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Abstract: Development of anticancer drugs targeting Aurora B, an important member of 

the serine/threonine kinases family, has been extensively focused on in recent years. In this 

work, by applying an integrated computational method, including comparative molecular 

field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), 

homology modeling and molecular docking, we investigated the structural determinants of 

Aurora B inhibitors based on three different series of derivatives of 108 molecules. The 

resultant optimum 3D-QSAR models exhibited (q
2
 = 0.605, r

2
pred = 0.826), (q

2
 = 0.52, 

r
2

pred = 0.798) and (q
2
 = 0.582, r

2
pred = 0.971) for MK-0457, GSK1070916 and SNS-314 

classes, respectively, and the 3D contour maps generated from these models were analyzed 

individually. The contour map analysis for the MK-0457 model revealed the relative 

importance of steric and electrostatic effects for Aurora B inhibition, whereas, the 

electronegative groups with hydrogen bond donating capacity showed a great impact on the 

inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model 

of the SNS-314 class revealed the great importance of hydrophobic favorable contour, 

since hydrophobic favorable substituents added to this region bind to a deep and narrow 

hydrophobic pocket composed of residues that are hydrophobic in nature and thus 
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enhanced the inhibitory activity. Moreover, based on the docking study, a further 

comparison of the binding modes was accomplished to identify a set of critical residues 

that play a key role in stabilizing the drug-target interactions. Overall, the high level of 

consistency between the 3D contour maps and the topographical features of binding sites 

led to our identification of several key structural requirements for more potency inhibitors. 

Taken together, the results will serve as a basis for future drug development of inhibitors 

against Aurora B kinase for various tumors.  

Keywords: Aurora B; drug design; 3D-QSAR; CoMFA; CoMSIA; molecular docking; 

homology modeling 

 

1. Introduction 

The Aurora kinases are a family of three highly homologous serine-threonine protein kinases 

(Aurora A, B and C) that play a critical role in regulating many of the processes that are pivotal to 

mitosis [1]. Since it was discovered that Aurora kinases are aberrantly over-expressed in various tumor 

cells [2], there has been intense research in the area of identifying selective Aurora inhibitors as 

potential drugs; up to now more than 10 small molecules have entered clinical studies [1]. In the last 

decades, compared with Aurora B, Aurora A has received most of the attention in terms of a link with 

human cancers in the field of drug development, since the inhibition of Aurora B could rapidly lead to 

a catastrophic mitosis and cell death, and the inhibition of Aurora B, rather than of Aurora A, is also 

more crucial for the inhibition of cell proliferation [3].  

Aurora B is involved in ensuring chromosome segregation and alignment as part of the 

chromosomal passenger protein complex (CPC), which plays a key role in regulating progression 

through and completion of mitosis [4]. A number of studies have characterized the gross cellular 

effects of disrupting Aurora B in cells, including the expression of kinase dead protein, siRNA 

depletion of total protein, or microinjection of neutralizing antibodies [1]. Some work also showed that 

the depression of Aurora B kinase activity by small inhibitors could lead to a failure in cytokinesis and 

abnormal exit from mitosis, resulting in the endoreduplication, accumulation of polyploidy cells and 

ultimately apoptosis [5–7].  

Encouragingly, series of small molecules have been investigated and exhibited efficient inhibitory 

activities against Aurora B [4,8–10]. MK-0457, the first Aurora inhibitor to enter clinical trials, can 

effectively disrupt mitosis and promote apoptosis in cycling cells while still leaving the non-cycling 

cells unaffected [6].
 
It also possesses interesting characteristics in that this compound exhibits 

approximately equal potency to all three types of Aurora kinases, which definitely improves the 

efficiency of the molecule. GSK1070916 [11], a kind of 7-azaindole derivative, is another potent and 

selective ATP-competitive inhibitor of both Aurora B and C with a >250-fold selectivity over  

Aurora A [9]. Recently, this Aurora B inhibitor was also advanced as an agent for the treatment of 

cancer [12,13]. SNS-314, the third important pan-Aurora inhibitor based on a 4-aminothieno [3,2-d] 

pyrimidine scaffold, attracted much research interest not only due to its good affinity against all three 
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isoforms of Aurora kinases [1], but also because of its compelling preclinical profile; it has entered 

clinical trials in patients with solid tumors [4,10].  

Structure-activity analysis is the foundation for understanding the structural features of both the 

inhibitors and the target receptors involved in a particular biological process and thus helps to design 

more effective inhibitors [14]. Therefore, this method has encouraged its wide use as a rational way to 

gain insight into the influence of various interactive fields on the activity and thus to aid in the design 

and forecasting of the inhibitory activity of novel inhibitors [15–21]. In this work, the most widely 

used computational tools, comparative molecular field analysis (CoMFA) and comparative molecular 

similarity indices analysis (CoMSIA) methods [22,23], were used to derive 3D-QSAR models for the 

above three different chemical series of Aurora B inhibitors. Meanwhile, molecular docking was  

also performed to combine with the 3D-QSAR method, presenting more informative data for the  

drug design.  

