Supplementary Material

Superfamily	PDB IDs	
Crisp	1bgk, 1rc9, 1roo, 1wvr, 1xx5, 2ddb	
Cystine-Knot	1agq, 1aoc, 1b8k, 1bet, 1dz7, 1fzv, 1klc, 1tgj, 1wq8, 1wq9, 1www, 2tgi, 2vpf	
Defensin-like	1ahl, 1apf, 1atx, 1b8w, 1bds, 1d6b, 1dfn, 1e4r, 1e4t, 1ews, 1kj5, 1kj66, 1sh1, 1tv0, 1ut3	
EGF-Laminin	1apo, 1apq, 1b9w, 1cej, 1edm, 1emn, 1epg, 1esl, 1f7m, 1fsb, 1haf, 1i0u, 1ip0, 1jl9, 1k37, 1klo, 1l3y, 1lr7,	
LOI Lammin	1n1i, 1nzi, 1szb, 1toz, 1tpg, 1urk, 2adx, 2j5h, 2tgf	
Omega toxins	1c6w, 1cix, 1d1h, 1dl0, 1eit, 1emx, 1g9p, 1i25, 1i26, 1ie6, 1ju8, 1koz, 1kqi, 1la4, 1lmm, 1lmr, 1lup,	
Onega toxins	1mb6, 1nix, 1niy, 1omb, 1p8b, 1qk6, 1qk7, 1tyk, 1v7f, 1xi7, 1y29	
Plant lectins	1ehh, 1mmc, 1p9g, 1q9b, 1uha, 1ulk, 1uln, 9wga	
Small snake	1bte, 1ccq, 1cdt, 1cod, 1cre, 1cxn, 1drs, 1erg, 1f94, 1fas, 1ff4, 1g6m, 1je9, 1jgk, 1kba, 1kbs, 1ks6, 1kxi,	
toxins	11si, 11xh, 1mr6, 1nor, 1ntn, 1ntx, 10nj, 1plo, 1qi9, 1qkd, 1tfs, 1txa, 1vyc, 2abx, 2ccx, 2cdx, 2crt, 2ctx,	
toxilis	2h5f, 2h7z, 2nbt, 5ebx	
	1acw, 1agt, 1ayj, 1b7d, 1bcg, 1big, 1bk8, 1bkt, 1c49, 1c56, 1chl, 1chz, 1cn2, 1djt, 1du9, 1fh3, 1fjn, 1gps,	
Scorpion-like	1gpt, 1hly, 1hp2, 1i2u, 1i6f, 1ica, 1j5j, 1jkz, 1jxc, 1kv0, 1l4v, 1lir, 1lqh, 1lqq, 1m2s, 1mm0, 1mr4, 1mtx,	
toxins	1myn, 1n4n, 1n8m, 1nra, 10my, 10zz, 1pe4, 1pjv, 1pnh, 1pvz, 1px9, 1q2k, 1qky, 1rj, 1scy, 1seg, 1sis,	
	1sn4, 1snb, 1sxm, 1tsk, 1txm, 1ugl, 1vnb, 1wm7, 1wm8, 2a7t, 2b3c, 2bmt, 2brz, 2crd, 2ktx, 2pta, 2sn3	
BBI	1bbi, 1h34, 1mvz, 1pi2, 2fj8	
BPTI-like	1aap, 1bf0, 1bik, 1bpi, 1dem, 1dtk, 1dtx, 1irh, 1jc6, 1kth, 1shp, 1tcp	
Kringle-like	1bht, 1h8p, 1i71, 1jfn, 1kdu, 1kiv, 1krn, 1l6j, 1pkr, 1tpk, 2fn2, 5hpg	
Thiomadowin	1aaz, 1bed, 1dby, 1eej, 1ego, 1ep7, 1f9m, 1fb6, 1fg4, 1fov, 1fvk, 1gh2, 1h75, 1j08, 1jfu, 1kng, 1kte,	
Thioredoxin-	1073, 10vn, 1q98, 1qgv, 1qk8, 1quw, 1qxh, 1r26, 1s3a, 1st9, 1t3b, 1thx, 1v58, 1wou, 1xfl, 1xw9, 1yep,	
like	1zyn, 2a2p, 2a4h, 2b5e, 2b7j, 2cv4, 2cvb, 2ggt, 2ifg	

Table 1. Protein structures used in the reference set.

Table 2. Disulph's functionalities.

1	Identification of the disulfide bonds of the sample under study. This sample was considered to include all the disulfide
	bonds, which occur in the protein set
2	Classification of the twenty coded amino acids in different classes, using three alternative criteria (see Tables 1 and 2)
3	Definition of the neighboring region of a disulfide bond. In the present work, this region was defined as a sphere with a $\frac{1}{2}$
	radius of 10 Å centered in the middle point of a disulfide bond
4	Definition spherical shells within the neighboring region. In the present work, twenty shells of this type were
	considered (see Table 3)
5	For each disulfide bond, identification of the amino acid residues that occur in the respective neighboring region
6	For each disulfide bond, determination of the frequency of each residue in its neighboring region.
7	For each disulfide bond, determination of the frequency of each class in the respective neighboring region
8	For each disulfide bond, determination of the relative frequency of each entity in its neighboring region. For this
	purpose, two reference sets are considered: the set superfamilies under study presented in Table 4 and a set of proteins
	selected from PDB database (Xia and Xie, [31])
9	For the sample under study, determination of the density of each residue in the twenty spherical shells defined in 4)

Spherical shell	Distance intervals in Å	Volume/Å ³
1	[0.0.0.5]	0.52
2	[0.5.1.0]	3.67
3	[1.0.1.5]	9.95
4	[1.5.2.0]	19.37
5	[2.0.2.5]	31.94
6	[2.5.3.0]	47.65
7	[3.0.3.5]	66.50
8	[3.5.4.0]	88.49
9	[4.0.4.5]	113.62
10	[4.5.5.0]	141.90
11	[5.0.5.5]	173.31
12	[5.5.6.0]	207.87
13	[6.0.6.5]	245.57
14	[6.5.7.0]	286.41
15	[7.0.7.5]	330.39
16	[7.5.8.0]	377.51
17	[8.0.8.5]	427.78
18	[8.5.9.0]	481.19
19	[9.0.9.5]	537.74
20	[9.5.10.0]	597.43

Table 3. Spherical shells within the neighboring region of a disulfide bond, defined as a sphere with a radius of 10 Å centered in the middle point of this bond.

Table 4. Relative frequencies of the amino acids/classes in the sample.

Residue/Class	Relative Frequency	F
CYS	805.60%	122.8
TYR	57.80%	16.7
TRP	45.00%	19.5
ASN	30.50%	34.2
ARG	21.50%	7.3
LYS	16.90%	26
GLY	10.30%	44.7
PRO	5.60%	18.4
SER	-2.50%	14.4
HIS	-3.80%	8.6
THR	-7.40%	28.3
GLN	-13.80%	19.8
PHE	-14.30%	18.6
ASP	-20.00%	14.3
GLU	-25.80%	9.7
ILE	-37.10%	16.3
VAL	-40.90%	26.4
ALA	-46.70%	15.3
LEU	-47.10%	6.6
MET	-56.20%	6.5

 Table 4. Cont.

SULFUR	228.80%	78.3
NHF	116.40%	72.4
AROM	23.80%	25.2
NHB	5.60%	18.4
POL	1.20%	25.5
HF	-1.30%	12.7
CAR	-3.30%	11
ALI	-28.20%	23
HB	-38.30%	56.2