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Abstract: In the present work, the support vector machine (SVM) and Adaboost-SVM 
have been used to develop a classification model as a potential screening mechanism for a 
novel series of 5-HT1A selective ligands. Each compound is represented by calculated 
structural descriptors that encode topological features. The particle swarm optimization 
(PSO) and the stepwise multiple linear regression (Stepwise-MLR) methods have been 
used to search descriptor space and select the descriptors which are responsible for the 
inhibitory activity of these compounds. The model containing seven descriptors found by 
Adaboost-SVM, has showed better predictive capability than the other models. The total 
accuracy in prediction for the training and test set is 100.0% and 95.0% for  
PSO-Adaboost-SVM, 99.1% and 92.5% for PSO-SVM, 99.1% and 82.5% for  
Stepwise-MLR-Adaboost-SVM, 99.1% and 77.5% for Stepwise-MLR-SVM, respectively. 
The results indicate that Adaboost-SVM can be used as a useful modeling tool for  
QSAR studies.  
 
Keywords: classification; 5-HT1A selective ligands; topological descriptor; particle swarm 
optimization; Adaboost-SVM 
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1. Introduction  
 

Selective serotonin (5-HT) is an important neurotransmitter that mediates various physiological and 
pathological processes in the peripheral and central nervous system by interaction with several 
different receptors [1]. To date, 14 serotonin receptor subtypes (5-HTRs) with seven subfamilies  
(5-HT1-7) have been identified  on the basis of molecular cloning, amino acid sequence, pharmacology, 
and signal transduction [2]. Among the 5-HTRs, the 5-HT1A subtype is a high affinity serotonin 
receptor expressed on both the neurons and nonneuronal cells throughout the brain and the spinal  
cord [3]. In both rodents and humans, the 5-HT1A receptor [4] is highly concentrated in cortical and 
limbic brain areas associated with memory functions. And it is located both pre- and postsynaptically, 
drugs acting at the 5-HT1A receptor can, depending on the dosages, inhibit or enhance 5-HT1A receptor 
function, resulting in varying modulatory effects on key neurotransmitters (glutamate, GABA, and 
acetylcholine (ACh)) involved in cognition [4]. For example, the 5-HT1A receptor partial agonist 
S15535 facilitated memory function in a number of behavioral models [5], because the actions of 
S15535 involved stimulation of the somatodendritic 5-HT1A autoreceptors and blockade of 
postsynaptic 5-HT1A receptors in the frontal cortex and hippocampus. Furthermore, 5-HT1A receptor 
antagonists such as WAY-100635 can, in a dose-dependent manner, improve memory function, 
because it increases the basal (non-stimulated) ACh release in the cortical and hippocampal areas of 
the rat brain [5]. Recently, Bert et al. [6] reported increasing the number of 5-HT1A-receptors in cortex 
and hippocampus does not induce mnemonic deficits in mice. The dosages of drugs can affect its 
performance, such as, at higher doses, the full 5-HT1A-receptor agonist 8-OH-DPAT was found to 
impair learning, most likely due to activation of postsynaptic sites [6]. However, low doses of  
8-OH-DPAT can improve learning and memory, because it can reduce 5-HT release in the projection 
areas of the raphe nuclei [4] and hippocampal 5-HT release in anaesthetized rats [7]. Moreover, 
different 5-HT1A receptor antagonists in the rat have reported facilitation [8], impairment [9] or no 
effects [10] on cognitive performance in various tasks. These contradictory findings may be explained 
by different behavioral procedures, route of administration, and differential affinities for pre- and 
postsynaptic 5-HT1A receptors, as well as lack of receptor specificity of the 5-HT1A receptor 
antagonists used in the different studies. Notable, enhanced brain 5-HT activity improves memory in 
animals and humans whereas decreasing brain 5-HT levels by acute 5-HT depletion has been shown to 
impair it [11]. Hence, strategies discriminating the above sources of serotonergic tone will also 
contribute to the in vivo assessment of inverse agonist [12], agonist or antagonist effects, with 5-HT1A 
receptors being a good candidate considering their tone as well as pre- and postsynaptic localization. 
Several potent 5-HT1A ligands belong to different chemical classes such as arylpiperazine compounds 
[13], 4-halo-6-[2-(4-arylpiperazin-1-yl)ethyl]-1H-benzimidazoles [14], piperazine-pyridazinone 
derivatives [15], [[(arylpiperazinyl) alkyl]thio]thieno[2,3-d]pyrimidinone derivatives [16], 3-[(4-aryl) 
piperazin-1-yl]-1-arylpropane derivatives [17], 4-[2-(3-methoxyphenyl) ethyl]-1-(2-methoxyphenyl) 
piperazine [18], and arylpiperazinylalkylthiobenzimidazole, benzothiazole, or benzoxazole  
derivatives [1].  

