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Abstract: Chitin and its derivatives—as a potential resource as well as multiple functional 

substrates—have generated attractive interest in various fields such as biomedical, 

pharmaceutical, food and environmental industries, since the first isolation of chitin in 

1811. Moreover, chitosan and its chitooligosaccharides (COS) are degraded products of 

chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well 

suited for potential biological application, due to the biocompatibility and nontoxic nature 

of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, 

which are all correlated with their biomedical properties. Several new and cutting edge 

insights here may provide a molecular basis for the mechanism of chitin, and hence may 

aid its use for medical and pharmaceutical applications. 
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1. Introduction 

Since chitin (C8H13O5N)n was first isolated and characterized from mushrooms, the earliest known 

polysaccharide, by French chemist Henri Braconnot in 1811 [1], it has been discovered to be the 

second most abundant natural biopolymer in the world [2–4], amounting in marine biomass alone to 

approximately 106–107 tons. Chitin is a long-chain homopolymer of N-acetyl-D-glucosamine 

(GlcNAc), (1–4)-linked 2-acetamido-2-deoxy-β-D-glucan, a derivative of glucose. Strong acids can 

split the chitin, water-insoluble polymer, into acetic acid and chitosan, and chitin can be processed 
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further into two main derivatives of chitosan and amino glucose through many nonspecific enzymes, 

such as cellulases, lipases, proteases and chitosanases [5,6]. Notably, chitosan is a nontoxic 

biopolymer produced by the deacetylation of chitin, and currently chitosan and its oligosaccharides 

have received considerable attention due to their biological activities and properties in commercial 

applications. During the last few decades, as a source of bioactive material, chitosan and 

chitooligosaccharides, which are degradation products of chitin or chitosan produced by enzymatic or 

acidic hydrolysis, were introduced into a variety of biomedicals including wound dressings and drug 

delivery systems [7,8], and the food and chemical industries [9–12]. Chitin and its derivatives have 

delivered biological potential for a wide range of applications such as in the food and medical field 

[13–16], agriculture [17] and aquaculture [18,19], dental [20,21] and cosmetics [22,23], wastewater 

[24,25] and membranes [26,27] . 

This review aims to analyze the most recent advances in biological applications of chitin and its 

derivatives, particularly those related to anti-inflammatory and antioxidant activities, antimicrobial 

effects, immunity-enhancing as well as antitumor effects and drug delivery, in the field of  

biological medicine. 

2. Antioxidant Activity 

Hydrogen peroxide, hydroxyl radical and superoxide anion called reactive oxygen species 

(ROS) [28] are generated during normal metabolism and oxidize biomolecules, such as lipids, proteins, 

carbohydrates and DNA, ultimately leading to oxidative stress. However, cells produce antioxidants 

such as catalase, superoxide dismutase, glutathione peroxidase and thioredoxins as a part of the 

cellular defense system against ROS-mediated cellular injury [28]. When the cellular defense 

mechanisms are unable to deal with excessive generation of ROS, this oxidative stress has been 

reported to induce various pathogenic processes including aging, cancer, wrinkle formation, 

rheumatoid arthritis and inflammation [29–33]. Therefore, antioxidants including vitamin C and E play 

an important role in maintaining balance between the oxidative and reductive state inside the body. 

Among these antioxidants, chitins—widely distributed among invertebrates and crustaceans as 

structural material in their exoskeletons and fungal cell walls—have shown important biological 

antioxidant effect that has potentials for a wide variety of applications [34]. However, chitin is an 

insoluble polymer in water, which is the major limiting factor for its utilization in living systems. 

Therefore, it is important to produce soluble chitin or chitosan by hydrolysis. In recent years, two 

kinds of chitin oligosaccharides or N-acetyl chito-oligosaccharides (NA-COSs) with different 

molecular weights [35] produced from crab chitin hydrolysis was evaluated in live cells. Two kinds 

of NA-COSs with molecular weights (M.W.) of 1–3 kDa (NA-COS 1–3 kDa) and below 1 kDa  

