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Abstract: Disulfide bonds provide an inexhaustible source of information on molecular 

evolution and biological specificity. In this work, we described the amino acid composition 

around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, 

based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered 

according to their chemical similarities) and Scheffé (for the disulfide-rich proteins 

superfamilies) statistics. We found that weakly hydrophilic and aromatic amino acids are 

quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic 

amino acids. The density distributions (as a function of the distance to the center of the 

disulfide bonds) for all defined entities presented an overall unimodal behavior: the 

densities are null at short distances, have maxima at intermediate distances and decrease 

for long distances. In the end, the amino acid environment around the disulfide bonds was 

found to be different for different superfamilies, allowing the clustering of proteins in a 

biologically relevant way, suggesting that this type of chemical information might be used 

as a tool to assess the relationship between very divergent sets of disulfide-rich proteins. 
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1. Introduction 

Cysteine’s (CYS) ability to dimerize makes it unique among the twenty natural amino acids. A 

disulfide bond is formed between two oxidized CYS thiol groups. Disulfide bonds induce 

conformational restrictions on proteins strongly influencing their folding, stability and function [1–5].
 

Disulfide topology has been successfully used for protein clustering, where the disulfide structure 

was found to be well-conserved even for apparently non-related proteins [6–11].
 
The disulfide topology 

has been subsequently used to establish evolutionary relationships not detected by sequence similarity 

based methods. Disulfide three-dimensional structure and connectivity are highly conserved patterns in 

nature, and have become the basis of several protein classification analyses [12–19].
 

The stabilization of disulfide bonds has also been the focus of various studies. These include:  

(i) The analysis of the protein environment in the neighborhood of both bonded and free  

cysteines [20,21]; (ii) the geometrical requirements of a disulfide bond [21–23]; (iii) the influence of 

pH [14]; (iv) the role of redox mediators [23–25]; (v) the role of allosteric factors [26,27].  

We have performed a systematic investigation on the amino acid composition around disulfide 

bonds of a set of disulfide-rich proteins selected according to their SCOP (Structural Classification of 

Proteins) classification [28–30]. Our goal was to assess whether or not the observed patterns can be 

used to group the proteins according to their biological characteristics, and therefore be used as a 

classification criteria for very divergent proteins. In our previous work [6], we demonstrated that the 

conformational patterns of disulfide bonds are sufficient to group proteins that share both functional 

and structural characteristics. 

The protein set included twelve disulfide-rich protein superfamilies (according to the SCOP 

classification) that obeyed the following criteria: (i) contain a minimum of thirty disulfide bonds;  

(ii) have a minimum of five PDB structures available; (iii) have X-ray structures with a resolution 

higher than 2.5 Å and (iv) have only uncomplexed structures. The proteins belonged to the 

thioredoxin-like superfamily and eleven superfamilies containing small disulfide-rich proteins (SDP). 

The thioredoxin-like superfamily is very different from the other proteins in the set, namely because it: 

(i) presents a lower number of disulfide bonds per PDB structure; (ii) has an extensive hydrophobic 

core, completely absent in the small disulfide-rich proteins; (iii) is constituted by disulfide 

oxidoreductase enzymes; (iv) has a very structured secondary structure, compared to the few 

secondary structure elements characteristic of the small disulfide-rich proteins; (v) displays absence of 

disulfide cooperative effects (in small disulfide-rich proteins the disulfide and the buried side-chain 

influence the dynamics of the folded protein through stabilization effects resulting from the spatial 

proximity of two or more disulfide bonds) [12].  

Other authors have analyzed the importance of the amino acid environment around disulfide bonds 

for the stabilization of 3D-structures in proteins [20,21] but to date no studies have attempted to use 

this type of chemical information to aggregate a set of proteins into their respective superfamilies. This 

is the main purpose of the present work. Our approach involved the use of stratified statistics, which 

groups the members of a population (the various proteins) into relatively homogeneous and orthogonal 

subgroups (the described superfamilies) before sampling. 
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2. Materials and Methods 

2.1. General 

We used three different criteria to describe the amino acid composition in the proximity of disulfide 

bonds: (i) all twenty natural amino acids were considered as independent units; (ii) the same amino 

acids were grouped into classes according to their chemical properties, and these classes clustered into 

two classification groups (Table 1). Each entity (amino acid or class) was characterized both by a 

relative frequency and a diversity index. As a reference set we used a number of proteins selected from 

the PDB database by Xia and Xie [31]. The protein set under study is characterized in Table 2. A list 

of all the PDB structures analyzed is available in Table 1 of Supplementary Material. A most frequent 

motif, combining SCOP clustering and structural elements, was also identified. 