In previous studies, many groups were more interested in the synthesis of novel compounds as 
selective 5-HT1A Serotonin Receptor Ligands, but time and cost considerations do not make it feasible 
to carry out binding bioassays on every molecule. Alternatively, an untested molecule might be 
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evaluated using the information from already obtained bioassays and the ability to build quantitative 
structure activity relationships (QSAR) modeling. QSAR modeling seeks to discover and use 
mathematical relationships between chemical structure and biological activity. The approach does not 
depend on experimental data of novel compounds as selective 5-HT1A Ligands, and need the molecular 
descriptors of the compounds, which can be calculated from the molecular structure alone. Once the 
structure of a compound is known, any molecular descriptor can be calculated no matter whether the 
compound is synthesized or not. When a model is established, we can use it to predict the properties of 
compounds and see which structural factors influence those properties. In order to establish the QSAR 
model, we should use appropriate molecular descriptors and select suitable modeling methods, 
including linear methods or nonlinear methods such as LDA (Linear Discriminant Analysis) [13], 
Spectral-SAR Algorithm [19,20], MLR (Multiple Linear Regression), PCA (Principal Component 
Analysis), HCA (Hierarchical Cluster Analysis), KNN (K-nearest Neighbor), PLS (Partial Least 
Squares), SIMCA (Soft Independent Modeling of Class Analogy), different types of artificial neural 
networks (ANN), SVM (Support Vector Machines), genetic algorithms (GA), HM (The Heuristic 
Method), and Stepwise -MLR (Stepwise Multiple Linear Regression). They can be selected in the 
development of a mathematical relationship between the structural descriptors of compounds and the 
corresponding activity of compounds. 

In the past several years, many authors have studied 5-HT1A receptor ligands using different QSAR 
models. Chilmonczyk et al. proposed a 3D QSAR model for various classes of 5-HT receptor ligands 
by applying molecular electrostatic potential [21]. Borosy et al. employed 3D QSAR analysis of a 
novel set of pyridazinothiazepines and pyridazinooxazepines with moderate-to-high affinity to  
5-HT1A-receptors, whose model identified by DISCO (DIStance Comparison) served as a suitable 
mode of superposition for subsequent comparative molecular field analysis [22]. Later, Menziani et al. 
designed a theoretical QSAR model based on theoretical descriptors, ad hoc defined size and shape 
descriptors. And theoretical descriptors derived by means of the program CODESSA and ad hoc 
defined size and shape descriptors have been employed for deciphering, on a quantitative ground, the 
molecular features responsible for affinity and selectivity in a series of potent N4-substituted 
arylpiperazines antagonists acting at postsynaptic 5-HT1A displaying a wide range of selectivity 
towards the α1-adrenoceptors [23]. Guccione et al. reported 5-HT1A and α1-adrenergic receptor  
(α1-AR) receptor binding properties of a series of 23 thienopyrimidinones using HASL 3D-QSAR 
models. And the multiconformer 3D-QSAR model was demonstrated to yield robust cross-validated 
models for the 23 thienopyrimidinones, which were more predictive than models based on single 
conformers. Furthermore, the model can avoid the alignment problems typical to 3D-QSAR analyses, 
and it can represent advancement over other alignment-based methods in avoiding artifactual edge 
effects and providing smooth interaction contours amenable to direct interpretation [24]. Recently, 
several groups have used different QSAR models for prediction of binding affinity to the 5-HT1A 
receptor of a series of structurally diverse compounds [13,25,26]. Because most of the QSAR models 
are limited in their applicability to compounds that have a common template structure, accurate 
prediction of binding affinity of novel 5-HT1A receptors remains difficult. However, classification of 
binding affinity of diverse compounds to some extent may be feasible. 

In this work, a new QSAR model for the binary classification of 153 5-HT1A selective ligands has 
been developed with Adaboost-SVM. The variables were calculated by the E-Dragon 1.0 software, 
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and the descriptors were pre-selected by particle swarm optimization (PSO) and stepwise multiple 
linear regression (Stepwise -MLR) methods.  
 
2. Results and Discussion  
 
2.1. Variable selection and model building 
 

In the present work, the stepwise multiple linear regression (stepwise-MLR) and the particle swarm 
optimization (PSO) optimization techniques have been used for the selection of the most relevant 
descriptors from the pool of 77 topological descriptors depending on the compounds in the training set. 

 
2.1.1. Variable selection by stepwise-MLR 
 

Stepwise-MLR is a popular technique that has been used on the training data set to select the most 
appropriate descriptors [27]. This method has been used for variable selection or model development 
in different systems [28-30]. We select significant descriptors using Stepwise-MLR procedure. 

The pool of 119 topological descriptors has been calculated by using the software E-Dragon 1.0 for 
each compound in the training set. The pool of 42 topological descriptors with constant or near 
constant values inside each group is discarded. The eight most significant descriptors in the training 
set, which were selected by Stepwise-MLR are: MSD, MAXDN, MAXDP, PW4, PW5, PJI2, BAC, 
ICR, whose definitions are depicted in Table 1. 

Table 1. Symbols of topological descriptors for molecular descriptors used in different 
models and their definitions. 

Symbols Descriptor definition 
MSD mean square distance index (Balaban) 
MAXDN maximal electrotopological negative variation 
MAXDP maximal electrotopological positive variation 
PW4 path/walk 4 - Randic shape index 
PW5 path/walk 5 - Randic shape index 
PJI2 2D Petitjean shape index 
BAC Balaban centric index 
ICR radial centric information index 
TI1 first Mohar index TI1 
D/D distance/detour index  
DELS molecular electrotopological variation 
S1K 1-path Kier alpha-modified shape index 
ECC eccentricity 
MDDD mean distance degree deviation 

 
The eight variables compose of the variable subset of Stepwise-MLR-SVM and Stepwise-MLR-

Adaboost-SVM model, respectively. The predicted result of training set and test set are listed in Table 
2. The misclassified samples (marked by superscript ‘**’) of SVM and Adaboost-SVM are also listed. 
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The same misclassified ones of SVM and Adaboost-SVM are a9, a10, e8, m8, n5 and n6. For the 
training set, when only SVM was used as the base classifier, the total accuracy was 0.991 (Table 3). 
When AdaBoost algorithm was used to boost the SVM classifier, after 100 iterations, the total 
accuracy was 0.991 (Table 3). For the testing set, for SVM only and the AdaBoost algorithm, the total 
accuracy was 0.775 and 0.825 (Table 3), respectively. Comparing with the only the SVM algorithm, it 
showed that better predicted accuracy was obtained by Stepwise-MLR-Adaboost-SVM. The predictive 
ability of Stepwise-MLR-Adaboost-SVM is raised 5.0%. The result implies that the AdaBoost 
algorithm can boost the SVM classifier, and let it make a stronger classifier. 
 

