diatomic bonding involved in overlapping: 

  SH CNDO
AB

CNDO   (41c)

The switch to the UHF may be eventually done through implementing the spin equivalence: 

  PPPPT

2

1

2

1
 (41d)

although the spin effects are not at all considered since no exchange integral involved. This is in fact 

the weak point of the CNDO scheme and it is to be slightly improved by the next Semi-empirical 

methods. 

The exchange effect due to the electronic spin accounted within the Intermediate Neglect of 

Differential Overlap (INDO) method [80] through considering in Equations (40a) and (41a) the 
exchange one-center integrals    KAA  is evaluated as: 

  1

3

1
Gspsp

INDO

xx  ,   2

25

3
Fpppp

INDO

yxyx   (42)

in terms of the Slater-Condon parameters G1, F2, … usually used to describe atomic spectra. 

The INDO method may be further modified in parameterization of the spin effects as developed by 

Dewar’s group and led with the Modified Intermediate Neglect of Differential Overlap (MINDO) 

method [75,81–89] whose basic equations look like: 

 
    

















AA

ABA
MINDO

MINDO

PPP

PH
F










...2

,...
)(  (43a)

        
B

B

A

AB
MINDO

A

MINDOMINDO PPPHF 


 )(  (43b)

Apart from specific counting of spin effects, another particularity of MINDO respecting the 

CNDO/INDO is that all the non-zero two-center Coulomb integrals are set equal and parameterized by 
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the appropriate one center two electrons integrals AA  and BA  within the Ohno-Klopman  

expression [90,91]: 

     
2

2 11

4

1

1













BA
AB

BBAABBAABBAA
AB
MINDO

AA
r

ppppppssssss  
(44)

The one-center-one-electron integral Hμμ is preserved from the CNDO/INDO scheme of computation, 

while the resonance integral (41c) is modified as follows: 

    SIIH MINDO
AB

MINDO   (45)

with the parameter MINDO
AB  being now dependent on the atoms-in-pair rather than the average of 

atomic pair involved. As in INDO, the exchange terms, i.e., the one-center-two-electron integrals, are 

computed employing the atomic spectra and the Gk, Fk, Slater-Condon parameters, see Equation (42) 

[92]. Finally, it is worth mentioning that the MINDO (also with its MINDO/3 version) improves upon 

the CNDO and INDO the molecular geometries, heats of formation, being particularly suited for 

dealing with molecules containing heteroatoms. 

2.3.2.2. NDDO Methods 

This second group of neglecting differential overlaps semi-empirical methods includes along the 

interaction quantified by the overlap of two orbitals centered on the same atom also the overlap of two 

orbitals belonging to different atoms. It is manly based on the Modified Neglect of Diatomic Overlap 

(MNDO) approximation of the Fock matrix, while introducing further types of integrals in the UHF 

framework [93–99]: 

 

      
























AA
B B B

MNDO

ABA
A B

MNDO

MNDO

PPH

PH

F




 


 



...3

,...
)(  (46a)

        
B B BA

MNDOMNDO PPPHF
 




 )(  
(46b)

Note that similar expressions can be immediately written within RHF once simply replacing: 

  PP
2

1)(  (47)

in above Fock (46a&b) expressions.  

Now, regarding the (Coulombic) two-center-two-electron integrals of type (38c) appearing in 

Equations (46) there were indentified 22 unique forms for each pair of non-hydrogen atoms, i.e., the 
rotational invariant 21 integrals  ssss ,   ppss ,   ppss ,…,   pppp ,   pppp ,…, 

  spsp ,   spsp ,…,   sppp ,   pppp , and the 22nd one that is written as a combination 

of two of previously ones, namely       ''5.0''  pppppppppppp  , with the typical 

integral approximation relaying on the Equation (44) structure, however slightly modified as: 
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 
 

2

2 11

4

1

1













BA
BAAB

MNDO

AA
ccr

ssss  
(48)

where additional parameters cA and cB represent the distances of the multipole charges from their 

respective nuclei. The MNDO one-center one-electron integral has the same form as in NDO methods, 

i.e., given by Equation (41b) with the average potential of Equation (39) acting on concerned center; 

still, the resonance integral is modified as: 







SH

MNDOMNDO
MNDO

2


  (49)

containing the atomic adjustable parameters MNDO
  and MNDO

  for the orbitals   and   of the atoms 

A and B, respectively. The exchange (one-center-two-electron) integrals are mostly obtained from data 

on isolated atoms [79]. Basically, MNDO improves MINDO through the additional integrals 

considered the molecular properties such as the heats of formations, geometries, dipole moments, 

HOMO and LUMO energies, etc., while problems still remaining with four-member rings (too stable), 

hypervalent compounds (too unstable) in general, and predicting out-of-plane nitro group in 

nitrobenzene and too short bond length (~ 0.17 Å) in peroxide–for specific molecules. 

The MNDO approximation is further improved by aid of the Austin Model 1 (AM1) method  

[100–102] that refines the inter-electronic repulsion integrals: 

 
2

2

1

11

4

1

1













BA
AB

AM

BBAA

AMAM
r

ssss  
(50)

while correcting the one-center-two-electron atomic integrals of Equation (44) by the specific (AM) 

monopole-monopole interaction parameters. In the same line, the nuclei-electronic charges interaction 
adds an energetic correction within the AB  parameterized form: 

   




























 

BA
BBAABA

r

AB
BBAABAAB ssssQZe

r
ssssZZE ABAB

,

1
11   (51)

The AM1 scheme, while furnishing better results than MNDO for some classes of molecules (e.g., for 

phosphorous compounds), still provides inaccurate modeling of phosphorous-oxygen bonds, too 

positive energy of nitro compounds, while the peroxide bond is still too short. In many case the 

reparameterization of AM1 under the Stewart’s PM3 model [103,104] is helpful since it is based on a 

wider plethora of experimental data fitting with molecular properties. The best use of PM3 method 

lays in the organic chemistry applications.  

To systematically implement the transition metal orbitals in semi-empirical methods the INDO 

method is augmented by Zerner’s group either with non-spectroscopic and spectroscopic (i.e., fitting 

with UV spectra) parameterization [105–107], known as ZINDO/1 and ZINDO/S methods, 

respectively [108–114]. The working equations are formally the same as those for INDO except for the 

energy of an atomic electron of Equation (41a) that now uses only the ionization potential instead of 
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electronegativity of the concerned electron. Moreover, for ZINDO/S the core Hamiltonian elements 

Hμμ is corrected: 

   
)(ZINDOAB

ss
B

BB
ZINDO QZH      (52)

by the fr parameterized integrals: 

 
ABB

ss
A

r

rZINDOAB
ss

r
f

f












 2
)( , 2.1rf  

(53)

in terms of the one-center-two-electron Coulomb integrals B
ss

A   , . Equation (53) conserves 

nevertheless the molecular rotational invariance through making the difference between the s- and d- 

Slater orbitals exponents. The same types of integrals correct also the nuclei-electronic interaction 

energy by quantity: 

 









BA

AB
ssBA

AB

BA
AB QZ

r

ZZ
E

,
  (54)

Since based on fitting with spectroscopic transitions the ZINDO methods are recommended in 

conjunction with single point calculation and not with geometry optimization, this should be consider 

by other off-set algorithms.  