(NA - COS < 1 kDa) exhibited an inhibitory effect against DNA and protein oxidation. In addition, 

intracellular glutathione (GSH) level and direct intracellular radical scavenging effect were increased 

in the presence of them in mouse macrophages (RAW 264.7) and exerted an inhibitory effect against 

cellular oxidative stress. In particular, NA-COS 1–3 kDa was more effective than NA-COS < 1 kDa in 

protein oxidation and production of intracellular free radicals in live cells [13]. Furthermore, it was 

reported that chitin oligosaccharides (NA-COS; M.W. 229.21–593.12 Da) produced by 

acidic hydrolysis of crab chitin exert the cellular antioxidant effects. In addition, the inhibitory effect 
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of NA-COS on myeloperoxidase (MPO) activity in human myeloid cells (HL-60) and oxidation of 

DNA and protein were identified in mouse macrophages. Moreover, their direct radical scavenging 

effect of intracellular hydrogen peroxide and intracellular glutathione (GSH) level were demonstrated, 

suggesting that NA-COS act as potent antioxidants in live cells [3]. Previous study also showed how 

disease resistance and ROS metabolism in harvested navel oranges are affected by chitosan. Its 

treatment effectively not only enhanced the activities of peroxidase and superoxide dismutase, and 

levels of glutathione and hydrogen peroxide, but also inhibited the activity of catalase and the decrease 

of ascorbate content during navel orange fruit storage, suggesting that chitosan treatment could induce 

navel orange fruit disease resistance by regulating the H2O2 levels, antioxidant enzyme and ascorbate–

glutathione cycle [36]. Furthermore, it was demonstrated that COS smaller than 1 kDa suppressed the 

generation of intracellular radical species in B16F1, a murine melanoma cell line, suggesting 

prevention of oxidative stress related disease. In addition, induction of intracellular glutathione (GSH) 

level was increased in the presence of COS, which exhibited a protective effect on oxidative damage of 

genomic DNA independent of molecular weight [37]. Chitosan also has an in vivo stimulatory effect 

on both nitric oxide production and modulates peroxide production [38]. The protective effects of COS 

against hydrogen peroxide-induced oxidative damage were also evaluated in human umbilical vein 

endothelial cells (HUVEC, ECV304 cells). In addition to a marked decrease in intracellular ROS level, 

COS also exerted preventive effects on the production of lipid peroxidation such as malondialdehyde, 

restoring activities of endogenous antioxidants including superoxide dismutase and glutathione 

peroxidase, along with the capacity of increasing levels of nitric oxide and nitric oxide synthase. It was 

also demonstrated that COS can effectively protect HUVEC against oxidative stress by hydrogen 

peroxide, which might be of importance in the treatment of cardiovascular diseases [39]. In addition, 

COSs (M.W.1500, DD. 90%) protect against Cu(II) induced neurotoxicity in primary cortical neurons 

by interfering with an increase in intracellular ROS [40]. Moreover, COS of four different molecular 

weight ranges (below 1 kDa, 1–3 kDa, 3–5 kDa and 5–10 kDa) were investigated for their ability to 

protect pancreatic-β cells from damage induced by hydrogen peroxide. COS (500 μg/ml) with 

molecular weights of 3–5 kDa raised the viability of hydrogen peroxide-treated cells by 58.46% 

compared with the hydrogen peroxide alone group [41]. It was also described that COS is able to 

protect hydrogen peroxide-induced oxidative stress on human embryonic hepatocytes (L02 cells), 

suggesting that COS might be useful in a clinical setting during the treatment of oxidative stress 

related liver damage [42]. Administration of chitosans with low molecular weight was reported to 

inhibit neutrophil activation and oxidation of serum albumin commonly observed in patients 

undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia [43]. On the 

other hand, the cellular antioxidant effects of carboxylated chitooligosaccharides (CCOS), a 

chemically modified derivative of COS, were evaluated by the ability to inhibit lipid and protein 

oxidation. Radical-mediated oxidation of cell membrane lipids and proteins was inhibited by CCOS 

that reduced the level of lipid hydroperoxides and carbonyl carbon content in mouse macrophages. 