Table 1. The amino acid classes assembled using various physicochemical criteria were 

clustered into two classification groups. 

 Classes Amino Acids Criteria 

1 

ALI ALA, ILE, GLY, PRO, VAL, LEU aliphatic side chain 

AROM TYR, PHE, TRP aromatic side chain (absorbs UV) 

SULFUR CYS, MET side chain containing a sulfur atom 

POL SER, THR, ASN, GLN polar side chain 

CAR ASP, GLU, HIS, LYS, ARG charged side chain 

2 

HF SER, THR, ASN, GLN, ASP, GLU, HIS, LYS, ARG hydrophilic 

HB ALA, VAL, LEU, ILE, MET, PHE, TRP hydrophobic 

NHF GLY, CYS, TYR weakly hydrophilic 

NHB PRO weakly hydrophobic 

 

The analysis of the amino acid composition around disulfide bonds and the classification of the 

amino acid were carried using our program Disulph (see Table 2 in Supplementary Material for details 

on Disulph functionalities). This program, written in FORTRAN, also calculates the relative frequency 

and the density of each entity in the neighboring region of a disulfide bond in twenty pre-determined 

spherical shells with thickness 0.5 Å. The neighboring region of a disulfide bond was defined as a 

sphere, with radius 10 Å, centered at the middle point of this bond, and excluding the cysteines 

involved in the bond (Table 3 in Supplementary Material). All the residues containing at least an atom 

in that region were considered for the statistical analysis. We calculated the conservation of the 

different entities over different superfamilies using the relative frequency of each entity in the 

neighboring region of all disulfide bonds. We performed: (i) a one-way ANOVA hypothesis test with a 

significance of 5% for each entity (residue or class); (ii) a Scheffé test, with the same significance, for 

each entity and pair of superfamilies.  
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Table 2. Set of superfamilies under study. The statistical analyses included all the disulfide 

bonds identified in this protein set. The values in the last three columns were calculated as 

sums over all the PDB structures of each superfamily (see PDB ids in Table 1 in 

Supplementary Material). 

SCOP 

Superfamily 

SCOP 

Class 
SCOP Fold 

Dominant 

Secondary 

Structure 

Disulfide 

Bond 

Propensity
#
 

Total 

Number 

of PDB 

Structures 

Total 

Number of 

Disulfide 

Bonds 

Total 

Number 

of 

Residues 

Crisp 
Small 

proteins 

Crisp 

domain-like 
 5.3% 6 54 1367 

Cystine-

Knot 

Small 

proteins 

Cystine-

Knot 

cykotines 

 3.7% 13 112 3131 

Defensin-

like 

Small 

proteins 

Defensin-

like 
 7.4% 15 47 730 

EGF-

Laminin 

Small 

proteins 
Knottins  6.4% 27 121 2253 

Omega 

toxins 

Small 

proteins 
Knottins  8.9% 28 88 992 

Plant lectins 
Small 

proteins 
Knottins  9.9% 8 100 1045 

Small snake 

toxins 

Small 

proteins 

Snake 

toxins-like 
 6.5% 40 209 3279 

Scorpion-

like toxins 

Small 

proteins 
Knottins  7.9% 70 247 3303 

BBI 
Small 

proteins 
Knottins  9.6% 5 33 371 

BPTI-like 
Small 

proteins 
BPTI-like    5.1% 12 42 814 

Kringle-like 
Small 

proteins 
Kringle-like  3.7% 12 53 1771 

Thioredoxin-

like 

Alpha 

and beta 

proteins 

Thioredoxin  0.8% 43 66 10616 

Most 

frequent 

motif 

Small 

proteins 
Knottins  [6.7%, 7.3%]* - - - 

#
 Calculated by equation 11; * Confidence interval, at a 95% level, for the disulfide bonds 

propensity of SDP structures; EGF: Epidermal growth factor; BBI: Bowman Birk Inhibitors; 