Beyond either NDO or NDDO methods, the self-consistent computation of molecular orbitals can 

be made by the so called ab initio approach, directly relaying on the HF equation or on its density 

functional extension, as will be in next sketched.  

2.3.3. Ab initio Methods 

The alternative to semi-empirical methods is the full self-consistent calculation or the so called ab 

initio approach; it is based on computing of all integrals appearing on Equation (34), yet with the 

atomic Slater type orbitals (STO), exp(−αr), being replaced by the Gaussian type orbitals (GTO) [115]: 

 2exp A
n
A

m
A

l
A

GTO
A rzyx    (55a)

in molecular orbitals expansion–a procedure allowing for much simplification in multi-center integrals 

computation. Nevertheless, at their turn, each GTO may be generalized to a contracted expression 

constructed upon the primitive expressions of Equation (55a): 

   Ap
GTO
p

p
pA

CGTO rdr ,    
(55b)

where dpμ and αA are called the exponents and the contraction coefficients of the primitives, 

respectively. Note that the primitive Gaussians involved may be chosen as approximate Slater 

functions [116], Hartree-Fock atomic orbitals [117], or any other set of functions desired so that the 

computations become faster. In these conditions, a minimal basis set may be constructed with one 

function for H and He, five functions for Li to Ne, nine functions for Na to Ar, 13 functions for K and 

Ca, 18 functions for Sc to Kr,..., etc., to describe the core and valence occupancies of atoms  

[118–120]. Although such basis does not generally provide accurate results (because of its small 
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cardinal), it contains the essential information regarding the chemical bond and may be useful for 

qualitative studies, as is the present case for aromaticity scales where the comparative trend is studied. 

2.3.3.1. Hartree-Fock Method 

When simple ab initio method is referred it means that the Hartree-Fock equation (31) with full 

Fock matrix elements [121–124] of Equations (33) and (34) is solved for a Gaussian contracted basis 

(55). Actually, the method evaluates iteratively the kinetic energy and nuclear-electron attraction 

energy integrals–for the effective Hamiltonian, along the overlap and electron-electron repulsion 

energy integrals (for both the Coulomb and exchange terms), respectively written as: 

 





  2

2

1
T  (56a)


A

A

r

Z
V   (56b)

 S  (56c)

   
12

1

r
  (56d)

until the consistency in electronic population of Equation (33) between two consecutive steps is 

achieved.  

Note that such calculation assumes the total wave function as a single Slater determinant, while the 

resultant molecular orbital is described as a linear combination of the atomic orbital basis functions 

(MO-LCAO). Multiple Slater determinants in MO description projects the configurationally and post-

HF methods, and will not be discussed here.  

2.3.3.2. Density Functional Theory Methods 

The main weakness of the Hartree-Fock method, namely the lack in correlation energy, is 

ingeniously restored by the Density Functional method through introducing of the so called effective 

one-electron exchange-correlation potential, yet with the price of not knowing its analytical form. 

However, the working equations have the simplicity of the HF ones, while replacing the exchange 

term in Equation (34) by the exchange-correlation (“XC”) contribution; there resulted the (general) 

unrestricted matrix form of the Kohn-Sham equations [125]: 

     XCT FPHF 


   
(57a)

     XCT FPHF 


   
(57b)

  PPPPT  (58)
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in a similar fashion with the Pople-Nesbet equations of Hartree-Fock theory. The restricted (closed-

shell) variant is resembled by the density constraint: 

    (59)

in which case the Roothaan analogous equations (for exchange-correlation potential) are obtained.  

Either Equations (57a) or (57b) fulfils the general matrix equation of type (32) for the energy 

solution: 

  XCEPPHPE  





 
2

1
 (60)

that can be actually regarded as the solution of the Kohn-Sham equations themselves. The appeared 

exchange-correlation energy EXC may be at its turn conveniently expressed through the energy density 

(per unit volume) by the integral formulation: 

       dfEE XCXC ,,  (61)

once the Fock elements of exchange-correlation are recognized to be of density gradient form [126]: 

 
  






 
  d

f
F XC  (62)

The quest for various approximations for the exchange-correlation energy density f(ρ) had spanned 

the last decades in quantum chemistry, and was recently reviewed [66]. Here we will thus present the 

“red line” of its implementation as will be further used for the current aromaticity applications. The 

benchmark density functional stands the Slater exchange approximation, derived within the so called 

X theory [127]: 

 3/43/4
3/1

4

3

4

9  





 


Xf  (63a)

with the α taking the values: 






gaselectronuniform

Slater

...3/2

...1
  (63b)

With Equation (63) in Equation (62) the resulted Kohn-Sham “exchange-correlation” matrix elements 

(although rooting only in the exchange) yields the integral representation: 

   
  dFF XXC 3/1

4

9
 (64)

Considerably improvement for molecular calculation was given by Becke’s density gradient 

correction of the local spin density (or Slater exchange) approximation of the exchange energy [128]: 

 



,

 dgeE X
LSDA
XX  (65)

where 
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

 


 (66)

with the parameters a = (3/2)(3/4π)1/3 and b = 0.0042 chosen to fit the experiment. Other exchange 

functionals were developed along the same line, i.e., having different realization of the gradient 

function (66), most notable being those of Perdew and collaborators (e.g., Perdew-Wang-91,  

PW91) [129]. 

The correlation contribution was developed on a somewhat different algorithm, namely employing 

its definition as the difference between the exact and Hartree-Fock (HF) total energy of a poly-

electronic system [130]. Without reproducing the results (more detailed are provided in the dedicated 

review of Ref. [66]), for the actual purpose we mention only the Lee-Yang-Parr (LYP) correlation 

functional [131–133] along the Vosko-Wilk-Nusair (VWN) local correlation density functional [134].  

However, the exchange and correlation density functionals combine into the so called hybrid 

functionals; those used in the present study refer to: 

 B3-LYP: advanced by Becke by empirical comparisons against very accurate results and 

contains the exchange contribution (20% HF + 8% Slater + 81% Becke88) added to the 

correlation energy (81% LYP + 19% VWN) [135]; 

 B3-PW91: was developed also by Becke with PW91 correlation instead of LYP; 

 EDF1: was optimized for a specific basis set (6–31 + G*) and represent a rearrangement of 

Becke88 with LYP functionals with slightly different parameters, being an improvement over 

B3-LYP and Becke88-LYP combinations; 

 Becke-97: is a hybrid exchange-correlation functional appeared by extending the g(x) of 

Equation (66) as a power series containing three terms with an admixture of 19.43% HF 

exchange [136]. 