To date, a number of Aurora B small molecule inhibitors, from structurally diverse chemical series, 

have already been reported or reviewed elsewhere [1,4,8–10]. However, very few series of Aurora B 

inhibitors have so far received much attention from a theoretical perspective. More recently, an elegant 

3D-QSAR work concerning the quinazoline derivatives of AZD1152 and ZM447439 classes combined 

with molecular docking was reported [24]. The authors found the highly active ligands could be 

designed by varying positively charged, bulky, hydrophobic substitutes at the quinazoline ring, and 

bulky and hydrophobic groups around the thiazole ring were desirable for higher activity [24]. More 

recently, several other series of compounds, such as MK-0457 [8], GSK1070916 [9] and SNS-314 [4] 

derivatives, have been reported as promising Aurora B inhibitors. However, no comprehensive features 

of the ligand-receptor interactions or detailed structural determinants at the atomic level were obtained 

for these inhibitors since the X-ray crystallographic structure for the human Aurora B kinase has not 

been reported to date. Therefore, in the present study, we mainly focus on the study of the above three 

classes of inhibitors with an attempt to disclose the structural features of anticancer Aurora B inhibitors 

using an integrated computational method including 3D-QSAR, homology modeling and molecular 

docking simulations. A comparison was also performed to identify similarities and differences in the 

binding modes for each class, and thus a set of vital amino acid residues were found to play a critical 

role in stabilizing the ligand-receptor interactions of Aurora B kinase. To our knowledge, this work 

presents the first 3D-QSAR study for these series of compounds, which will provide a platform for the 

screening and design of novel Aurora B inhibitors as important weapons in the fight against tumors.  

2. Materials and Methods  

2.1. Data Sets  

All molecules used as Aurora B inhibitors in the present study have been collected from the 

literature recently published [4,8–10]. Discarding compounds with unspecified inhibitory activity, the 

data set used comprises series of diverse MK-0457, GSK1070916, SNS-314 derivatives, which have 

been shown to possess a wide spectrum of inhibitory activities against Aurora B enzyme. The three 

different groups of compounds were assayed for their Aurora B inhibitory activity by using the 

standard coupled enzyme assay [8], the human lung cancer cell line A549 [9], the humanized mouse 
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Aurora enzyme [10], Aurora B enzymatic assay and a BrdU cell proliferation assay [4]. The in vitro 

biological activities Ki (μM) and the IC50 values (μM) were converted into the corresponding inhibitory 

activity pKi (−logKi) and pIC50 (−logIC50) values as dependent variables in deriving the QSAR models. 

Since the 3D-QSAR models were generated from training set molecules and further confirmed using 

an external test set, each group was divided into two sets, consisting of training and tested compounds. 

The test set was selected in such a way that the experimental values are almost uniformly distributed in 

the range of the values for the whole set. The structures and inhibitory activity data of representative 

compounds in the training and test sets are given in Tables 1–3. (All the chemicals with their 

structures, biological values, and their division into the training and test sets are listed in the supporting 

information). 

2.2. Molecular Modeling 

All the 3D-QSAR and molecular docking computations were performed using Sybyl (Tripos, Inc.) 

[25]. The 3D structures of molecules were built using the Sketch Molecule function with Sybyl 

software. The geometry optimizations of all compounds were carried out by using the TRIPOS force 

field with the Gasteiger Huckel charges, and repeated minimization was performed using Powell 

conjugated gradient algorithm method until the root-mean-square (rms) deviation of 0.001 kcal/mol 

was achieved. In the present study, the most potent molecule of each class (compounds 25, 40, 105, 

respectively) was chosen as a template to fit the remaining compounds in the training and test sets 

through the fit atoms function in SYBYL. Thus, all compounds finally minimized with the lowest 

energy in the data set were aligned to a common substructure by substructure-based alignment method 

using the “align database” command in SYBYL. The determined common substructures for the 

alignment are shown in bold face. (See Tables 1–3).  

Table 1. Representative skeletons and molecular structures of MK-0457 derivatives and 

their binding affinity values (pKi).  

 

Compound Template R1 Ar pKi (μM) 

8 a Me 4-(NHSO2Me)Ph 0.638 

9 a Me 4-(NHC(O)OtBu)Ph 0.602 

11 a Me 4-(NMeC(O)Me)Ph 0.979 
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Table 1. Cont.  

Compound Template R2 R3 pKi (μM) 

18 b Me Et 0.815 

19
a
 b CyPr Et 1.229 

20
a
 b tBu Et 0.939 

21 b Ph Et 0.839 

22 b 3-Py Et 1.284 

23 b 4-Py Et 1.310 

24 b 
 

Et 1.638 

25 b 
 

Et 2.097 

26 b 
 

Et 1.854 

27 b 
 

Et 1.745 

28 b 

 

Et 1.699 

29
a
 b 

 

Et 1.602 

30
a
 b 

 

Et 2.022 

31 b 

 

Et 1.959 

a 
Test set molecules. The common structure for molecular alignment is shown in bold face. 

Table 2. Representative skeletons and molecular structures of GSK1070916 derivatives 

and their binding affinity values (pIC50).  

 

Compound Template R1 pIC50 (μM) 

35
b
 c Et 2.699 

40 c 
 

3.000 

41 c 
 

2.699 
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Table 2. Cont. 

Compound Template R2 pIC50 (μM) 

48 d 

 

1.699 

52 d 

 

1.959 

53 d 

 

1.244 

54 d 

 

1.180 

55 d 
 

2.301 

57 d 
 

2.301 

62 d 
 

1.658 

63 d 
 

1.081 

Compound Template R2 R3 pIC50 (μM) 

65 e 

  
2.523 

66 e 

  

2.301 

67 e 
  

2.770 

68 e 
  

2.444 

69 e 

  
2.854 

70 e 

  

2.678 

71
a
 e 

  
2.824 

72 e 

  

2.347 

75 e 

  
2.328 

76 e 

  

2.092 

a 
Test set molecules, 

b 
Outliers. The common structure for molecular alignment is shown in bold face. 
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Table 3. Representative skeletons and molecular structures of sns-314 derivatives and their 

binding affinity values (pIC50).  