BPTI: basic pancreatic trypsin inhibitor. 
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2.2. Calculation of the Relative Frequencies for Each Entity  

The relative frequency of entity A, in the neighborhood of disulfide j, present in superfamily m, is 

given by: 

( ) ( ) )()()( ,, AfreqAfreqAfreqAfreqrel referencereferencejmjm -=                            (1) 

where freqreferece(A) is the frequency of the same entity in the reference set. 

The relative frequency of entity A, for the superfamily m, that presents nSSm disulfide bonds, is 

given by: 

( ) m

nSS

j

jmm nSSAfreqrelAfreqrel

m


=

=

1

,)(
                                              (2) 

Considering a set with nSF superfamilies, the relative frequency of the entity in the sample 

(rel freq(A)) can be calculated by: 

( ) 
= =

=

nSF

m

nSS

j

mjm

m

nSSAfreqrelnSFAfreqrel

1 1

, /)()/1(                                       (3) 

2.3. ANOVA Test 

Considering nSStotal as the total number of disulfide bonds in the protein set under study, we can 

now calculate two auxiliary quantities, (i) the mean-square error between the superfamilies 

(MSbetweenSF(A)) and (ii) the mean-square error within the superfamilies (MSwithinSF(A)): 

)1())()(()( 2

1

--=
=

nSFAfreqrelAfreqrelnSSAMS m

nSF

m

mbetweenSF                    (4) 

and 

)())()(()(

1 1

2
, nSFnSSAfreqrelAfreqrelAMS total

nSF

m

nSS

j

mjmwithinSF

m

--=
= =

         (5) 

The statistical parameter F, associated with the one-way ANOVA test carried out for entity A, is 

calculated as a quotient between the two mean-square error values:  

)(/)( AMSAMSF withinSFbetweenSF=                                                        (6) 

This parameter should be interpreted as:  

(i) If F < Fcritical, the relative frequency of the considered entity should be equal for all the 

superfamilies (null hypothesis). 

(ii) If F > Fcritical, the mentioned frequency should be different for at least two superfamilies 

(alternative hypothesis).  

In the present case, Fcritical = 1.8 and the null hypothesis never occurs.  
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Alternatively, the statistical parameter F can also be interpreted as a diversity index. The diversity 

of the associated entity over the sample increases when F increases. On the other hand, this diversity 

decreases over the sample when F decreases. The statistical parameter F is invariant with respect to 

any linear transformation. This means that, using this statistical index, diversity is a property 

intrinsically associated with the data sample and completely independent of the reference 

set considered. 

2.4. Scheffé Test  

Complementary to the one-way ANOVA statistics carried out for entity A, we performed the Scheffé 

test to compare the variability associated with two superfamilies m and l. The correspondent statistical 

parameter , ( )Scheffe

m lF A  is defined as:  

,

2

( )

( ( ) ( ) ) ( ( ) (1 / 1 / ) ( 1))

Scheffe

m l

m l withinSF m l

F A

rel freq A rel freq A MS A nSS nSS nSF

=

-    -      

(7) 

This parameter has the same invariance properties of the statistics parameter F, defined for a 

one-way ANOVA test, and should be interpreted in a similar way: 

(iii) If , ( )Scheffe

m lF A  < Fcritical, the relative frequency of the considered entity should be equal for the 

superfamilies m and l (null hypothesis).  

(iv) If , ( )Scheffe

m lF A  > Fcritical, the same frequency should differ for these two superfamilies 

(alternative hypothesis). 