These are the main methods, at both conceptual and computational levels, to be in next used to 

asses and compare the atoms-in-molecule compactness aromaticity scales for basics organics.  

3. Application on Basic Aromatics Scales 

The above reactivity indices-based aromaticity scales are now computed within the presented 

quantum chemical schemes for a limited yet significant series of benzenoids (see Table 2) containing 

the “life” atoms of Table 1. The atoms-in-molecule of aromaticity scales of polarizability, 

electronegativity and chemical hardness of Equations (12), (17), and (20) are directly computed upon 

the formulas given by Equations (8), (13), and (18), respectively; they are based exclusively on the 

data of Table 1 with the AIM results listed in Table 2, the 5th, 9th, and 10th columns, respectively.  

For the post-bonding evaluations of the same indices, one must note the special case of 

polarizability that is computed upon the general Equation (11)–thus involving the molecular volume 

pre-computation. Here it is worth commenting on the fact that one can directly compute the molecular 

polarizability in various quantum schemes–however, with the deficiency that such procedure does not 

distinguishes among the stereo-isomers, i.e., molecules VII (1-Naphthol) and VIII (2-Naphthalelon); 

IX (2-Naphthalenamine) and X (1-Naphthalenamine) in Table 2, since furnishing the same values, 
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respectively; instead the same quantum scheme is able to distinguish between the volumes of two 

stereo-isomers making the Equation (11) as a more general approach. This way, the molecular volumes 

are reported in the 6th column of Table 2 as computed within the ab initio–Hartree Fock method of 

Section 2.3.3.1; note that the HF method was chosen as the reference since it is at the “middle 

computational distance” between the semi-empirical and density functional methods; it has only the 

correlation correction missing; however, even the density functional schemes, although encompassing 

in principle correlation along the exchange–introduces approximations on the last quantum effect. 

Therefore, the molecular polarizability is computed upon the Equation (11) in the 7th column of Table 

2 with the associate polarizability compactness aromaticities displayed in the 8th column of Table 2.  

Table 1. Main geometric and energetic characteristics for atoms involved in organic 

compounds considered in this work (see Table 2), as radii from Ref. [137] and 

polarizabilities (Pol) based upon Equation (8), along the electronegativity () and chemical 

hardness () from Ref. [53,54], respectively. 

Atom Radius [Ǻ] Pol [Ǻ]3  [eV]  [eV] 
H 0.529 0.666 7.18 6.45 
C 0.49 0.529 6.24 4.99 
N 0.41 0.310 6.97 7.59 
O 0.35 0.193 7.59 6.14 

Table 2. Atoms-in-Molecule (AIM) and molecular (MOL) structures, volumes, and 

polarizability based-aromaticities AP of Equation (12), employing the atomic values of 

Table 1 and the ab-initio (Hartree-Fock) quantum environment computation [138]; AIM 

electronegativity and chemical hardness are reported (in electron-voles, eV) employing the 

Equations (13) and (18), respectively.  

Compound Structure Polarizability [Ǻ] 3 

 
AP 

AIM-Indices 

Formula 
Name 
CAS  
Index ( e–) 

AIM Molecule Conventional PAIM 

Molec 
AIM

 AIM
 

Vol PMOL 

C6H6 

Benzene 
71-43-2 
I (6) 

 

7.17 328.11 19.58 0.37 6.68 5.63 

C4H4N2 
Pyrimidine 
289-95-2 
II (6) 

  

5.40 306.46 12.19 0.44 6.73 5.93 

C5H5N 
Pyridine 
110-86-1 
III (6) 

 

6.29 320.75 12.76 0.49 6.70 5.76 

C6H6O 
Phenol 
108-95-2 
IV (8) 

  

7.37 356.91 10.65 0.69 6.74 5.66 
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Table 2. Cont. 

Compound Structure Polarizability [Ǻ] 3  
AP 

AIM-Indices 

Formula 
Name 
CAS  
Index ( e–) 

AIM Molecule Conventional PAIM 

Molec 
AIM

 AIM
 

Vol PMOL 

C6H7N 
Aniline 
62-53-3 
V (8) 

8.15 371.73 11.09 0.73 6.73 5.79 

C10H8 
Naphthalene 
91-20-3 
VI (10) 

10.62 463.84 11.07 0.96 6.63 5.55 

C10H8O 
1-Naphthol 
90-15-3 
VII (12) 

10.82 483.88 9.63 1.12 6.67 5.58 

C10H8O 
2-Naphtha 
lelon 
135-19-3 
VIII (12) 

10.82 478.39 9.52 1.14 6.67 5.58 

C10H9N 
2-Naphtha 
lenamine 
91-59-8 
IX (12) 

 

11.60 501.54 9.98 1.16 6.67 5.66 

C10H9N 
1-
Naphthalen 
amine 
134-32-7 
X (12) 

11.60 496.11 9.87 1.18 6.67 5.66 

 

The molecular energetic reactivity indices of electronegativity and chemical hardness are computed 

upon the Equations (14) and (19) in terms of HOMO and LUMO energies computed within the 

quantum semi-empirical and ab initio methods presented in Section 2.3; their individual values as well 

as the resulted quantum compactness aromaticities, when combined with the AIM values of Table 2, in 

Equations (17) and (20) are systematically communicated in Tables 3 and 4, with adequate scaled 

representations in Figures 2 and 3, respectively. 

Note that neither the minimal basis set (STO-3G) nor the single point computation frameworks, 

although both motivated in the present context in which only the bonding and the post-bonding 

information should be capped in computation, does not affect the foregoing discussion by two main 

reasons: (i) they have been equally applied for all molecules considered in all quantum methods’ 

combinations; and (ii) what is envisaged here is the aromaticity trend, i.e., the intra- and inter- scales 

comparisons rather than the most accurate values since no exact or experimental counterpart available 

for aromaticity.  