Further, CCOS inhibited myeloperoxidase activity in human myeloid cells, suggesting the indirect 

possibility of inhibiting generation of ROS such as superoxide radicals, H2O2 and HOCl [44].  
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3. Anti-inflammatory Effects 

Although a number of studies have widely investigated the effects of chitin, chitosan and their 

derivatives, few investigating anti-inflammatory activity have recently been published. Inflammation is 

a physiological body immune response against pathogens, toxic chemicals or physical injury. While 

acute inflammation is a short-term normal response that usually causes tissue repair by recruitment of 

leukocytes to the damaged region, chronic inflammation is a long-term pathological response 

involving induction of own tissue damage by matrix metalloproteinases (MMPs) [45,46]. It is 

generally well known that chronic inflammation is related to periodontal disease, hepatitis, arthritis, 

gastritis and colitis. The most important factor in chronic inflammation has been known to be the nuclear 

factor-kappa B (NF-κB) transcription factor that plays a critical role in regulating genes involved in 

immune responses [47]. NF-κB is known to regulate inflammatory genes encoding pro-inflammatory 

cytokines, adhesion molecules, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase 

(iNOS) [48,49]. In particular, current approaches to the treatment of inflammation rely on the selective 

inhibition of COX-2 activity responsible for producing prostanoids, not COX-1. Non-steroidal  

anti-inflammatory drugs (NSAIDs) are the most widely prescribed drug for treatment of many 

inflammatory diseases. However, they display a high incidence of gastric, renal and hepatic side 

effects. In recent years, it has been reported that chronic inflammation is associated with an increased 

risk of malignant transformation [50]. This is because phagocytic leukocytes in chronic inflammatory 

processes produce large amounts of reactive metabolites of oxygen and nitrogen that induce oxidative 

stress and lead to oxidation of fatty acids and proteins in cell membrane, thus impairing their normal 

function. Although the anti-inflammatory effects of chitin and its derivatives have been rarely reported, 

in recent years data has been accumulating. First of all, it was found that chitin is a size-dependent 

regulator
 
of inflammation [51]. In this study, while both intermediate-sized chitin and small chitin 

stimulates TNF production in murine peritoneal macrophages, large chitin fragments
 
are inert, 

Furthermore, it was found that chitin stimulates the expression of TLR2, dectin-1, the mannose 

receptor and inflammatory cytokines, differentially activated
 
NF-κB and spleen tyrosine kinase. 

Ngo et al. (2009) demonstrated that chitin oligosaccharides can inhibit myeloperoxidase activity in 

human myeloid cells and oxidation of DNA and protein in mouse macrophages [13]. Chitosan was 

confirmed to partially inhibit the secretion of both IL-8 and TNF-α from mast cells, demonstrating that 

water-soluble chitosan has the potential to reduce the allergic inflammatory response [52]. Since mast 

cells are necessary for allergic reactions and have been implicated in a number of neuroinflammatory 

diseases, chitosan nutraceuticals may help to prevent or alleviate some of these complications. In 

another study, it was demonstrated that chitooligosaccharides enhanced migration of the mouse 

peritoneal macrophages into inflammatory areas [53]. LPS-stimulated TNF-α and IL-6 secretion was 

found to be inhibited in the presence of chitosan oligosaccharide in RAW 264.7 cells [54], suggesting 

that chitosan oligosaccharide may possess an anti-inflammatory effect via the inhibition of TNF-α in 

the LPS-stimulated inflammation. These functions of chitosan to exert anti-inflammatory effect could 

be unilized in the nutraceutical industry as well as in functional foods for prevention and alleviation of 

inflammatory diseases. In addition, it was reported that chitosan promotes phagocytosis and production 

of osteopontin and leukotriene B by polymorphonuclear leukocytes, production of interleukin-1, 

transforming growth factor b1 and platelet-derived growth factor by macrophages, and production of 
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interleukin-8 by fibroblasts, enhancing immune responses [55]. The effect of chitin, chitosan and their 

derivatives on MMPs related to chronic inflammation is an interesting topic presently. MMPs are a 

family of secreted or transmembrane endopeptidases that degrade extracellular matrix components. It 

was described that chitooligosaccharides inhibit activation and expression of MMP-2 in primary 

human dermal fibroblasts [56]. In particular, hydrolysed chitosans with molecular weights as low as  

3–5 kDa displayed the highest inhibitory effect on MMP-2. Moreover, the inhibitory effect might be 

described by the effective chelating capacity of chitosan for Zn
2+

 as a cofactor of MMP-2. Based on 

these findings, as a result of elucidation of the relationship between their activities and structures, 

atomic force microscopy demonstrated a direct molecular interaction between MMP-2 and chitosan. 

Affinity chromatography revealed a high binding-specificity of MMP-2 to chitosan, and a colorimetric 

assay suggested a non-competitive inhibition of MMP-2 by chitosan [57]. 