 

Compound Template R1 pIC50 (μM) 

80 f –Ph 0.921 

82 f 3–F–C6H4 1.745 

88 f 

 

1.658 

89
a
 f 

 

0.921 

Compound Template X Y U R3 pIC50 (μM) 

94 g CH NH CH H 2.000 

97 g CH NMe CH H 0.553 

98 g CH O CH H 0.921 

99 g CH S CH H −0.398 

103
b
 g N NH CH CF3 1.201 

105 g CH NH N CF3 2.301 
a 
Test set molecules, 

b 
Outliers. The common structure for molecular alignment is shown in bold face. 

2.3. 3D-QSAR Analysis 

To derive the CoMFA and CoMSIA descriptor fields, a 3D cubic lattice with grid spacing of 2 Å in 

x, y, and z directions, was finally generated to encompass the aligned molecules. In CoMFA, 

descriptors of steric and electrostatic fields were calculated using an sp
3
 carbon probe atom with a van 

der Waals radius of 1.52 Å and a charge of 1.0 to generate energies for both the steric and electrostatic 

fields with a distance-dependent dielectric at each lattice point. Energy values for both steric and 

electrostatic fields were truncated at a default energy cut-off value of 30 kcal/mol. The CoMFA steric 

and electrostatic fields generated were automatically scaled using the CoMFA-STD method in 

SYBYL. Another 3D QSAR procedure, CoMSIA, involving a common probe atom and similarity 

indices calculated at regularly spaced grid intervals for the prealigned molecules, were derived with the 

same lattice box implemented in SYBYL as that used for the CoMFA calculations. In addition to steric 

and electrostatic fields, hydrophobic, and hydrogen-bond donor and acceptor descriptors were 

calculated with the same lattice box of a regularly placed grid of 2.0 Å, employing a probe atom with 

radius 1.0 Å, charge 1.0, and hydrophobicity +1.0. CoMSIA similarity indices (AF) for a molecule j 

with atoms i at a grid point q were calculated by Equation (1): 

2F,K probe,( )
rq

k ik iq
A j e


 


   (1) 
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where k represents the steric, electrostatic, hydrophobic, hydrogen-bond donor or hydrogen-bond-acceptor 

descriptor. Compared to the CoMFA approach, which has two fields, in the CoMSIA method, five 

physico-chemical properties were associated, including three additional properties of hydrophobic, 

hydrogen bond donor and hydrogen bond acceptor, which were evaluated using the common sp
3
 

carbon probe atom. Meanwhile, a default value of 0.3 was used as the attenuation factor and a distance 

dependent Guassian type functional form has been used between the grid point q and each atom i in the 

molecule. This can avoid singularities at the atomic positions and the dramatic changes of potential 

energy due to grids in the proximity of the surface [26].  

In the partial-least-squares (PLS) analysis, the CoMFA and CoMSIA descriptors served as 

independent variables and the pIC50 or pKi (μM) values served as dependent variables to deduce  

3D-QSAR models [27–31]. The predictive capabilities of the models were first evaluated in  

leave-one-out (LOO) cross validation method. The number of components resulting in the highest 

cross-validated r
2
 and lowest standard error of prediction (SEP) was determined as the optimum 

number of principal components (Nc) in the final PLS analyses. The predictive rpred
2
 based on molecules 

in the test set was calculated to evaluate the predictive power of the CoMFA and CoMSIA models using 

Equation (2): 

2

pred ( ) /r SD PRESS SD   (2) 

where SD is the sum of the squared deviations between the actual activities of the molecules in the test 

set and the mean activity of the molecules in the training set, and PRESS is the sum of the squared 

deviations between the predicted and the actual activity values of every molecule in the test set.  

2.4. Homology Modeling 

Homology modeling procedures are indispensable tools for conducting research involving structure 

based drug design when the experimental 3D-structure of the receptor is not available [32]. In the 

present study, due to the unavailability of Aurora B X-ray crystallographic structure for humans, 

homology modeling process was employed as a theoretical method to predict the protein structure 

from the target amino acid sequence (accession BC000442) obtained from the National Center for 

Biotechnology Information database (http://www.ncbi.nlm.nih.gov). The homology model of Aurora B 

was built based on sequence alignment and the obtained target amino acid sequence was submitted to 

SWISS-MODEL server (Automated Comparative Protein Modeling Server, Version 3.5, 

GlaxoWellcome Experiment Research, Geneva, Switzerland, http://swissmodel.expasy.org) [33,34] for 

a comparative structural modeling. Meanwhile, the template protein (PDB code 2BFX chain A from 

Protein Data Bank http://www.rcsb.org), which exhibits a high resolution (1.8 Å), was employed  

to generate the 3D protein structure. All hydrogen atoms were subsequently added to the  

unoccupied valence of heavy atoms at the corresponding neutral state using the biopolymer module of  

SYBYL package.  