Table 2. Compounds’ structures, pKi values and their corresponding classifications. 

No. 
R1 R2 Z n pKi 

Class 

 Exp. MS MAS PS PAS 

a1 H 2-Methoxyphenyl CHOH － 7.32 1 1 1 1 1 

a2 H 2-Methoxyphenyl CHO-4-CF3C6H4 － 6.35 -1 -1 -1 -1 -1 

a3* H 2-Methoxyphenyl CNOH － 7.76 1 -1** 1 1 1 

a4 H 4-Chlorophenyl CO － 6.10 -1 -1 -1 -1 -1 

a5* H 4-Chlorophenyl CHO-4-CH3C6H4 － 5.84 -1 -1 -1 -1 -1 

a6 H 4-Chlorophenyl CHO-3,4-OCH2OC6H3 － 6.26 -1 -1 -1 -1 -1 

a7 H 4-Methoxyphenyl CO － 5.30 -1 -1 -1 -1 -1 

a8 H 4-Methoxyphenyl CHOH － 5.30 -1 -1  -1 -1 

a9* H 2-Chlorophenyl CO － 6.74 1 -1** -1** 1 1 

a10* H 2-Chlorophenyl CHOH － 6.94 1 -1** -1** 1 1 

a11 H 2-Chlorophenyl CHO-4-CF3C6H4 － 5.30 -1 -1 -1 -1 -1 

a12 H 4-Fluorophenyl CO － 6.10 -1 -1 -1 -1 -1 

a13 H 4-Fluorophenyl CHO-4-CF3C6H4 － 5.30 -1 -1 -1 -1 -1 

a14 H 2-Pyridyl CO － 7.30 1 1 1 1 1 

a15* H 2-Pyridyl CHOH － 6.81 1 1 1 1 1 

a16 H 4-Nitrophenyl CO － 5.30 -1 -1 -1 -1 -1 

a17 H 4-Nitrophenyl CHOH － 5.30 -1 -1 -1 -1 -1 

a18 H 4-Nitrophenyl CHO-4-CF3C6H4 － 5.30 -1 -1 -1 -1 -1 

a19 Phenyl 2-Methoxyphenyl CO － 5.44 -1 -1 -1 -1 -1 

a20* Phenyl 2-Methoxyphenyl CHO-4-CF3C6H4 － 5.30 -1 -1 -1 1** -1 

a21 Methoxy 2-Methoxyphenyl CO － 5.76 -1 -1 -1 -1 -1 

a22 Methoxy 2-Methoxyphenyl CHOH － 6.49 -1 -1 -1 -1 -1 

a23 Methoxy 2-Methoxyphenyl CHO-4-CF3C6H4 － 6.00 -1 -1 -1 -1 -1 

a24 H 2-Methoxyphenyl CO － 7.30 1 1 1 1 1 

a25 H 4-Chlorophenyl CHOH － 6.10 -1 -1 -1 -1 -1 

a26 H 4-Methoxyphenyl CHO-4-CF3C6H4 － 5.30 -1 -1 -1 -1 -1 

a27 H 2-Pyrimidyl CO － 6.92 1 1 1 1 1 

a28 H 2-Pyrimidyl CHO-4-CF3C6H4 － 5.80 -1 -1 -1 -1 -1 

a29 H 2-Pyridyl CHO-4-CF3C6H4 － 5.80 -1 -1 -1 -1 -1 

a30 Phenyl 2-Methoxyphenyl CHOH － 6.07 -1 -1 -1 -1 -1 

b1 H 2-Methoxyphenyl CHOH － 7.30 1 1 1 1 1 

b2* H 2-Methoxyphenyl CHO-4-CF3C6H4 － 6.59 -1 -1 -1 -1 -1 
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Table 2. Cont. 