In the present case, Fcritical = 1.8 and the null hypothesis frequently occur. However, the presentation 

of these results would be difficult, because 27 entities were analyzed. Therefore, we would have to 

present 31 tables. So, in order to present the differences in the chemical environment around disulfide 

bonds, we developed new descriptors designated by Scheffé distances. A Scheffé distance ,

Scheffe

m lD  

compares the chemical environment around disulfide bonds between two superfamilies m and l for any 

classification group with nE entities: 

, ,

1

(1/ ) ( )
nE

Scheffe Scheffe

m l m l

A

D nE F A
=

=                                                      (8) 

2.5. Representing the Distances between Superfamilies 

In order to represent distances ( ,

Scheffe

m lD ), inferred from the original 12-dimensional hyper-space, we 

adopted the intuitive form introduced by Xie et al. [32].
 
The coordinates of the original objects (the  

12 superfamiles) are projected in the 3D Cartesian space by minimizing the square deviation cost 

function SD: 

( )
1

2

, ,

1 1

nSF m
Scheffe

l m m l

m l

SD d D
-

= =

= -
 

                                                     (9) 

where dl,m is the distance between the projections the superfamilies m and l in the 3D Cartesian space. 

We used the Newton method to carry out the iterative minimization process. 
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2.6. Density of an Entity 

The density of entity A within a spherical shell i of volume Vi where A occurs n(A)i times for the all 

the disulfide bonds included in the sample can be calculated as 

iii VAnAd )()( =
                                                                 

(10) 

2.7. Disulfide Bonds Propensity
 

The disulfide bonds propensity Prm, for a superfamily m with nPDBm PDB structures, is  

calculated as, 

( ) 
=

=

mnPDB

k

kkmm nresnSSnPDB

1

1001Pr                                             (11) 

where nSSk and nresk are respectively the number of disulfide bonds and the number of natural amino 

acids in the PDB structure k. 

3. Results and Discussion 

3.1. Frequency and Density 

The relative frequencies of the various entities and the corresponding values of the statistical 

parameter F are presented in Figure 1. Cysteines are by far the most abundant amino acid around 

disulfide bonds, placing the class SULFUR on top of the most abundant classes (even though 

methionine has the lowest relative frequency of all amino acids). Almost all these cysteines are 

disulfide bonded, preventing mis-pairing effects. This predominant abundance results from the SDP 

patterns, associated with the above mentioned disulfide cooperative effects. In the thioredoxin-like 

proteins, which present the lowest disulfide propensities, the cysteine is less abundant than in the 

reference set. Weakly hydrophilic and aromatic amino acids are abundant when close to disulfide 

bonds, particularly tyrosine and tryptophan. Aliphatic and hydrophobic amino acids exhibited the 

lowest relative abundance, particularly alanine, valine leucine and isoleucine. Positively charged 

amino acids (arginine and lysine) are very abundant in the neighborhood of disulfides, but since 

negatively charged groups disrupt these bonds glutamate and aspartate have a very low relative 

frequency. Accordingly, disulfides involving cysteines located at the C-terminal of a protein are  

rarely spotted.  

The abundance, evaluated by a relative frequency, provided valuable information on the general 

trends observed in the sample. Although different protein sets and methodologies were used, our 

results are reasonably consistent to those obtained by Petersen et al. [21].
 
In fact, both studies are in 

agreement relatively to four of the five residues with highest abundance (cysteine, tryptophan, tyrosine 

and arginine). Aliphatic and hydrophobic amino acids exhibited the lowest relative abundance in  

both studies. 
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Figure 1. Relative frequencies around disulfide bonds of (A) the natural amino acids,  

(B) classes in classification group 1, and (C) classes in classification group 2. The black 

columns represent the relative frequencies for the sample. The other columns represent the 

relative frequencies for each superfamily. The values of the statistical parameter F 

associated with the one-way ANOVA test are presented in parenthesis. 
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The densities for the twenty natural amino acids and the different entities in the various spherical 

shells (Table 3 in Supplementary Material) are shown in Figure 2. The density distributions of the 

different entities as a function of the distance to the center of the disulfide bond display a common 

pattern: The densities are null at short distances, have maxima at intermediate distances and decrease 

for long distances. 

 



Int. J. Mol. Sci. 2010, 11             

 

4681 

Figure 2. Densities for the twenty natural amino acids and the various classes in the 

different spherical shells. The following color notation is adopted: green means a density 

50% smaller than a uniform density; yellow represents a density between 50% and 150% 

this density; and orange corresponds to 150% larger than the same reference. 
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Interestingly, we can see very different patterns for residues with similar relative frequencies. 