2.5. Molecular Docking 

To explore the interaction and illustrate the accurate binding model for the active site of Aurora B 

with its ligands, molecular docking analysis was carried out by using the Surflex Dock implemented in 
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SYBYL. Meanwhile, the resulting homology protein structure for docking was further developed using 

the protein preparation and refinement utility provided by SYBYL. Finally, each conformer of all 108 

inhibitors in three different groups was docked into the binding site 10 times. Prior to docking analysis, 

in order to assure the quality of the binding mode of the ligands and reproduce the proper X-ray 

structure, the following criteria were applied to perform molecular docking analysis: (1) The key 

residues like Glu161 and Ala157, as major contributors to the enhanced affinity [35], should well bind 

to ligand; (2) the most potent inhibitors (compounds 25, 40 and 105) should have similar binding poses 

in the active site and the top ranked docked solution in one favorable cluster of docking poses meets 

satisfying root-mean-square deviation (RMSD) values; (3) the putative poses of the potent compounds 

were also scored using the Hammerhead scoring function [36], which also serves as an objective 

function for local optimization of poses. Additionally, two parameters, i.e., protomol_bloat and 

protomol_threshold, which determine how far from a potential ligand the site should extend and how 

deep into the protein the atomic probes used to define the protomol can penetrate, are specified 1_0.55, 

0_0.66 and 0_0.75 for each group, respectively. 

3. Results and Discussion  

3.1. CoMFA and CoMSIA Statistical Results 

In order to develop an effective model with good prediction, a number of parameters, such as the 

cross-validated correlation coefficient (r
2

cv), non-cross-validated correlation coefficient (r
2

ncv), 

standard error estimate (SEE) and F-statistic values were taken into consideration. For all of the  

3D-QSAR models, the LOO cross-validation was performed first to identify the cross-validated 

correlation coefficient (q
2
) values. Then the number of components identified in the LOO  

cross-validation process was used in the final non-cross-validated PLS run. Generally, a q
2
 value of 

greater than 0.5 is usually considered significant. To further assess the stability and confidence of the 

derived CoMFA and CoMSIA models, bootstrapping analysis for 100 runs was applied to the 

compounds of the training set. In CoMSIA, five descriptors (steric, electrostatic, hydrophobic, and 

hydrogen-bond-donor and hydrogen-bond-acceptor) are available to be considered. But it has been 

established that the five different descriptor fields are not totally independent of each other and  

that such dependency among individual field usually decrease the statistical significance of the  

models [37]. For this reason, all 31 possible descriptors’ combinations for each group were calculated 

with purpose to build the optimal 3D-QSAR models with the highest q
2
 values and other statistical 

results for each class. Table 4 summarizes the statistical results of the optimum model for each class, 

and for the modeling results of the other 93 combinations of CoMFA or CoMSIA descriptors, see 

Tables S7–S9 in supporting information.  
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Table 4. Summary of statistics and field contributions for the top model of each class. 

Parameters 
MK-0457 GSK1070916 SNS-314 

CoMSIA CoMSIA CoMSIA 

Q
2 a

 0.605 0.52 0.582 

R
2

ncv 
b
 0.882 0.904 0.889 

SEE 
c
 0.232 0.215 0.295 

F 
d
 50.159 65.993 28.832 

R
2

pred 
e
 0.826 0.798 0.971 

SEP 
f
 0.410 0.482 0.572 

PLS components 
g
 3 4 5 

R
2

boot 
h 

0.930 0.936 0.921 

SDboot 
i 

0.028 0.023 0.032 

SEEboot 
j 

0.174 0.172 0.245 

Field contribution 

Steric 0.323 - - 

Electrostatic 0.677 0.69 - 

Hydrophobic - - 0.607 

Hydrogen-bond-donor - 0.31 0.393 
a
 Cross-validated correlation coefficient after the leave-one-out procedure; 

b
 Non-cross-validated 

correlation coefficient; 
c
 Standard error of estimate; 

d
 Ratio of R

2
ncv explained to  

unexplained = R
2
ncv/(1−R

2
ncv); 

e
 Predicted correlation coefficient for the test set of compounds;  

f
 Standard error of prediction. 

g
 Optimal number of principal components; 

h
 Average of correlation 

coefficient for a total of 100 runs of bootstrap analysis; 
i
 Standard deviation of average bootstrap 

analysis correlation coefficient for 100 runs;
 j
 Average standard error of estimate for a total of 100 

runs of bootstrap analysis. 

3.2. Validation of the 3D QSAR Models 

Statistically significant CoMFA and CoMSIA models were derived from the training compounds 

and further used to predict test molecules. The resultant optimum models exhibited agreeable statistical 

results of (q
2
 = 0.605, r

2
pred = 0.826), (q

2
 = 0.52, r

2
pred = 0.798) and (q

2
 = 0.582, r

2
pred = 0.971) for  

MK-0457, GSK1070916 and SNS-314 classes, respectively (Table 4), and relatively small prediction 

errors (<−0.098, 0.044 and 0.038, see Supporting Information). The experimental versus predicted 

activities are shown in Figure 1, through which we can find that all the training and test compounds are 

well distributed around the regression lines, indicating that the obtained CoMFA/CoMSIA models 

presented good performance on both the training and test compounds. 
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Figure 1. The correlation plots of predicted versus actual Aurora B inhibitory activities 

using the training (white squares) and test (black triangles) sets based on (A) CoMSIA 

model of MK-0457; (B) CoMSIA model of GSK1070916 and (C) CoMSIA model of  

SNS-314. The solid lines are the regression lines for the fitted and predicted bioactivities of 

training and test compounds in each class, respectively. 