b3 H 2-Methoxyphenyl CNOH － 8.19 1 1 1 1 1 

b4* H 4-Chlorophenyl CO － 6.15 -1 -1 -1 -1 -1 

b5 H 2-Chlorophenyl CO － 6.70 -1 -1 -1 -1 -1 

b6 H 2-Chlorophenyl CHOH － 6.70 -1 -1 -1 -1 -1 

b7 H 1-Naphthyl CO － 7.46 1 1 1 1 1 

b8* 2,5-Dimethyl 2-Methoxyphenyl CO － 8.30 1 1 1 1 1 

b9* 2,5-Dimethyl 2-Hydroxyphenyl CO － 8.12 1 -1** 1 1 1 

b10 2,5-Dimethyl 2-Hydroxyphenyl CHOH － 7.05 1 1 1 1 1 

b11 2,5-Dimethyl 1-Naphthyl CO － 7.00 1 1 1 1 1 

b12* H H CO － 7.80 1 1 1 1 1 

b13 H H CHOH － 5.56 -1 -1 -1 -1 -1 

b14 2,5-Dimethyl 2,5-Dimethyl CHOH － 7.92 1 1 1 1 1 

c1 H 2-Methoxyphenyl CO － 8.00 1 1 1 1 1 

c2 H 2-Methoxyphenyl CHOH － 7.72 1 1 1 1 1 

c3 H 4-Chlorophenyl CO － 5.30 -1 -1 -1 -1 -1 

c4 H 4-Chlorophenyl CHOH － 5.30 -1 -1 -1 -1 -1 

c5 5-Methyl 2-Methoxyphenyl CO － 7.76 1 1 1 1 1 

c6 5-Methyl 2-Methoxyphenyl CHOH － 7.47 1 1 1 1 1 

c7 5-Nitro 2-Methoxyphenyl CO － 6.47 -1 -1 -1 -1 -1 

d1 H 2-Methoxyphenyl CHOH － 6.38 -1 -1 -1 -1 -1 

d2 H 4-Chlorophenyl CO － 5.30 -1 -1 -1 -1 -1 

d3* H 4-Chlorophenyl CHOH － 5.30 -1 -1 -1 -1 -1 

d4* H 2-Methoxyphenyl CO － 6.60 -1 -1 -1 -1 -1 

e1 H 2-Methoxyphenyl CO － 7.36 1 1 1 1 1 

e2 H 2-Methoxyphenyl CHOH － 7.70 1 1 1 1 1 

e3 H 4-Chlorophenyl CO － 5.30 -1 -1 -1 -1 -1 

e4 H 4-Chlorophenyl CHOH － 5.30 -1 -1 -1 -1 -1 

e5* H 2-Hydroxyphenyl CO － 6.96 1 -1** 1 1 1 

e6 H 2-Hydroxyphenyl CHOH － 7.74 1 1 1 1 1 

e7 H 4-Chloro-2-

methoxyphenyl 

CO 
－ 6.30 -1 -1 -1 -1 -1 

e8* H 4-Chloro-2-

methoxyphenyl 

CHOH 
－ 6.44 -1 1** 1** -1 -1 

e9 H 4-Fluoro-2-

methoxyphenyl 

CHOH 
－ 6.30 -1 -1 -1 -1 -1 

e10* H 1-Naphthyl CO － 7.00 1 1 1 1 1 

e11* H 4-Fluoro-2-

methoxyphenyl 

CO 
－ 6.30 -1 -1 -1 -1 -1 

f1 Cl Phe － － 7.05 1 -1** 1 1 1 

f2 Cl 2-MeOPhe － － 8.28 1 1 1 1 1 

f3 Cl 2-ClPhe － － 7.34 1 1 1 1 1 

f4 Cl 2-CF3Phe － － 7.68 1 1 1 1 1 

f5 Cl Pyrimidin-2-yl － － 6.28 -1 -1 1** -1 -1 

f6 Br Phe － － 7.62 1 1 1 1 1 

f7 Br 2-MeOPhe － － 8.85 1 1 1 1 1 
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Table 2. Cont. 

f8* Br 2-ClPhe － － 9.85 1 1 1 1 1 

f9 Br 2-CF3Phe － － 7.99 1 1 1 1 1 

f10 Br Pyrimidin-2-yl － － 6.89 1 1 1 1 1 

f11 － Phe － － 6.71 1 1 1 1 1 

f12 － 2-MeOPhe － － 7.69 1 1 1 1 1 

f13 － 2-ClPhe － － 6.61 -1 -1 -1 1** -1 

f14 － 2-CF3Phe － － 7.48 1 1 1 1 1 

g1* － 2-isopropoxyphenyl － － 8.89 1 1 1 1 1 

g1* － 2-ethoxyphenyl － － 7.96 1 1 1 1 1 

g1 － 2,3-dihydrobenzo 

[1,4]dioxin-2-yl 

-methyl 

－ 

－ 6.63 -1 -1 -1 -1 -1 

g1 － 2-pyrimidyl － － 6.68 -1 -1 -1 -1 -1 

g1 － 3-chlorophenyl － － 7.77 1 1 1 1 1 

g1 － 3-trifluoromethylphenyl － － 6.86 1 1 1 1 1 

h1 － 4-(3-

chlorophenyl)piperazin-

1-yl 

－ 

3 6.21 -1 -1 -1 -1 -1 

h2 － 4-(3-

trifluorophenyl)piperazin

-1-yl 

－ 

3 6.93 1 1 1 1 1 

h3 － 4-pyridin-2-yl-piperazin-

1-yl 

－ 
3 5.94 -1 -1 -1 -1 -1 

h4 － 4-(2-

isopropoxyphenyl)pipera

zin-1-yl 

－ 

2 8.70 1 1 1 1 1 

i1* OEt － － 4 8.30 1 1 1 1 1 

i2 OEt － － 7 8.49 1 1 1 1 1 

i3 OiPr － － 4 8.41 1 1 1 1 1 

i4 OiPr － － 7 8.14 1 1 1 1 1 

j1* Me Me NH2 － 9.80 1 1 1 1 1 

j2 Me COOC2H5 NH2 － 8.87 1 1 1 1 1 

j3 Me C2H5 NH2 － 9.72 1 1 1 1 1 

j4* H Me C2H5 － 8.48 1 1 1 1 1 

j5 Me Me C2H5CH= CH2 － 7.90 1 1 1 1 1 

j6 Me Me NHCOCH3 － 8.36 1 1 1 1 1 

j7* Me Me H － 7.88 1 1 1 1 1 

j8 Me Me Me － 8.79 1 1 1 1 1 

j9* Me Me NHC6H5 － 6.57 -1 -1 -1 -1 -1 

k1 －  － 3 9.42 1 1 1 1 1 

k2* －  － 3 9.09 1 1 1 1 1 

k3 －    － 3 8.62 1 1 1 1 1 

k4* －  － 3 8.43 1 1 -1** 1 1 

k5 －  － 1 5.82 -1 -1 -1 -1 -1 

k6 －  － 3 8.43 1 1 1 1 1 
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k7 －  － 2 7.64 1 1 1 1 1 