4. Antimicrobial Effects 

Chitosan and its derivatives have widespread applications in agriculture, medicine, environment, 

food, etc. The antimicrobial activity of chitin, chitosan and their derivatives against different groups of 

microorganisms, such as bacteria, yeast and fungi has received considerable attention in recent years. 

In particular, chitosan can also be used as an antimicrobial film to cover fresh fruits and 

vegetables [58]. Chitosan, which is a deacetylated form of chitin, has been investigated for numerous 

antimicrobial activities. In particular, water-soluble chitosan derivatives were evaluated for their 

antimicrobial activity [59]. The actual mechanism of antimicrobial activity of chitosan and its 

derivatives is not yet fully understood but has been suggested to involve cell lysis, breakdown of the 

cytoplasmic membrane barrier and the chelation of trace metal cations by the chitosan [60–64]. In the 

killing of gram-negative bacteria, a cationic chitosan must interact with both bacterial cell envelope 

membranes. The antibacterial effect of chitosan is higher than that of chitin because chitosan possesses 

a number of polycationic amines which can interact with the negatively charged residues of 

carbohydrates, lipids and proteins located on the cell surface of bacteria, which subsequently inhibit 

the growth of bacteria. In addition, because of the positive charge on the C-2 of the glucosamine 

monomer at pH values below 6, chitosan is more soluble and has a better antimicrobial activity than 

chitin [65]. The antibacterial effects of COS have been known to be dependent on their degree of 

polymerization or molecular weight. In addition, the water-soluble chitooligosaccharides may be 

advantageous as antibacterial agents in in vivo systems compared to water-insoluble chitosan. These 

variations in preparation methods are likely to result in differences in the deacetylation degree, the 

distribution of acetyl groups, the chain length and the conformational structure of chitosan [66] and 

will thereby have an influence on the solubility, the antimicrobial activity and other properties. The 

antibacterial effect of three kinds of COS with relatively higher molecular weight (HMWCOS), 

medium molecular weight (MMWCOS), and lower molecular weight (LMWCOS), respectively, was 

evaluated against various microorganisms. The molecular weight of COS is critical for microorganism 

inhibition and required higher than 10,000 Da. Generally, the COS have more effective activity against 

pathogens than nonpathogens, except in the case of lactic acid bacteria [67]. In addition to chitosan, 

several chitosan derivatives such as acid-free-water soluble chitosan [68] and quaternary N-alkyl 

chitosan [69] were reported to exert antimicrobial effect. The antimicrobial activity of chitosan 
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depends on several factors such as the kind of chitosan (deacetylation degree or molecular weight), the 

pH of the medium, the temperature, the presence of several food components and so forth. The 

mechanism of the antimicrobial activity has not been fully elucidated yet, but several hypotheses have 

been postulated. The most feasible hypothesis is a change in cell permeability due to interactions 

between the positive charges of chitosan and the negative charges on the cell surface. This interaction 

between positively charged chitosan molecules and negatively charged microbial cell membranes 

results in the leakage of intracellular constituents. In addition, it can be suggested that chitosan and its 

derivatives not only bind to bacterial genes but also chelate metals such as calcium, magnesium and 

zinc ions, leading to the inhibition of transcription and translation. Therefore, an antibacterial 

mechanism of chitosan and its derivatives can be described to be exerted by above mechanisms. 

5. Immuno-Stimulating and Anticancer Effects 

In recent years, it was revealed that the tumor inhibitory effect of COS is probably related to their 

induction of lymphocyte cytokines through increasing T-cell proliferation (Figure 1). Basically, the 

antitumor mechanism of COS is enhanced by acquired immunity via accelerating T-cell differentiation 

to increase cytotoxicity and maintain T-cell activity [70]. Maeda and Kimura examined the antitumor 

effects of various low-molecular weight chitosans, such as water-soluble 21- or 46-kDa molecules with 

low viscosity, produced by enzymatic hydrolysis of over 650-kDa chitosan, which displayed decreased 

tumor growth and final tumor weight in sarcoma 180-bearing mice due to increase of natural killer cell 

activity [71,72]. The results indicate the low-molecular-weight water-soluble chitosans and 

oligochitosans might be useful in preventing tumor growth, partly through enhancing cytotoxic activity 

against tumors as an immunomodulator [73]. In transdermal delivery of baicalin for an useful drug for 

the treatment of skin disease, low-molecular-weight chitosans can improve its permeation through 

mouse skin [74]. In addition, they seem to activate macrophages via the production of cytokines such 