 

3.2.1. MK-0457 

The 3D-QSAR models were generated from MK-0457 derivatives with pKi (μM) values ranging 

from 0.002 to 2.097 (24 training and 8 test compounds). The statistical results of the optimal model are 

in Table 4. Satisfyingly, most of the 31 models derived from various combinations of fields present 

high predictive r
2

cv values (>0.5). (See Supporting Information). The optimal CoMSIA model yielded 

r
2

cv = 0.605 with 3 components, r
2
ncv = 0.882, r

2
pred = 0.826 and the respective steric and electrostatic 

field contributions of 33% and 67%. And the best CoMFA model also presented reasonable statistical 

features with r
2

cv = 0.604, 8 components, r
2

ncv = 0.992, r
2

pred = 0.692, steric 62% and electrostatic 38% 

field contributions. Overall, the performance of the CoMSIA model is superior to that of the CoMFA 

one. Meanwhile, an incorporation of the hydrogen-bond donor/acceptor or both fields yielded makes 

the models perform poorer, suggesting the steric and electrostatic fields were statistically robust in 

building the models. 

3.2.2. GSK1070916 

Table 4 summarizes the statistical parameters of the optimal model for GSK1070916 compunds. A 

combination of steric and electrostatic fields produced poor CoMFA and CoMSIA models with 

internal predictions of r
2

cv = 0.295 and 0.178, respectively. While, incorporation of the hydrogen-bond 

donor/acceptor or both fields could improve the model performance, thus the optimal CoMSIA model 

generated with these fields showed a reasonable r
2

cv = 0.52 with 4 components, r
2
ncv = 0.904, 

r
2

pred = 0.798 and higher electrostatic field contribution (69%) than hydrogen-bond-donor (31%) field. 

Meanwhile, the models derived from the combinations of SDA (steric, hydrogen-bond donor and 

acceptor fields) and HDA (hydrophobic, hydrogen-bond donor and acceptor fields) showed 

comparable predictions. However, both of them were not accepted as they applied more number of the 

components (up to 9). The 3D contours analyzed for the generated model are shown in Figure 4 (A, B). 
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In building the models, compound 35 was treated as an outlier, because including this compound 

the optimal models yielded a high residual value of more than 1 logarithm unit. In addition, the PLS 

analysis on alignment of all the compounds resulted in modest r
2

cv values (averagely < 0.30), 

indicating possible outlier exists in this data set. This outlier might be due to experimental errors since 

this compound has a similar functional group in –R3 group with those less active compounds, such as 

48, 52, 53 and 54, while this compound has a high pIC50 value.  

3.2.3. SNS-314 

Selective SNS-314 Aurora B inhibitors with IC50 (μM) values ranging from 0.005 to 5.600 were 

used to generate 3D-QSAR models (24 training and 7 test compounds). Although these compounds 

were retrieved from two independent publications [4,10], three common compounds (77, 80 and 83) 

were found to be in both literatures with exactly the same biological activities, which further validates 

the feasibility of utilizing the multi-source data. The statistical parameters of the optimal model are 

shown in Table 4. The CoMFA model showed poor internal predictions (r
2

cv = 0.079) using steric and 

electrostatic fields, which is also true for the CoMSIA model. However, the models using a 

combination of SEHD could improve the model performance (r
2

cv = 0.069–0.430, r
2
ncv = 0.555–0.716 

and r
2

pred = 0.806–0.937). And the model obtained with combination of hydrophobic and  

hydrogen-bond donor fields showed highest r
2
cv = 0.582, r

2
pred = 0.971, r

2
ncv = 0.910 and the 

corresponding contributions of hydrophobic and hydrogen-bond-donor fields of 60.7% and 39.3%. 

Therefore, this model was further used to analyze 3D contour plots in Figure 5 (A, B). 

Compound 107 was eliminated in building the models, as the best model with this compound 

produced a modest r
2

cv value of 0.385. Omission of this resulted in a great increase in r
2

cv value to 

0.582. The outlier status of compound 107 could stem from its structural uniqueness, when compared 

to its counterparts, compounds 94–106.  

3.3. Homology Modeling  

The initial sequence alignment between the target (Aurora B kinase for humans) and the template 

(PDB code: 2BFX) sequences is shown in Figure 2A. The whole sequence identity between the target 

and the template protein is 80.6% and therefore, we conclude that this alignment can be used to 

construct a reliable 3D model [38]. Additionally, besides the insertions and deletions detected in the 

loop regions corresponding to the functional regions of Gly loop (amino acids 81–93), catalytic cleft 

(amino acids 154–161) and activation loop (amino acids 80–220) [35], there is only one single 

replacement detected in the catalytic cleft and two in the activation loop region, and thus the identity of 

the functional region is as high as 85.0%. The superposition of the two 3D structures is shown in 

Figure S1, indicating that the overall conformation of the modeling target is very similar to the 

template with a root-mean-square deviation (RMSD) of 0.078 Å. In addition, our alignment was also 

carefully checked in the key residues of binding site (highlighted in black rectangles) where it was 

found that all critical amino acids (such as Leu83, Lys106, Glu125, Ala157, Glu161 and Asp218) were 

well overlaid in 3D space in the two structures (Figure 2B). 
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Figure 2. (A) The alignments of the sequences of 2BFX chain A template and Aurora B 

target protein. The identical amino acid residues in the sequence alignment are highlighted 

in cyan. Dashed lines denote the amino acid residues deletion. The key residues of binding 

site are highlighted in black rectangles; (B) The enlargement of the superposition structure 

of the active site with compound 40 displayed in sticks. The residues from the template 

protein and the homology modeling protein are highlighted in green and red colors 

respectively, the same residues in the active site are labeled in blue color, while the 

residues differing between them are labeled in their own color.  