k8 －  － 3 9.57 1 1 1 1 1 

L1* 2-OCH3-

phenyl 

4-CH3-phenyl C=O 
－ 7.00 1 1 1 1 1 

L2 2-OCH3-

phenyl 

4-CH3-phenyl CHOH 
－ 7.40 1 1 1 1 1 

L3 2-OCH3-

phenyl 

2-CH3-phenyl C=O 
－ 7.60 1 1 1 1 1 

L4* 2-OCH3-

phenyl 

2-CH3-phenyl CHOH 
－ 7.67 1 1 1 1 1 

L5 2-OCH3-

phenyl 

2,4-di-CH3-phenyl C=O 
－ 7.38 1 1 1 1 1 

L6* 2-OCH3-

phenyl 

2,4-di-CH3-phenyl CHOH 
－ 7.05 1 1 1 1 1 

L7 2-OH-phenyl 2,4-di-CH3-phenyl C=O － 6.94 1 1 1 1 1 

L8 2-OH-phenyl 2,4-di-CH3-phenyl CHOH － 6.96 1 1 1 1 1 

L9 1-Naphtyl 2,4-di-CH3-phenyl C=O － 6.30 -1 -1 -1 -1 -1 

m1 － (CH2)2 － － 8.66 1 1 1 1 1 

m2 － (CH2)3 － － 8.25 1 1 1 1 1 

m3 － (CH2)4 － － 9.05 1 1 1 1 1 

m4* － (CH2)5 － － 8.76 1 1 1 1 1 

m5 － (CH2)6 － － 8.80 1 1 1 1 1 

m6 － (CH2)8 － － 8.32 1 1 1 1 1 

m7* － (CH2)10 － － 7.55 1 1 1 1 1 

m8* － (CH2)12 － － 6.60 -1 1** 1** 1** 1** 

m9* －  － － 9.21 1 1 1 1 1 

m10 －  － － 8.56 1 1 1 1 1 

n1 H 2-CH3OC6H4 NH 0 7.48 1 1 1 1 1 

n2 H 2-CH3OC6H4 S 0 7.51 1 1 1 1 1 

n3* H 2-CH3OC6H4 O 0 7.17 1 1 1 1 1 

n4* H 2-NO2C6H4 NH 0 7.02 1 1 1 -1** -1** 

n5* H 2-NO2C6H4 S 0 5.77 -1 1** 1** -1 -1 

n6* H 2-NO2C6H4 O 0 6.49 -1 1** 1** -1 -1 

n7 H 2-CH3OC6H4 NH 1 9.00 1 1 1 1 1 

n8 H 2-CH3OC6H4 S 1 9.54 1 1 1 1 1 

n9 H 2-CH3OC6H4 O 1 9.26 1 1 1 1 1 

n10 H 2-NO2C6H4 NH 1 7.78 1 1 1 1 1 

n11 H 2-NO2C6H4 S 1 8.02 1 1 1 1 1 

n12 H 2-NO2C6H4 O 1 7.85 1 1 1 1 1 

n13 H Pyridin-2-yl S 1 9.11 1 1 1 1 1 

n14* H Pyridin-2-yl O 1 8.80 1 1 1 1 1 

n15 H Pyrimidin-2-yl S 1 8.60 1 1 1 1 1 

n16 H Pyrimidin-2-yl O 1 7.83 1 1 1 1 1 

n17 H 2-CH3OC6H4 NCH3 1 9.57 1 1 1 1 1 

n18 Cl 2-CH3OC6H4 S 1 9.00 1 1 1 1 1 
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n19 Cl 2-CH3OC6H4 O 1 9.06 1 1 1 1 1 

n20* H 2-CH3OC6H4 S 2 9.57 1 1 1 1 1 

n21 H 2-CH3OC6H4 O 2 10.03 1 1 1 1 1 

n22 H 2-CH3OC6H4 S 4 8.89 1 1 1 1 1 

n23 H 2-CH3OC6H4 O 4 9.28 1 1 1 1 1 

1, high 5-HT1A affinity compounds; -1, low 5-HT1A affinity compounds. * Test set; ** Misclassified 
compounds. MS, MLR-SVM; MAS, MLR- AdaBoost-SVM; PS, PSO-SVM; PAS, PSO- AdaBoost-SVM. 

Table 3. The results of training set and test set for the four algorithms. 

Algorithm Variables 
Training set Test set 

1-FNR 1-FPR T A 1-FNR 1-FPR TA 
MLR-SVM MSD,MAXDN,MAX

DP,PW4, PW5, 
PJI2,BAC,ICR 

0.986 1.000 0.991 0.821 0.667 0.775 
MLR-AdaBoost-

SVM 
1.000 97.5 0.991 0.893 0.667 0.825 

PSO-SVM TI1, D/D, DELS, 
S1K,ECC, MDDD, 

BAC 

1.000 97.5 0.991 0.964 0.833 0.925 
PSO-AdaBoost-

SVM 
1.000 1.000 1.000 0.964 0.917 0.950 

FNR, false-negative rate; FPR, false- positive rate; TA, total accuracy. 
 