Now, because of the observational quantum character of polarizability, one naturally assumes the 

(geometric) polarizability based- aromaticity scale of Table 2 as that furnishing the actual standard 
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ordering among the considered molecules in accordance with the rule associated with Equation (12); it 

features the following newly introduced rules along possible generalizations 

Aroma1 Rule: the mono-benzenoid compounds have systematically higher aromaticity than those of 

double-ring benzenoids; yet, this is the generalized version of the rule demanding that the benzene 

aromaticity is always higher than that of naphthalene, for instance; however, further generalization 

respecting the poly-ring benzenoids is anticipated albeit it should be systematically proved by 

appropriate computations; 

Aroma2 Rule: C-replaced benzenoids are more aromatic than substituted benzenoids, e.g., Pyridine 

and Pyrimidine vs. Phenol and Aniline ordering aromaticity in Table 2; this rule extends the 

substituted versus addition rules in aromaticity historical definition (see Introduction);  

Aroma3 Rule: double-C-replaced annulens have greater aromaticity than mono-C-replaced 

annulenes, e.g., APyrimidine > APyridine; this is a sort of continuation of the previous rule in the sense 

that as more Carbons are replaced in aromatic rings, higher aromaticity is provided; further 

generalization to poly-replacements to poly-ring benzenoids is also envisaged; 

Aroma4 Rule: hydroxyl-substitution to annulene produces more aromatic (stable) compounds than 

the correspondent amine-substitution; e.g., this rule is fulfilled by mono-benzenoids and is 

maintained also by the double-benzene-rings no matter the stereoisomers considered; due to the fact 

the  electrons provided by Oxygen in hydroxyl-group substituted to annulene ring is greater than 

those released by Nitrogen in annulene ring by the amine-group substitution this rule is formally 

justified, while the generalization for hydroxyl- versus amine- substitution to poly-ring annulens 

may be equally advanced for further computational confirmation; 

Aroma5 Rule: for double ring annulens the  position is more aromatic for hydroxyl-substitution 

while  position is more aromatic for amine-substitution than their  and  counterparts, 

respectively; this rule may be justified in the light of the Aroma4 Rule above employing the inverse 

role the Oxygen and Nitrogen plays in furnished (  + free pair) electrons to annulens rings: while 

for Oxygen the higher atomic charge may be positioned closer to the common bond between 

annulens’ rings–thus favoring the alpha position, the lesser Nitrogen atomic charge should be 

located as much belonging to one annulene ring only–thus favoring the beta position; such 

inversion behavior is justified by the existing of free electrons on the NH2- group that as closely are 

to the benzenic ring as much favors its stability against further electrophilic attack–as is the case of 

beta position of 2-Naphtalenamine in Table 2; extensions to the poly-ring annulens may be also 

investigated. 

Under the reserve that these rules and their generalizations should be verified by extra studies upon 

a larger set of benzenoid aromatics, we will adopt them here in order to analyze their fulfillment with 

the energetically-based aromaticity scales of electronegativity and chemical hardness, reported in 

Tables 3 and 4 and drawn in Figures 2 and 3; actually, their behavior is analyzed against the 

aromaticity ordering rules given by Equations (17) and (20), i.e., as being anti-parallel and parallel 

with the polarizability-based aromaticity trend of Equation (12), with the results systematized in 

Tables 5 and 6, respectively.  
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Table 3. Frontier HOMO and LUMO energies, the molecular electronegativity and 

chemical hardness of Equations (14) and (19), along the quantum compactness aromaticity 

AEL and AHard indices for compounds of Table 2 as computed with Equations (17) and (20) 

within semi-empirical quantum chemical methods [138]; all energetic values in electron-

volts (eV). 