 

3.4. Validation of the Docking Protocol 

Docking calculations were used to find the optimal conformation of the ligand in the binding pocket 

of Aurora B protein. The top ranked docked solution of each group was found in one favorable cluster 

of docking poses with an average RMSD value 0.61 Å, 0.03 Å and 1.37 Å, respectively, demonstrating 

the binding mode is correctly reproduced. Additionally, the putative poses of the potent compounds 

were scored using the Hammerhead scoring function, which serves as an objective function for local 

optimization of poses. During this docking process, the protein was considered to be rigid, while the 

ligands flexible. By this process, we found that the binding modes for the most potent compounds of 

each class presented statistically significant total score results of 5.89, 6.19 and 4.98, respectively. The 

most active inhibitors of each group have been nicely docked to the active site and the docked models 

(compounds 25, 40 and 105) are shown in Figures 3C, 4C and 5C, respectively. 

3.5. 3D-QSAR Contour Maps and Molecular Docking Correlation  

3.5.1. MK-0457 

The steric and electrostatic fields of CoMSIA are depicted in Figure 3 (A, B). Compound 25, the 

most potent inhibitor in this series, was overlaid as a reference structure on the maps. The steric 

contour map showed a green region at –R2 group and this substituent partially extended outside the 

binding pocket (shown in Figure 3C), indicating the requirement of bulky substituents in this region 

for a potent Auora B inhibitor. This may account for the qualitative SAR observation that compounds 

24–31, with the introduction of heterocycles as the 6-substituent on the pyrimidine, had an inhibitory 

improvement against Aurora B [8]. Therefore the low potency of compounds (18, 19 and 20) can be 

explained as they have much smaller groups, such as methyl, cyclo-propyl, tert-butyl, respectively. 
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Meanwhile, a sterically disfavored yellow contour is present at the –R3 group, which strongly delimits 

the sideward relocatability. Interestingly, the docking study lends further support to the concept that 

this area was occupied by the residues of Glu161 and Tyr163, indicating that bulky substituents at this 

position will conflict with these residues and decrease the activity (shown in Figure 3C). This is 

reflected in compounds 8, 9 and 11, which have bulky substituents (–NHSO2Me, –NHC(O)OtBu,  

–NMeC(O)Me), respectively, at this position with pKi values below 1. This can serve as an 

explanation for the higher activities of compounds 24–31, who have more bulky substituents in the 

green regions and less bulky substituents in the yellow regions.  

Figure 3. CoMSIA StDev*Coeff contour plots for MK-0457. (A) The steric (green/yellow) 

contour map represents respective 95% and 5% level contribution combined with 

compound 25. Green contours indicate regions where bulky substituents increase activity; 

yellow contours indicate regions where bulky substituents decrease activity; (B) The 

electrostatic (red/blue) contour map represents respective 75% and 25% level contribution 

combined with compound 25. Red contours indicate regions where negative charged 

substituents increase activity; blue contours indicate regions where positive charged 

substituents increase activity; (C) The enlargement for stereoview of the docking structure 

of compound 25 in complex to the active site of the monomer structure of the Aurora B. 

Hydrogen bonds are shown as dotted green lines. Active site amino acid residues are 

represented as sticks, while the inhibitor is shown as ball and stick model. 

 

For the electrostatic contour maps shown in Figure 3B, positive charges favored regions depicted by 

blue are found on both sides of the –R2 group, suggesting that positive charged groups are appreciated 

here. Therefore, it can be explained that the presence of the residues Ala157 and Glu161 observed 

appearing adjacent to these regions. Another blue contour observed beside the –R2 group may possibly 

account for the low activity of compounds 8, 9, which have substituents of –SO2– and –C(O)O–, 

respectively, right in the blue region. In addition, a red contour at atom N of the piperidine ring 
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suggests that a negative charged substituent at this position will enhance inhibitory potency. A 

comparison of compounds 25 and 21–23 shows that a change from a carbon atom to a nitrogen atom  

of the aromatic ring greatly increases the potency, which may be due to a negative charge increase at  

this position. 

3.5.2. GSK1070916 

The graphical representation for the CoMSIA model from electrostatic and hydrogen-bond donor 

fields is depicted in Figure 4 (A, B). Compound 40 was applied as a reference. The blue contour 

completely enclosed the phenyl ring which specifies that positively charged substitutents in this region 

may increase the activity. This is consistent with the docking study that the phenyl ring is surrounded 

by the amino acids Gln129, Glu125 and Asp218. 

Figure 4. CoMSIA StDev*Coeff contour plots for GSK1070916. (A) The electrostatic 

contour map (red/blue) represents respective 80% and 20% level contribution combined 

with compound 40. Red contours indicate regions where negative charged substituents 

increase activity; blue contours indicate regions where positive charged substituents 

increase activity; (B) The hydrogen-bond donor (cyan/purple) contour map represents 

respective 80% and 20% level contribution combined with compound 40. Cyan contours 

indicate regions where hydrogen-bond-donor favorable substituents increase activity; 

purple contours indicate regions where hydrogen-bond-donor unfavorable substituents 

decrease activity; (C) The enlargement for stereoview of the docking structure of 

compound 40 in complex to the active site of the monomer structure of the Aurora B. 