2.1.2. Variable selection by PSO 
 

PSO is a population-based optimization tool. The system is initialized with a population of random 
solutions and searches for optima by updating generations. Unlike genetic algorithms (GA), PSO has 
no evolution operators, such as cross-over and mutation. Compared to GA, the advantages of PSO are 
that PSO is easy to implement and there are few parameters to adjust. In this paper, PSO has been used 
to find the optimized combinations of variables, from which one can extract the most related variables 
that capture maximally the information of the original variable blocks to establish the classification 
model.  

The PSO algorithm maintains a population of 10 particles, c1=c2=1.8, Vmax=0.2, Xmax=1.0,  
Xmin=0.0 and w was linearly decreased from 1.0 to 0.2 during the 100 iterations. The variable selection 
methods have been used to select the most significant descriptors from the pool of 77 topological 
descriptors depending on the compounds in the training set. The selected descriptors by the method 
have been used to construct some models by using SVM and Adaboost-SVM techniques. These 
models can be shown as PSO-SVM and PSO-Adaboost-SVM. The selected variables are shown in 
Table 3 and their meaning in Table 2.   

The seven variables compose of the variable subset of PSO-SVM and PSO-Adaboost-SVM model, 
respectively. The predicted result of training set and test set is listed in Table 1. The same 
misclassified ones of SVM and Adaboost-SVM are m8 and n4. 

When PSO was used as the variable selection method and SVM was used as the base classifier, for 
training set, the total accuracy was 0.991 (Table 3); for testing, the total accuracy was 0.925 (Table 3). 

When PSO was used as the variable selection method and AdaBoost algorithm was used to boost 
SVM classifier. In SVM, the kernel function was the Gaussian radial basis function (RBF) because of 
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its good generalization and a few parameters, the RBF is defined as below: ))(exp( 2
ixx −−γ , where γ 

is width of RDF. Optimized parameters of the SVM are: width of RBF γ=0.0001 and capacity 
parameter c=5000. The best total accuracy of training and test set was 1.000 and 0.950, respectively 
(Table 3). The total accuracy of training and test set was raised 0.9% and 2.5%, respectively. 

Comparing the results of two different variable selection methods, PSO is a more suitable tool to 
optimize result of classification problem compared to SVM and AdaBoost-SVM algorithm. 
 
2.2. Comparison with different models 
 

The selection of this model as the best one obtained with the topological descriptors is because of 
the best global classification for training set and test set of the models obtained with this family of 
descriptors. The classification results for the training set and test set are illustrated in Table 3.   

As can be seen from the table, the values of the predicted accuracy of high 5-HT1A affinity 
compounds, the predicted accuracy of low 5-HT1A affinity compounds and the total accuracy of the 
training and test set are higher than 0.82, 0.66 and 0.77, respectively. Therefore all the models used in 
comparison present a good predicted result. As can be seen from Table 3, the accuracy is 0.821 and 
0.893 on the high 5-HT1A affinity group for Stepwise-MLR -SVM and Stepwise-MLR -AdaBoost-
SVM respectively, and 0.964, 0.964 for PSO-SVM and PSO-AdaBoost-SVM respectively, and on the 
low 5-HT1A affinity group, the overall accuracy is 0.667, 0.667 for Stepwise-MLR -SVM, Stepwise-
MLR -AdaBoost-SVM and 0.833, 0.917 for PSO-SVM , PSO-AdaBoost-SVM respectively. The total 
accuracy of training set for Stepwise-MLR-SVM, Stepwise-MLR-AdaBoost-SVM, PSO-SVM,  
PSO-AdaBoost-SVM is 0.991, 0.991, 0.991 and 1.000 respectively. The total accuracy of the test set 
for PSO-AdaBoost-SVM is 0.950, higher than that of Stepwise-MLR-SVM (0.775), Stepwise-MLR-
AdaBoost-SVM (0.825) and PSO –SVM (0.925), respectively.  

From the comparison of the four methods, it can be seen that performance of PSO-AdaBoost-SVM 
is better than that of Stepwise-MLR-SVM, Stepwise-MLR-AdaBoost-SVM and PSO-SVM, which 
implies that, extracting the most related variables that capture maximally the information of the 
original variable blocks is very important to raise predicted accuracy of the test set, and AdaBoost 
algorithm was used to boost SVM classifier. In Table 3, we have observed an interesting phenomenon: 
The predicted accuracy of the low 5-HT1A affinity group is lower than that of the high 5-HT1A affinity 
group. The reasons for this phenomenon are not clear, so perhaps some of compounds misclassified by 
every method need further experimental testing.  

In the PSO-AdaBoost-SVM model, the percentages of false negatives and false positives in the test 
set are 3.6% (1/28) and 8.3% (1/12), respectively. False positives are those compounds without 
binding affinities of 5-HT1A that are classified as active, and the false negatives are those compounds 
with binding affinities of 5-HT1A that are classified as inactive (see Table 3). From a practical point of 
view, in the development of the classification model, it is considered more important to avoid false 
negatives compounds because those compounds will be rejected for their wrongly predicted property 
and therefore they will never be evaluated experimentally, and their true binding affinities of 5-HT1A 
would never be discovered. On the contrary, the false positives compounds eventually will be detected.   
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2.3. Variable’s interpretation of the best model 
 

The molecular structure can be represented using many theoretical descriptors from the literature, 
but we usually face the problem of selecting those which are the most representatives for the property 
under consideration. Topological indices have been widely used in the correlation of physicochemical 
properties of organic compounds. And it is also known as graph theoretical indices are descriptors that 
characterize molecular graphs and contain a large amount of information about the molecule, including 
the numbers of hydrogen and non-hydrogen atoms bonded to each non-hydrogen atom, the details of 
the electronic structure of each atom, and the molecular structural features.  