Compound CNDO INDO MINDO3 MNDO AM1 PM3 ZINDO/1 ZINDO/S 
Index Property 

I ELUMO 3.892207 4.451804 1.26534 0.3681966 0.514791 0.3440638 7.970686 0.7950159 

−EHOMO 13.80296 13.24336 9.165875 9.391555 9.591248 9.652767 9.724428 8.927967 

 4.96 4.40 3.95 4.51 4.54 4.65 0.88 4.07 

 8.85 8.85 5.22 4.88 5.05 4.998 8.85 4.86 

AEL 1.35 1.52 1.69 1.48 1.472 1.435 7.62 1.64 

AHard 0.64 0.64 1.08 1.15 1.11 1.13 0.64 1.16 

II ELUMO 2.709499 3.147036 0.951945 −0.3960558 −0.2959276 −0.6894529 6.422883 −0.3419995 

−EHOMO 13.39755 11.86692 8.356924 10.36822 10.56194 10.62456 8.527512 9.67323 

 5.34 4.36 3.70 5.38 5.43 5.66 1.05 5.01 

 8.05 7.51 4.65 4.99 5.13 4.968 7.48 4.67 

AEL 1.26 1.54 1.82 1.25 1.24 1.19 6.40 1.34 

AHard 0.74 0.79 1.274 1.189 1.16 1.19 0.79 1.271 

III ELUMO 3.051321 3.521359 1.011715 −0.02136767 0.1085682 −0.1944273 6.909242 0.01985455 

−EHOMO 13.45145 12.06075 8.813591 9.692185 9.903634 10.0075 8.598721 9.040296 

 5.20 4.27 3.90 4.86 4.90 5.10 0.84 4.51 

 8.25 7.79 4.91 4.84 5.01 4.91 7.75 4.53 

AEL 1.29 1.57 1.718 1.38 1.37 1.31 7.93 1.49 

AHard 0.6980 0.74 1.17 1.191 1.15 1.17 0.74 1.272 

IV ELUMO 3.718175 4.275294 1.085692 0.1763786 0.3450922 0.2196551 7.706827 0.6566099 

−EHOMO 12.51092 11.71605 8.669437 9.022056 9.108171 9.169341 8.265366 8.557631 

 4.40 3.72 3.79 4.42 4.38 4.47 0.28 3.95 

 8.11 8.00 4.88 4.60 4.73 4.69 7.99 4.61 

AEL 1.53 1.81 1.78 1.52 1.538 1.506 24.13 1.71 

AHard 0.6975 0.71 1.16 1.23 1.20 1.21 0.71 1.23 

V ELUMO 4.002921 4.61612 1.360785 0.5461559 0.7090454 0.5768315 8.106442 0.8517742 

−EHOMO 11.22051 10.28413 7.783539 8.207099 8.186989 8.028173 6.803807 7.95583 

 3.61 2.83 3.21 3.83 3.74 3.73 −0.65 3.55 

 7.61 7.45 4.57 4.38 4.45 4.30 7.46 4.40 

AEL 1.86 2.37 2.10 1.76 1.80 1.806 −10.33 1.89 

AHard 0.76 0.78 1.266 1.323 1.3017 1.35 0.78 1.31 

VI ELUMO 2.172528 2.757336 0.4589255 −0.3423392 −0.2855803 −0.4525464 6.197386 −0.04161556 

−EHOMO 11.48051 10.89619 8.165956 8.544642 8.660414 8.746719 7.4545 7.835637 

 4.65 4.07 3.85 4.44 4.47 4.60 0.63 3.939 

 6.83 6.83 4.31 4.10 4.19 4.15 6.83 3.90 

AEL 1.42 1.63 1.721 1.49 1.48 1.441 10.55 1.68 

AHard 0.81 0.81 1.29 1.35 1.33 1.34 0.81 1.42 

VII ELUMO 2.192621 2.79537 0.5106197 −0.3850094 −0.2975906 −0.4355633 6.210848 −0.06489899 

−EHOMO 10.95387 10.26489 7.918682 8.376475 8.441528 8.514781 6.859143 7.681855 

 4.38 3.73 3.70 4.38 4.37 4.48 0.32 3.87 

 6.57 6.53 4.21 4.00 4.07 4.04 6.54 3.81 

AEL 1.52 1.79 1.80 1.52 1.53 1.49 20.58 1.72 

AHard 0.85 0.85 1.32 1.40 1.37 1.38 0.85 1.47 

VIII ELUMO 2.534854 3.128462 0.5805296 −0.3075339 −0.2500397 −0.3581562 6.510067 0.08197734 

−EHOMO 11.50232 10.80223 8.246805 8.747499 8.821697 8.887013 7.405916 7.956836 

 4.48 3.84 3.83 4.53 4.54 4.62 0.45 3.937 

 7.02 6.97 4.41 4.22 4.29 4.26 6.96 4.02 

AEL 1.49 1.74 1.74 1.47 1.471 1.443 14.89 1.69 

AHard 0.795 0.80 1.26 1.322 1.302 1.31 0.80 1.39 

IX ELUMO 2.228869 2.844 0.5107521 −0.3597778 −0.2714103 −0.4318241 6.286494 −0.01188275 

−EHOMO 10.94335 10.11959 7.783869 8.371226 8.367208 8.374782 6.666291 7.655258 

 4.36 3.64 3.64 4.37 4.32 4.40 0.19 3.83 

 6.59 6.48 4.15 4.01 4.05 3.97 6.48 3.82 

AEL 1.53 1.83 1.83 1.53 1.544 1.515 35.12 1.74 

AHard 0.86 0.87 1.36 1.41 1.40 1.43 0.87 1.48 

X ELUMO 2.22685 2.840066 0.5115107 −0.3805175 −0.2805806 −0.4578161 6.326563 −0.00408988 

−EHOMO 10.68815 9.865701 7.676749 8.272097 8.261106 8.2799 6.414326 7.540981 

 4.23 3.51 3.58 4.33 4.27 4.37 0.04 3.77 

 6.46 6.35 4.09 3.95 3.99 3.91 6.37 3.77 

AEL 1.58 1.90 1.86 1.54 1.56 1.53 152.0 1.77 

AHard 0.88 0.89 1.38 1.43 1.42 1.45 0.89 1.50 
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Table 4. The same quantities of Table 3 as computed within various ab initio approaches: 

by Density Functional Theory without exchange-correlation (noEX-C), and with B3-LYP, 

B3-PW91, and Becke97 exchange-correlations, and by Hartree-Fock method, all with 

minimal (STO-3G) basis sets. 

Compound DFT Hartree-
Fock Index Propert

y 
noEX-C B3-LYP B3-PW91 EDF1 Becke97 

I ELUMO 15.69352 2.52946 2.398649 1.561805 2.512676 7.234344 
−EHOMO −8.870216 5.158205 5.338667 4.430191 5.165561 7.502962 

 −12.28 1.31 1.47 1.43 1.33 0.13 
 3.41 3.84 3.87 3.00 3.84 7.37 

AEL −0.54 5.08 4.54 4.66 5.04 49.74 
AHard 1.65 1.46 1.46 1.88 1.47 0.76 

II ELUMO 15.11303 0.9238634 0.7736028 −0.04114805 0.9030221 5.579984 
−EHOMO −13.04602 4.744987 4.883547 3.513406 4.728943 8.695125 

 −14.08 1.91 2.05 1.78 1.91 1.56 
 1.03 2.83 2.83 1.74 2.82 7.14 

AEL −0.478 3.52 3.27 3.79 3.52 4.32 
AHard 5.74 2.09 2.096 3.42 2.106 0.83 

III ELUMO 15.34953 1.622094 1.477663 0.6587179 1.60312 6.284506 
−EHOMO −12.73475 4.751619 4.893573 3.484843 4.739381 7.943096 

 −14.04 1.56 1.71 1.41 1.57 0.83 
 1.31 3.19 3.186 2.07 3.1713 7.11 

AEL −0.477 4.28 3.92 4.74 4.27 8.08 
AHard 4.41 1.81 1.81 2.78 1.82 0.81 

IV ELUMO 16.5171 2.596515 2.475588 1.716375 2.584044 7.102361 
−EHOMO −12.45941 3.760901 3.909865 2.872823 3.758234 6.672404 

 −14.49 0.58 0.72 0.58 0.59 −0.21 
 2.03 3.18 3.193 2.29 3.1711 6.89 

AEL −0.465 11.58 9.40 11.66 11.48 −31.35 
AHard 2.79 1.78 1.77 2.47 1.78 0.82 

V ELUMO 16.5102 2.963498 2.848121 2.077958 2.949314 7.449772 
−EHOMO −12.06327 3.094653 3.234635 2.291472 3.087551 5.765693 

 −14.29 0.07 0.19 0.11 0.07 −0.84 
 2.22 3.03 3.04 2.18 3.02 6.61 

AEL −0.471 102.63 34.82 63.04 97.37 −7.99 
AHard 2.60 1.91 1.90 2.65 1.92 0.88 

VI ELUMO 14.5038 1.290144 1.146572 0.4413206 1.267581 5.544161 
−EHOMO −10.0267 4.156837 4.331527 3.541704 4.159986 6.084805 

 −12.27 1.43 1.59 1.55 1.45 0.27 
 2.24 2.72 2.74 1.99 2.71 5.81 

AEL −0.54 4.63 4.16 4.28 4.58 24.53 
AHard 2.48 2.04 2.03 2.79 2.05 0.95 

VII ELUMO 15.40361 1.534507 1.39925 0.7539564 1.51676 5.631796 
−EHOMO −12.32641 3.422596 3.578508 2.691508 3.420128 5.689867 

 −13.87 0.94 1.09 0.97 0.95 0.03 
 1.54 2.48 2.49 1.72 2.47 5.66 

AEL −0.481 7.07 6.12 6.88 7.01 229.72 
AHard 3.63 2.25 2.24 3.24 2.26 0.99 

VIII ELUMO 15.48911 1.614079 1.472582 0.8028092 1.593253 5.815819 
−EHOMO −12.3533 3.699537 3.860561 2.910033 3.698387 6.201466 

 −13.92 1.04 1.19 1.05 1.05 0.19 
 1.57 2.66 2.67 1.86 2.65 6.01 

AEL −0.479 6.40 5.59 6.33 6.34 34.59 
AHard 3.56 2.10 2.093 3.01 2.109 0.93 

IX ELUMO 15.08743 1.524559 1.389197 0.7397588 1.502934 5.626748 
−EHOMO −11.85368 3.370883 3.52209 2.624703 3.369097 5.680253 

 −13.47 0.92 1.07 0.94 0.93 0.03 
 1.62 2.45 2.46 1.68 2.44 5.65 

AEL −0.495 7.23 6.25 7.08 7.15 249.32 
AHard 3.50 2.31 2.30 3.36 2.32 1.00 

X ELUMO 15.12512 1.53895 1.404091 0.7564005 1.518818 5.640772 
−EHOMO −11.90494 3.264767 3.41559 2.541048 3.262239 5.520739 

 −13.52 0.86 1.01 0.89 0.87 −0.06 
 1.61 2.40 2.41 1.65 2.39 5.58 

AEL −0.494 7.73 6.63 7.47 7.65 −111.14 
AHard 3.52 2.36 2.35 3.43 2.37 1.01 
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Figure 2. Electronegativity-based aromaticity scales of Tables 3 and 4 computed within 

semi-classical schemes in (a) and within ab initio schemes in (b), as compared with the 

polarizability-based aromaticity scale of Table 2, respectively. 