Hydrogen bonds are shown as dotted green lines. Active site amino acid residues are 

represented as sticks, while the inhibitor is shown as ball and stick model.  
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The medium size red-colored contour located reside the pyrrole ring indicates the significance of 

less positive charged substituents in this region. Considering compounds 55, 57, 62, 63, both the two 

molecules of 55, 62 as well as 57, 63 have the same structures except at the 1-position of –R2 group. 

The reason for the difference in activities is attributed to the extra carbonyl substituents of compounds 

55 and 57 at this position. Therefore, enhanced activity might be obtained if a negatively charged 

group is added to this position. The CoMSIA contour map for electrostatic field also has a red contour 

enclosing the –NH– at the 2-position of –R3 group, which indicates that the negative charged 

substituents are preferred for higher activity. Meanwhile, a cyan contour of hydrogen-bond-donor field 

located at the same position suggests the structural requirement for hydrogen-bond-donor favorable 

substituents. These findings point to the need for electronegative groups with hydrogen bond donating 

capacity, such as –NH–, which will probably increase the biological activity. Furthermore, this is also 

consistently reflected in the docking study shown in Figure 4C; the –NH– playing a key role as a 

hydrogen bond donor was involved in hydrogen bonding interactions with the backbone of Asp218 

(2.73 Å, 122.6° and 2.54 Å, 135°). Similarly, both the red and cyan small contours were observed 

appearing adjacent to the hydroxyl of –R1 group, thus suggesting that a negatively charged substituent 

with hydrogen bond donating capacity added to this position would engage in interactions with the 

receptor and enhance the inhibitory activity. As expected, Ala157 amino residue was found to form 

strong hydrogen bond contacts with the hydroxyl of compound 40 (1.80 Å, 142.5° and 2.10 Å, 157.2°). 

Consequently, hydroxyl of –R1 group appears to plays an important role in stabilizing the  

ligand-receptor interactions. Moreover, these findings further support the putative binding mode of the 

initial structure-activity relationship study that the pyrazole ring occupies the sugar pocket region of 

the ATP-binding site [14]. Therefore, this may possibly account for the high Aurora B inhibitory 

activity of compounds 39, 40 and 41, which have incorporated polar hydrogen bond donating groups  

(–OH) forming hydrogen bonds with Ala157 residue to enhance the potency. 

3.5.3. SNS-314  

Figure 5 provides the graphical representation for the CoMSIA model using hydrophobic and 

hydrogen-bond donor fields, with compound 105 as the template. The yellow contour at the –R3 group 

suggests that substituents added here desired a favorable hydrophobic interactions with the target 

receptor. This is consistent with the docking study that most of the amino acid residues near the yellow 

contour regions are hydrophobic in nature (e.g. Val, Ala and Leu). As depicted in Figure 5C, the 

substituent (–CF3) at the –R3 group is placed in the hydrophobic pocket formed by Leu154, Leu138, 

Val91, Ala104, and Ala217. Thus, this can be expected to explain the correspondingly lower activities 

of compounds 80 and 89. In contrast, compounds 82 and 88 that have groups with high 

hydrophobicity, such as –CF3 and –F, at the –R3 group of the aromatic ring are distinctly more  

active [4]. Another small yellow contour observed close to the meta-position of the phenyl ring 

indicates that hydrophobically favored substituents connected to this position will enhance the 

biological activity. For example, the structure of compound 100 has an N atom at meta-position of the 

phenyl ring, while compound 103 has a C atom in the opposite and thus shows a distinctly less 

inhibitory activity than compound 100. Meanwhile, the white contour observed encompassing the 

imidazole ring moiety indicates the significance of hydrophilic substituents here. This is in agreement 
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with the experimental observation that compounds 97–99 with more hydrophobic substituents of  

–NMe–, –O–, –S–, respectively, in this region have a lower activity than compound 94. The 

reasonably higher inhibitory activity of compound 94 is probably due to occupancy of –NH–, which  

is placed in the white contour and forms hydrogen bond with residue identified as Ala157  

(2.03 Å, 162.5°). A small cyan contour seen distantly located from the –NH of the imidazole ring 

suggests occupancy of this spatial region by a hydrogen bond donor group for a strong inhibitory 

activity. This may be due to the involvement of Ala157 which plays a major role as a hydrogen bond 

acceptor during the interaction with target. A medium size purple contour map seen under the phenyl 

ring indicates that the region is preferred to hydrogen bond acceptor groups. And this observation is 

also consistent with our previous docking study that indicated that –NH of the Gly160 residue acting 

as a hydrogen-bond donor at this area would create desirable close contact between the receptor and 

the ligand as shown in Figure 5C. 