From the best PSO-selected model, clearly the seven descriptors appearing in this model are the 
first Mohar index (TI1), distance/detour index (D/D), molecular electrotopological variation (DELC), 
1-path Kier alpha-modified shape index (S1K), eccentricity (ECC), mean distance degree deviation 
(MDDD) and Balaban centric index (BAC).  

Molecular branching and molecular cyclic structure are the two most visible structural elements that 
widely vary among molecules. Randić [31] constructed a new matrix D/DD, which has a finer 
discriminating power, particularly when one is interested in local molecular features, such as atomic, 
bond, or ring descriptors. At the same time, the D/DD matrix is more sensitive to the immediate and 
global environment of vertices or larger graph fragments. Hence, the distance/detour index (D/D) 
descriptor can discriminate 5-HT1A selective ligands primely.  

Balaban centric index (BAC) [32,33], is that the sum of the BF vector gives the centric 

index ∑
=

=
n

i
iBF

1
CI , where n denotes the number of vertices; BF is balance function, which is 

determined as follows ij

n

ij
jji DVIBF ∑

=

= , where Ij is the intrinsic state of atoms j, Vj is the vertex degree 

of atom j, and Dij is the distance between atoms i and j. The BF method is based on both topological 
and electronic information, which can be applied in molecules with polycyclic, multiple bond and 
heteroatom. When molecular skeletons are differently organized with respect to the graph center, 
molecular centricity becomes of importance [34]. Graph center and related parameters are useful for 
coding of molecular structure, as well as modeling QSAR. So, 5-HT1A selective ligands can be 
distinguished primely using the BAC descriptor.  

Molecular electrotopological variation (DELS) [35] is simply the sum over all atoms of the intrinsic 
state differences and could be a measure of total charge transfer in the molecule. The DELS is defined 
as follows ∑Δ=

i
iIDELS , iIΔ  is the field effect on the ith atom due to the perturbation of all other 

atoms as defined by Kier and Hall [36]: ∑ +

−
=Δ

j ij

ji
j d

II
I 2)1(

, where, I is the atomic intrinsic state,  

d denotes the topological distance between the two considered atoms. The intrinsic state of an atom is 
calculated as the ratio between Kier-Hall atomic electronegativity and the vertex degree, i.e. the 
number of bonds of the atom, encoding information related to both partial charges of atoms and their 
topological position relative to the whole molecule. Mean distance degree deviation (MDDD) [37] is 

defined as follows ∑
∈

−=Δ
)(

)(2)(1)(
GVv p

GWvd
p

GD , where G is a finite connected graph without loops 
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and multiple edges; V(G) is the set of vertices of graph G with cardinality )(GVp = ; 

∑
∈

=
)(,

),(
2
1)(

GVvu

vudGW  is the Wiener index of the graph G, where the distance d(u,v) between vertices 

u,v in graph G is the length of a simple path which joins the vertices u and v in the graph G and 

contains the minimal number of edges; ∑
=

=
p

i
vidvd

1
),()( is called the atom eccentricity (ECC) of the 

atom i. In addition, S1K [38] is the Kier–Hall α-modified shape index which is a measure of the 
relative cyclicity of a compound. A decrease in the value indicates an increase in cyclicity with  
multi-cyclic compounds having lower values than monocyclic ones. TI1 is the first Mohar index, 
which is also important topological index. And it has been successfully applied to construct the QSAR  
model [39].  

Regarding above reasons, the seven selected topological descriptors can identify primely different 
structure information of 5-HT1A selective ligands. Hence, our PSO-Adaboost-SVM model relating to 
the topological descriptor predictor should be useful for classification of prediction inhibitory activities 
of the new synthetic 5-HT1A selective ligands derivatives. 
 
2.4. Comparison with other approaches 
 

As we have previously explained, one of the objectives of the current work was to compare the 
reliability and applicability of the topological descriptors to describe the property under study as 
compared with other different descriptors. Consequently, we have developed other twelve models 
using the same data set that was included in the topological descriptor for the PSO-AdaBoost-SVM 
model. The results obtained with Constitutional, Information indices, Randic molecular profiles, RDF, 
WHIM, Topological, 2D autocorrelation Indices, Burden eigenvalues, Eigenualue based indices, 
Geometrical, 3D-MoRSE, and GETAWAY descriptors [40], are given in Table 4. These descriptors 
have been calculated by the software E-Dragon 1.0. The comparisons have been done based on 
classification results, and the predictive capability of the generated models.  