(a) 

(b) 
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Figure 3. The chemical hardness-based aromaticity scales of Tables 3 and 4 computed 

within semi-classical schemes in (a) and within ab initio schemes in (b), respectively. 

(a) 

(b) 
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Table 5. The fulfillment () of the aromaticity (Aroma1–5) rules abstracted from 

polarizability based scale in the case of electronegativity based-aromaticity records of 

Tables 3 and 4 for the molecules of Table 2. 

Aromaticity  
Rules 

Quantum Methods 

 
Aroma1 

 
Aroma2 

 
Aroma3 

 
Aroma4 

 
Aroma5 

 
 

Semi- 
empirical 

CNDO      
INDO      

MINDO3      
MNDO      

AM1      
PM3      

ZINDO/1      
ZINDO/S      

 
 

Ab 
initio 

noEXc      
B3-LYP      

B3-PW91      
EDF1      

Becke97      
Hartree-

Fock 
     

Table 6. The same check for the present aromaticity rules as in Table 5–yet here for the 

chemical hardness based-aromaticity scale.  

Aromaticity  
Rules 

Quantum Methods 

 
Aroma1 

 
Aroma2 

 
Aroma3 

 
Aroma4 

 
Aroma5 

 
 

Semi- 
empirical 

CNDO      
INDO      

MINDO3      
MNDO      

AM1      
PM3      

ZINDO/1      
ZINDO/S      

 
 

Ab 
initio 

noEXc      
B3-LYP      

B3-PW91      
EDF1      

Becke97      
Hartree-

Fock 
     

 

From Table 5 there follows that electronegativity based-aromaticity displays the following 

properties respecting the aromaticity rules derived from polarizability framework: 

 No semi-empirical quantum method, in general, satisfies the first rule of aromaticity, Aroma1, in 

the sense that the trend in Figure 2a (and Table 3) displays rather growing aromaticity character 

from mono- to double-benzenoid rings; the same behavior is common also to HF computational 

environment, perhaps due to the close relationships with approximations made in semi-empirical 

approaches; instead, all other ab initio methods considered, including that without exchange and 

correlation terms in Equations (57), do fulfill the Aroma1 rule; 
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 The remaining aromaticity Aroma2-5 rules are generally not adapted with any of the semi-

empirical methods, except the MINDO3 (the most advanced and accurate method from the NDO 

approximations) fulfilling the Aroma3 rule regarding the ordering of mono- versus bi- CH- 

replacement group by Nitrogen on benzenoid ring. Interestingly, the Aroma3 rule is then not 

satisfied by any of the ab initio quantum methods; 

 Aroma2 rule about the comparison between the CH- replacement group and the H- substitution 

to the mono ring benzene seems being in accordance only with HF and ab initio without 

exchange-correlation environments leading with the idea the electronegativity based- aromaticity 

of substitution and replacement groups is not so sensitive to the spin and correlation effects, 

being of primarily Coulombic nature; 

  Hydroxyl- versus amine- substitution aromaticity appears that is not influenced by spin and 

correlation in electronegativity based- ordering aromaticity since only the no-exchange and 

correlation computational algorithm agrees with Aroma4 Rule;  

 - versus - stereoisomeric position influence in aromaticity ordering is respected only by the 

HF scheme of computation and by no other combination, either semi-empirical or ab initio. 

Overall, it seems electronegativity may be used in modeling compactness of atoms-in-molecules 

aromaticity–basically without counting on the exchange or correlation effects, or at best within the HF 

algorithm, while semi-empirical methods seems not well adequate. Yet, for all aromaticity rules 

formulated, there exists at least one quantum computational environment for which the 

electronegativity based compactness aromaticity is in agree with each of them.  

The situation changes significantly when chemical hardness is considered for compactness 

aromaticity computation; the specific behavior is abstracted from the analysis of Table 6 and can be 

summarized as follows: 

 Semi-empirical methods are equally appropriate in producing agreement with Aroma1 and 

Aroma4 rules in what concerns the aromaticity behavior for the mono- versus bi- ring annulens 

and hydroxyl- versus amine- substitution to either of them, respectively; 

 Aroma2 and Aroma3 rules are slightly better fulfilled by the semi-empirical than the ab initio 

quantum frameworks in modeling the aromaticity performance of the mono- versus bi- CH- 

replaced groups and both of them against the H- substituted on benzenic rings, respectively; 

 The stereoisomeric effects comprised by the Aroma5 rule is not modeled by the chemical 

hardness compactness aromaticity by any of its computed scales, neither semi-empirical or ab 

initio. 

Overall, when the chemical hardness agrees with one of the above enounced Aroma Rules it does 

that within more than one computational scheme; however, the best agreement of chemical hardness 

with polarizability based- aromaticity scales is for the mono- versus bi- (and possible poly-) benzenic 

rings decreasing of aromaticity orderings, along the manifestly hydroxyl- superior effects in 

aromaticity than amine- groups substitution within most of the computational quantum schemes, i.e., 

valid either for semi-empirical and ab initio methods. The stereoisomerism is not covered by chemical 

hardness modeling aromaticity, and along the electronegativity limited coverage within HF scheme in 

Table 5, there follows that the energetic reactive indices are not able to prevail over the geometric 

indices as polarizability or to predict stereoisomerism ordering in aromaticity modeling  

compactness schemes.  
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Finally, few words about the output of the various quantum computational schemes respecting the 

current aromaticity definition given by Equation (1) are worth addressing. As such, one finds that: 

 With CNDO and INDO methods, the electronegativity based-aromaticity is more oriented 

towards the AIM limit of Figure 1, while chemical hardness based- aromaticity merely models 

the MOL limit of chemical bonding, see Table 3. This agrees with the basic principles of 

chemical reactivity according to which electronegativity drives the atomic encountering in 

forming the transition state towards chemical bond, while chemical hardness refines the bond by 

the aid of maximum hardness principle [59,67]; 

 The MINDO3, MNDO, AM1, PM3, and ZINDO/S all display in Table 3 the exclusively AIM 

limit in assessing aromaticity in bonding, yet with electronegativity based values systematically 

higher than those based on chemical hardness–this way respecting in some degree the empirical 

rule stating that the electronegativity stands as the first order effect in reactivity, while the 

chemical hardness corrects in the second order the bonding stability, according with the basic 

differential definitions of Equations (14) and (19), respectively; 