Figure 5. CoMSIA StDev*Coeff contour plots for SNS-314. (A) The hydrophobic contour 

map (yellow/white) represents respective 80% and 20% level contribution combined with 

compound 105. Yellow contours indicate regions where hydrophobic favorable 

substituents increase activity; white contours indicate regions where hydrophobic 

unfavorable substituents increase activity; (B) The hydrogen-bond donor (cyan/purple) 

contour map represents respective 85% and 15% level contribution combined with 

compound 105. Cyan contours indicate regions where hydrogen-bond-donor favorable 

substituents increase activity; purple contours indicate regions where hydrogen-bond-donor 

unfavorable substituents decrease activity; (C) The enlargement for stereoview of the 

docking structure of compound 105 in complex to the active site of the monomer structure 

of the Aurora B. Hydrogen bonds are shown as dotted green lines. Active site amino acid 

residues are represented as sticks, while the inhibitor is shown as ball and stick model.  
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3.6. Comparison of Binding Modes for Each Class 

In order to get a better understanding of the variations in biological activities, we compared the 

binding modes of each group seeking to explore their similarities and differences. Our docked models 

revealed that hydrogen bonding is an important interaction between the inhibitor and the target 

receptor. According to the docking study, a total of five hydrogen bonds were formed between 

compound 25 and residues Lys106 (2.32 Å, 153.8°; 2.65 Å, 117.2°; 2.58 Å, 114.8°), Ala217 (2.92 Å, 

101.5°), and Glu125 (3.28 Å, 160.2°) of the target receptor (Figure 3C). Interestingly, the common 

structure of MK-0457 derivatives was found to form a total of five key hydrogen bonding interactions 

with the receptor. Therefore, this further supports the evidence of its essential role for the overall 

inhibitory activity. Furthermore, Ala157 and Glu161 residues were also found to possess important 

electrostatic repulsion interactions with the ligand. Additionally, for the derivatives of GSK1070916, 

eight hydrogen bonds were uncovered during the docking procedure. Amino acids of Lys106 (1.87 Å, 

129.6°; 2.79 Å, 110°; 2.91 Å, 119.8°), and Asp218 (2.08 Å, 150.3°; 2.54 Å, 135°) appeared to have 

hydrogen bonding interactions with compound 40. Meanwhile, residue Ala157, identified as a major 

contributor to the enhanced affinity, was also uncovered to form strong hydrogen bonds with the 

receptor (2.10 Å, 157.2°; 1.80 Å, 142.5°; 2.23 Å, 166.6°). For this reason, it provided stable 

interactions of inhibitors with the surrounding environment. In addition, for the class of SNS-314, only 

three hydrogen bonds were formed between the active binding site of the target receptor and the 

docked compound 105. As depicted in Figure 5C, Ala157 (2.01 Å, 163.3°; 2.08 Å, 161.7°) and Leu83 

(1.76 Å, 146.3°) were involved in the hydrogen bonding contacts with compound 105, possessing a 

further stabilization between the ligand and the receptor. 

Figure 6. Stereoview of the docked conformations of compounds 25, 40 and 105, 

respectively, in the active site of Aurora B kinase. The hydrogen bonds are shown by 

broken lines. Compounds 25, 40 and 105, colored purple, cyan and orange, are presented in 

pictures a, b and c, respectively. The important amino acid residues, Lys106, Ala157 and 

Glu161 (stick rendering) are colored by atom type (C, yellow; N, blue; H, white; O, red).  

 

Interestingly, two common active amino acid residues were found among the three classes (as 

shown in Figure 6). Lys106 residue was found to possess hydrogen bonding interactions with both the 

inhibitors (compounds 25 and 40), respectively, whereas, compounds 40 and 105 both presented 

Ala157 as an active amino acid residue. Therefore, it can be reasonably presumed that Ala157 and 

Lys106 are considered to be vital amino acids that have great effects on the ligand-receptor 
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interactions of Aurora B kinase. Therefore, it may possibly account for the overall higher inhibitory 

activities of GSK1070916 class than the MK-0457 and SNS-314 classes. The most potent inhibitor of 

GSK1070916 derivatives (compound 40) has more hydrogen bonding interactions with both Ala157 

and Lys106 residues and thus is more active than the other two inhibitors (compounds 25 and 105)  

that do not. Additionally, the docking study also revealed the importance of the amino acid  

esidue, Glu161, which possesses strong electrostatic repulsion interactions with all the three  

potency inhibitors. 

4. Conclusions  

The 3D-QSAR studies yielded stable and statistically significant predictive models with relative 

high cross-correlation coefficients for predicting the activities of new Aurora B inhibitors. A high 

LOOCV r
2
 value and a small standard deviation indicate the existence of a similar relationship in all 

compounds of the series used in the study. The overall study for the optimal model from the MK-0457 

class implies the crucial roles of steric and electrostatic field effects, while the GSK1070916  

model revealed the importance of electrostatic and hydrogen-bond donor fields. In addition, for  

SNS-314, hydrophobic and hydrogen-bond donor fields were found to be more important than the  

other descriptors. 

Satisfyingly, a good correlation was attained between the 3D-QSAR contour maps and the 

corresponding predictive binding mode. For the MK-0457 model, the bulky substituent of –R2 group 

plays a main contribution toward the inhibitory activity, which is consistent with the existence of a 

wide steric gorge enclosing this group. In addition, the carbonyl group at 1-position is critical for the 

increase in the inhibitory activity. For GSK1070916 compounds, the preference for electronegative 

groups with hydrogen bond donating capacity at 2-position and –R1 group shows a great impact on the 

overall inhibitory activities. The model for SNS-314 revealed the hydrophobic favorable property at 

the –R3 group, which is consistent with the docking results. And the docking analysis demonstrated the 

importance of Glu161, Ala157 and Lys106 in facilitating Aurora B recognition of its inhibitors.  
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