as interferon (IFN)-γ, interleukin (IL)-12 or -18 from the intraepithelial lymphocytes. In examination 

of the anticancer activity of chitosan derivatives, there was no clear information describing the 

relationship between charge properties and their observed activities. In recent years, in several cell 

lines, one research group observed that cancer-cell viability was significantly reduced regardless of the 

positive or negative charge of differently charged COS derivatives [75]. Moreover, COS significantly 

inhibited human hepatocellular (HepG2) carcinoma cell proliferation and down-regulated cell  

cycle-related gene expressions with decreased DNA content and up-regulation of p21 in vitro. In in 

vivo observations, COS inhibited tumor growth of HepG2 and Lewis lung carcinoma xenografts and 

lung tumor nodules as well as lung metastasis [76]. Quan et al. suggest that COS act as inhibitors of 

heparanase, which is a β-endoglucuronidase, and assist tumor invasion, metastasis and  

angiogenesis [77].  

Other chemically modified structures, aminoderivatized COSs, such as aminoethyl-, dimethyl 

aminoethyl- and diethyl aminoethyl-COS, not only significantly induce cell death but also inhibit 

proliferation of human gastric adenocarcinoma cells [78]. This report shows that water-soluble 

aminoderivatized COS might be able to serve as valuable cancer chemopreventive agents. COS could 

also suppress tumor angiogenesis in vivo and in vitro [79,80] through blocking migration of endothelial 

cells induced by nitric oxide [81,82].  
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Figure 1. Chitooligosaccharides (COS) can display anti-tumorigenic activity through 

immunomodulation. 

 

6. Application in Drug Delivery System 

To provide anticancer chemotherapy, chitosan is attracting increasing attention as drug and gene 

carriers due to its excellent biocompatibility, biodegradability, and nontoxicity [83,84]. Chitosan has 

an important role in delivery of drugs, with the potential to improve drug absorption and stabilize drug 

components to increase drug targeting. In addition, as a potential gene deliverer, chitosan can protect 

DNA and increase the expression period of genes. Chitin or chitosan derivatives, which were 

conjugated with some kinds of anticancer agents, can execute better anticancer effects with a decrease 

of side effects and gradual release of free drug in the cancer tissues. Furthermore, chitosan 

nanoparticles were synthesized and applied for in vivo antitumor activity [85–87]. On the other hand, 

for ocular drug delivery, liposomes coated with low-molecular weight chitosan may be potentially 

applicable to clinic uses [88]. 

Nanoparticles enable chitosan to elicit dose-dependent tumor-weight inhibition with highly 

impressive antitumor efficacy in vivo [88]. The doses and particle quantum size have a great effect on 

their efficacy as drug carriers. In particular, with small particle size and positive surface charge, the 

complex could exhibit higher antitumor activity than other chitosan derivatives [89]. Smaller sized 

particles seem to enhance efficacy of the particle-based drug delivery systems [90–92]. Basically, 

chitosan nanoparticles are produced with a mean particle size ranging from 40 to 100 nm and a 

positive surface charge of about 50 mV [93,94]. To introduce these products into in vitro cell culture 
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systems, they should be filtered by a membrane with diameter of 0.45 μm and autoclaved [95]. In in 

vivo animal models, different administration routes of chitosan nanoparticles, such as intravenous (i.v.) 

or intraperitoneal injection (i.p.) and oral administration (p.o.), could exhibit little difference in 

antitumor activities. However, because nanoparticulate systems have been developed to improve the 

blood circulating time and tumor targeting efficacy of vincristine, administration of chitosan 

nanoparticles i.v. can contribute in vivo efficacy to antitumor activities [96,97] followed by a 

prolonged blood half-life of drugs [98]. 

7. Conclusion 

In recent years, chitin and its derivatives—as a high potential resource as well as multiple 

functional substrates—have generated attractive interest in various fields such as biomedical, 

pharmaceutical, food and environmental industries. While chitin is an insoluble polymer in water, 

which is the major limiting factor for its utilization in living systems, COS are more suited to draw 

attention for potentially biological applications due to the biocompatibility and nontoxic nature of 

chitosan. They exert an excellent antioxidant effect as well as antimicrobial effect. In particular, COS 

and their derivatives are potential candidates capable of preventing or treating diverse chronic 

inflammation such as colitis, periodontal disease, hepatitis and gastritis, leading to cancer, and through 

drug delivery system.  
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