 ZINDO/1 differs both from ZINDO/S and by the rest of semi-empirical methods of the last 

group, while giving qualitative results in the same manner as CNDO and INDO, in the sense of 

higher absolute (positively defined) electronegativity based-respecting the chemical hardness 

based-aromaticities, yet with significant quantitative values over unity (i.e., the transition state as 

the instable equilibrium between AIM and MOL limits), see Table 3. This means that the 

transitional elements’ orbitals inclusion without further refinements of ZINDO/S exacerbates the 

Coulombic atoms-in-molecule effects, i.e., the stability (aromaticity) of bonding is mostly to be 

acquired in the pre-bonding stage of the AIM limit;  

 Somehow with the same qualitative-quantitative behavior as ZINDO/1 is the HF computed 

aromaticities indices of Table 4; however, the negative values as well as exceeding the AIM 

unity limit of electronegativity based-aromaticities appear now as multiple-recordings, while the 

resulted chemical hardness aromaticity is the closest respecting the unity limit of transition state 

prescribed by Equation (1). Together, this information shows that the HF computational 

framework merely models the pre-bonding AIM and the post-bonding MOL stages by 

electronegativity and chemical hardness reactivity indices, respectively; 

 The reverse case to HF computing stands the no-exchange-and-correlation (noEX-C) values in 

Table 4, according to which the electronegativity based aromaticity, beside the negative values, 

are all in sub-unity range, so being associated with post-bonding MOL limit. This corroborates 

the situation with the supra-unitary recordings of chemical hardness based-aromaticity outputs, 

specific to pre-bonding AIM, the resulted reactivity picture is completely reversed respecting 

that accustomed for electronegativity and chemical hardness reactivity principles [54]. 

Therefore, it is compulsory to consider at least the electronic spin through exchange 

contributions (as in the HF case), not only conceptually, but also computationally for achieving a 

consistent picture of reactivity, not only of the aromaticity; 

 The last situation is restored by using the hybrid functionals of DFT, i.e., B3-LYP, B3-PW91, 

EDF1, and Becke97 in Table 4, with the help of which electronegativity based-aromaticity 

regains its supremacy over that computed with the chemical hardness AIM and MOL limits in 

bonding. Although, no explicit sub-unity MOL limit of Equation (1) is obtained with chemical 
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hardness aromaticity computation, the recorded values are enough close to unity, while those 

based on electronegativity are more than twice further away from unity, to can say that the 

reactivity principles are fairly respected within these quantum methods, i.e., when A and A are 

situated in the AIM and MOL limiting sides of chemical bonding, respectively.  

The bottom line is rising by the wish to globally combine the ideas of quantum chemical methods 

used in chemical bonding, reactivity principles, and aromaticity results; upon the above discussions it 

follows that MINDO3, AM1 (or PM3)–for semi-empirical along Becke hybrid functionals and 

Hartree-Fock–for ab initio are the suited methods that fulfils most of the reactivity and the present 

introduced aromaticity bonding rules. However, the best of them overall seems to remain the 

consecrated HF scheme, since acquiring the highest number of grades summated throughout Tables 5 

and 6. As such, a new challenge appears since the present results recommend that correlation does not 

count too much in aromaticity or reactivity modeling. Nevertheless, further studies with larger set of 

molecules and types of aromatics should be address for testing whether or not the advanced 

aromaticity (Aroma1-5) rules are preserved or in which degree they may be generalized or modified 

such that being in accordance with the principles of chemical bonding and reactivity. 

4. Conclusions 

Modeling the stability and reactivity of molecules is perhaps the greatest challenge in theoretical 

and computational chemistry. This is because the main conceptual tools developed as the reactivity 

indices of electronegativity and chemical hardness along the associate principles are often suspected 

by the lack of observability character. Therefore, although very useful in formal explanations of 

chemical bonding and reactivity, it is hard to find their experimental counterpart unless expressed by 

related measurable quantities as energy, polarizability, refractivity, etc. When the aromaticity concept 

come into play, it seems no further conceptual clarification is acquired, since no quantum observable 

or further precise definition can be advanced; in fact, the aromaticity concept associates either with 

geometrical, energetic, topologic, electronic molecular circuits (currents), or with the less favored 

entropic site in a molecule, just to name few of its representations.  

However, since at the end, the aromaticity appears to describe the stability character of the 

molecular sample, its connection with a reactivity index seems natural, although systematically 

ignored so far. In this respect, the present work focuses on how the electronegativity and chemical 

hardness based-aromaticity scales behave with respect to others constructed on a direct observable 

quantum quantity–the polarizability in this case. This is because the polarizability quantity is 

fundamental in quantum mechanics and usually associated with the second order Stark effect that can 

be computed within the perturbation theory (see Appendix). Then, two ways of seeing a molecular 

structure were employed in introducing the actual absolute aromaticity definition: 

(i) the molecule viewed as composed of the constituent atoms (AIM) and  

(ii) the molecule viewed from its spectra of molecular orbitals (MOL).  

The two molecular perspectives may be associated with the pre- and post-bonding stages of a 

chemical bond at equilibrium; therefore, the conceptual and computational competition between these 

two molecular facets should measure the stability or its contrary effect - the reactivity propensity - 

being therefore the ideal ingredients for an absolute definition of aromaticity. Note that although an 
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AIM-to-MOL difference definition of absolute aromaticity was recently advanced [38], the actual 

study of their ratio definition should account for a sort of compactness degree of molecular structure–

as described by the specific molecular property used.  

In short, for a molecular property to become a candidate for absolute (here with its compactness 

variant of) aromaticity, it has to fulfill two basic conditions: 

(i) having a viable quantum definition (since the quantum nature of electrons and nucleus are 

assumed as responsible for molecular stability/reactivity/aromaticity); and  

(ii) having a reality at both the atomic and molecular levels.  

In this respect, all the presently considered reactivity indices, i.e., polarizability, electronegativity, and 

chemical hardness, have equally consecrated quantum definitions as well as atomic and molecular 

representations [55,139].  