Among those that are on top of the frequency values (Table 4 in Supplementary Material), cysteine is 

the one showing an almost uniform distribution with high concentration practically everywhere from 

2 to 10 Å distance from the disulfide bond. Tyrosine and tryptophan which have relative frequency 

values of around 50% show radically different distributions: Tyrosine is abundant in all shells and 

tryptophan is only significantly present at a distance of 3.5–6 Å from the disulfide bond.  

3.2. Diversity 

The entities (CYS, SULFUR and NHF) with highest relative abundance are associated with the 

largest diversity. However, the two quantities do not present any significant correlation.  

The Scheffé distance matrices, obtained with the three classification criteria used in this work, were 

in reasonable agreement. In this context, we opted to represent only the projected 3D-Cartesian 

coordinates inferred from the 20-dimensional of natural amino acids in Figure 3. 

Figure 3. Projected 3D-Cartesian representation of the twelve superfamilies under study, 

inferred from the Scheffé distances calculated on the original 20-dimensional space of the 

natural amino acid. 

 

 

These descriptors allowed us to find the superfamilies that present similar/dissimilar chemical 

environments around their disulfide bonds, providing useful information regarding evolutionary 

processes and further insight into the classification of disulfide-rich proteins. The main divergences, 

observed in Figure 3, can be explained by significant deviations from the most frequent motif 

identified in Table 2. 

The known differences between the thioredoxin-like superfamily and the 11 superfamilies with a 

disulfide-rich fold domain from small proteins class, are confirmed by the values the Scheffé 

descriptors. These differences include:  

(v) Unlike for the thioredoxin-like superfamily, the folding of small disulfide-rich proteins is 

dependent on disulfide bond cooperative effects—this is evident from the significantly larger 

relative frequency of cysteine residues observed in the small disulfide-rich proteins (Figure 1A 

and Figure 4);  
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(vi) thioredoxin-like proteins have a large hydrophobic core, absent in the small disulfide-rich 

proteins—this leads to significantly lower frequencies of amino acids from classes ALI and HB 

in the small disulfide-rich proteins relatively to the thioredoxin-like proteins (Figure 1B  

and 1C). 

Our results suggest that the amino acid patterns around disulfide bonds might be used as a tool to 

cluster proteins in a biologically relevant way. This is an interesting feature of disulfide bonds, that to 

date has never been considered (previous studies [20,21] have only analyzed global statistical 

tendencies). 

Figure 4. Representative amino acid disulfide environments (top: all side-chains; bottom: 

only the side-chains of the cysteines involved in disulfide-bonds are depicted).  

(A) thioredoxin-like (PDB id 1bed); (B) SDP’s superfamilies (plant defensin, PDB id 

1q9b). A cutoff 10 Å around the disulfide bonds was considered.  

 

 

4. Conclusions 

We did a thorough analysis of the amino acid neighborhood of the disulfide bonds using stratified 

statistics, which implies grouping the various proteins into superfamilies before sampling. We 

examined both the abundance and the diversity of individual amino acids and amino acid groups. 

We found that the regions around disulfide bonds are particularly rich in weakly hydrophilic and 

aromatic amino acids. Aliphatic and hydrophobic amino acids exhibited the lowest relative abundance. 
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The diversity, associated with the distribution of the different entities over the sample, was 

determined by using the F descriptor within the ANOVA statistics. The results obtained show that the 

entities with large diversity are those presenting the largest discriminate behavior between the 

thioredoxin-like and the SDP superfamilies (the cysteine residue and classes SULFUR, NHF and HB).  

We also evaluated the diversity within each superfamily using the Scheffé distances, which were 

introduced in this work. A most frequent motif was identified in the protein set. The 3D-cartesian 

projections of the Scheffé distances reflect essentially the deviations of the diverse superfamilies from 

this motif. In particular, the high divergence between the thioredoxin-like and the SDP superfamilies 

are clearly evident in this representation. These results suggest the possibility of using the composition 

of the chemical environment around disulfide bonds as a tool in protein classification of very divergent 

disulfide-rich proteins. 
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