At the atomic level, the experimental values based on the ionization potential and electron affinity 

definitions for electronegativity and chemical hardness were considered, see Equations (14) and (19), 

respectively, while for the polarizability new Hydrogenic quantum formulation was provided by 

Equation (6), and in Appendix by Equation (A22), recovering the exact value for the Hydrogen system 

by Equation (7), in close agreement with other available atomic quantum formulations of Equations (4) 

and (5). Nevertheless, the AIM level was formed by appropriate averaging of atoms-in-molecule 

summation for each of the considered reactivity indices, see Equations (8), (13) and (18), and along of 

their MOL counterparts of Equations (11), (14), and (19) the polarizability-, electronegativity- and 

chemical hardness- based aromaticity definitions were formulated with the associate qualitative trends 

established by Equations (12), (17), and (20), respectively. Yet, for MOL level of computations, all 

major quantum chemical methods for orbital spectra computation were considered, in Section 2.3, and 

implemented in the current application for some basics aromatics in Section 2. Because of the quantum 

observable character of polarizability the related aromaticity scale was considered as benchmark for 

actual study and it offered the possibility of formulating five rules for aromaticity: 

Aroma1: the greater effect on aromaticity by mono- over bi-(poly-) benzenic rings;  

Aroma2: the greater effect on aromaticity by CH- replaced group over H- substituted group on 

benzenic rings;  

Aroma3: the greater effect on aromaticity by bi- (poly-) over mono- CH- replaced group on 

benzenic rings;  

Aroma4: the greater effect on aromaticity by OH- group over NH2- substituted groups on benzenic 

rings;  

Aroma5: the greater effect on aromaticity by the stereoisomers with substituted group having the 

lowest atomic charge contribution (or the lowest free valence or largest bonding order, e.g., OH- 

substituted group) to the benzenic rings, unless free electrons on that group exist (e.g., NH2- 

substituted group) in which case the rule is inversed.  

These rules are then checked for electronegativity and chemical hardness derived-aromaticity scales 

with the synopsis of the results in Tables 5 and 6. It followed that chemical hardness, although 

generally in better agreement with these rules for most of the quantum chemical methods considered 

for its MOL computation, may not be considered infallible against aromaticity, at least for the reason it 

does not fulfils at all with the Aroms5 rule above. Surprisingly, chemical hardness index is more suited 
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in modeling aromaticity when considered within semi-empirical computational framework, while the 

electronegativity responds better in conjunction with ab initio methods.  

From quantum computational perspective, the consecrated HF method seems to get more marks in 

fulfillment of above Aroma1-to-5 rules, cumulated for electronegativity and chemical hardness based-

aromaticity scales; it leads with the important idea the correlation effects are not determinant in 

aromaticity phenomenology, an idea confirmed also by the fact the density functional without 

exchange and correlation produces not-negligible fits with Aroma1, 2, and 4 rules in electronegativity 

framework.  

Overall, few basic ideas in computing aromaticity should be finally emphasized  

(i) there is preferable computing aromaticity in an absolute manner, i.e., for each molecule based 

on its pre- and post- bonding properties (as is the present compactness definition, for instance) 

without involving other referential molecule, as is often case in the fashioned aromaticity 

scales;  

(ii) the comparison between various aromaticity absolute scales is to be done respecting that one 

based on a structural or reactivity index with attested observational character (as is the present 

polarizability based- aromaticity);  

(iii) the rules derived from the absolute aromaticity scale based on observable quantum index 

should be considered for further guidance for the rest of aromaticity scales considered;  

(iv) the aromaticity concept, although currently associated with stability character of molecules, 

seems to not depending on correlation and sometimes neither by exchange effects.  

Future quests should enlarge the basis of the present conclusions by performing comparative 

aromaticity studies at the level of biomolecules and nanostructures; at the end of the day, the 

aromaticity concept in general and with its particular specialization should represent just a tool/vehicle 

in modeling and understanding the chemical bond of atoms in molecules and nanostructures, either in 

isolated or interacting states.  
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Appendix: New Hydrogenic Polarizability Formula 

Starting from the consecrated second order perturbation energy [80]: 


 


nk nk EE

kHn
E

2

1)2(

 
(A1) 

is specialized for the Stark potential produced by the applied external electric field with the amplitude 

ε in the 0x direction: 

01 )( xZexVH   (A2) 

under the form: 
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(A3) 

that allows for α– polarizability in (A3) the general hydrogenoid (Z-dependent) formulation 
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where  
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0
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(A5) 

is the reduced squared elementary charge  

Now, to evaluate the atomic polarizability in terms of the quantum basic information contained within 

the atomic quantum numbers (e.g., n, k), one starts recognizing the general operatorial identity over the 

complete set of quantum (eigen) states: 

nOnnOkkOnnOkkOnkOn
kkk

2
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


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 (A6) 

Equation (6) is eventually known as the sum rule of Bethe and Jackiw [140,141], while its simplest 

dipole matrix element sum rule casts as: 

nxnkxn
k

22
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(A7) 

On the other hand, recalling the basic quantum commutation rule of momentum with space coordinate: 

 
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(A8) 

along the companion energy-coordinate commutator: 
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there can be inferred the quantum relationship: 

    
k

npkkxnnxkkpnnxppxn
i


(A10) 

upon inserting of the above quantum closure relation over the complete set of eigen-states. The first 

term in the right-hand side of the last expression may be reformulated as: 
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, (A11) 

and along the similar relation that springs out from the second term in (A10) one gets the equation: 
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that can be rearranged under the so called Thomas-Reiche-Kuhn (TRK) energy-weighted sum  

rule [142–144]: 

  
k

nk kxnEE
m

2
2

2


(A13) 

Remarkably, the expansion (A13) may be also obtained by requiring that the Kramers-Heisenberg 

dispersion relation reduce to the Thomas scattering formula at high energies; indeed, through re-

writing Equation (A13) in the form: 

 
1

2
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EEm
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(A14) 

it provides an important theoretical support for the experimental checks of the oscillator strengths (fn,k) 

as a confirmation of early quantum results [145,146]. 

Now, returning to the evaluation of polarizability given by (A4) one can use the recipe (A13) to 

facilitate the skipping out of the energy-singularity towards the all-eigen-state summation (A7) with 

the successive results: 
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where we recognized the first Bohr radius expression: 
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(A16) 

Finally, the obtained expression (A15) is unfolded through replacing the coordinate observation with 

the atomic radius quantum average displacement respecting its instantaneous value: 

nl
rrx 

 (A17) 

It allows the immediate formation of the squared coordinate expression: 

222 2
nlnl

rrrrx 
 (A18) 

of which the observed quantum average looks like 
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 (A19) 
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The replacement of Equation (A19) in the polarizability (A15) produces its radial averages’ 

dependency: 

 222
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(A20) 

Knowing the first and second order quantum averages for the atomic radius of a Hydrogenic system 

written in terms of the principal and azimuthal quantum numbers n and l, respectively [147]: 
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the static atomic polarizability (A20) takes the analytical form: 
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(A22) 

recovering the exact result for the Hydrogen limiting case: 

3
00,1 2

9
)1( aZln 

 
(A23) 

It is worth noting that the present derivation relays on the second order perturbation energy (A1) while 

the final expression (A22) is assumed to be exact through the Hydrogen checking case (A23), although 

different by the other reported also as valid formulations, see Equations (4) and (5) in the main text 

and References [45–47]. Nevertheless, the present atomic polarizability, either under expressions 

(A15) or (A22) is to be further tested for reliability in modeling of atomic (or ionic) and molecular 

systems. 
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