As can be seen from Table 4, the value of TA of test set is lower than 90.1% for all approaches 
except the topological descriptor which has a TA equal to 95.0%. This approach also yields the best 
value for TA of the training set and percentages of false positives in the test set which has the lowest 
values in comparison with the rest of the approaches. Additionally, the topological descriptor presents 
better the percentages of false negatives in the test set, except for information indices descriptor, but 
information indices descriptor has worse predictive capability for low 5-HT1A affinity compounds 
(only 50.0%). In this sense, other families of descriptors such as Constitutional, RDF, Topological, 2D 
autocorrelation Indices, Geometrical, 3D-MoRSE, GETAWAY, Randic molecular profiles, WHIM, 
Burden eigenvalues, and Eigenualue based indices have presented similar percent of high 5-HT1A 
affinity compounds classification in the test set (92.9, 89.3, 96.4, 92.9, 89.3, 96.4, 85.7, 96.4, 92.9, 
89.3, and 92.9%, respectively), while they have shown worse classification for low 5-HT1A affinity 
compounds in the test set. So, the topological descriptor for the PSO-AdaBoost-SVM model, not only 
overtakes the others models in the predictive accuracy of false negatives, but the total accuracy of 
compounds in the test set is the best. For all these reasons, we have considered that the  
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PSO-AdaBoost-SVM method with topological descriptor can be a useful tool for classification of  
5-HT1A selective ligands on the basis of their binding affinities. 

Table 4. The results of different models for the PSO-AdaBoost-SVM algorithm. 

Model Variables 

Training set Test set 

%, 1 %, -1 

Total 

Accuracy 

(%) 

%, 1 %, -1 

Total  

Accuracy 

(%) 

Constitutional Se, Mv, ARR, nC 94.5 77.5 88.5 92.9 50.0 80.0 

RDF RDF010u, RDF045u, RDF115m, 

RDF070v, RDF090v, RDF065e, RDF150p 

95.9 85.0 92.0 89.3 91.7 90.0 

Topological TI1, D/D, DELS, S1K, 

ECC, MDDD, BAC 

100.0 100.0 100.0 96.4 91.7 95.0 

2D ATS8m, ATS1e, MATS4m, GATS4m, 

GATS1v, GATS4e, GATS5p 

98.6 97.5 98.2 92.9 75.0 87.5 

Geometrical AGDD, SPAN 100.0 100.0 100.0 89.3 66.7 82.5 

3D MoRSE Mor02u, Mor06u, Mor22m, Mor25m, 

Mor05v, Mor16v, Mor32v, Mor02e, 

Mor26p 

98.6 95.0 97.3 96.4 66.7 87.5 

GETAWAY HTu, H6m, HATS3m, HATS5m, R5u, 

RTv, R7v+ 

100.0 100.0 100.0 85.7 83.3 85.0 

Information 

indices 

IDET, TIC0, SIC0, TIC5 98.6 100.0 99.1 100.0 50.0 85.0 

Randic 

molecular 

profiles 

DP19, SP01, SP09, SP18 97.3 75.0 89.4 96.4 66.7 87.5 

WHIM L1u, L2v, G3p, Te, Ts 100.0 100.0 100.0 92.9 58.3 82.5 

Burden 

eigenvalues 

BELm5, BEHv3, BELv1, BELv3, BEHe3 89.0 72.5 83.2 89.3 66.7 82.5 

Eigenuaulue 

based indices 

Eig1p, SEigZ, AEige, VEZ2, VRZ1, VRp2 100.0 100.0 100.0 92.9 75.0 87.5 

1, high 5-HT1A affinity compounds; -1, low 5-HT1A affinity compounds. 
 

3. Experimental and the Theory of the Modeling Methods 
 
3.1. Experimental 
 
3.1.1. Data sets 
 

The studied compounds are 153 5-HT1A selective ligands, which were taken from the literature  
[1,11-16] and their generic structures are shown in Figure 1. The inhibition constant (Ki) is obtained 
from the IC50 value by the Cheng-Prusoff equation [39]. The tested compounds are selective 5-HT1A 
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ligands showing Ki values from 0.094 to 5000 nM. For analysis purposes, pKi values are used as the 
dependent variables and are given in Table 1. The compounds studied in our investigation are more 
diverse. It is difficult to build a QSAR model by their activity values because there is a very low 
similarity of the complex structure. So, the compounds are divided into two classifications according 
to 5-HT1A selective ligands binding affinities: high 5-HT1A affinity and low 5-HT1A affinity. 
Compounds with pKi values>6.7 are assumed as high 5-HT1A affinity compounds and pKi values≤6.7 
are assumed as low 5-HT1A affinity compounds [13], which are represented by ‘1’, and ‘-1’, 
respectively. The whole data set with 153 compounds is randomly divided into training set and test set. 
The training set is used to adjust the parameters of the models. The test set is used to evaluate the 
performance of the models once they are built. The training set consists of 113 compounds (including 
73 high 5-HT1A affinity compounds and 40 low 5-HT1A affinity compounds), and the test set contains 
40 compounds (including 28 high 5-HT1A affinity compounds and 12 low 5-HT1A affinity compounds). 

 
Figure 1. Generic structures for the 153 compounds used in this study. 
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3.1.2. Descriptor calculation 
 

To develop a QSAR model, molecular structures need to be represented using molecular 
descriptors, which encode structural information. The calculation process of the descriptors involves 
the following steps: the structures of the compounds are drawn using Molinspiration WebME Editor 
[42] and saved as a.smi files. Then the a.smi files are transferred into the software E-Dragon 1.0 [43] 
to calculate zero, one, two and three dimensional structural descriptors. The software E-Dragon 1.0 
can calculate Constitutional, Information indices, Randic molecular profiles, RDF, WHIM, 
Topological, 2D autocorrelation Indices, Burden eigenvalues, Eigenualue based indices, Geometrical, 
3D-MoRSE, and GETAWAY descriptors. And the descriptors have been successfully used in various 
QSAR/QSPR researches [44-46]. In the pre-reduction step, the calculated descriptors are searched for 
constant values for all molecules and those detected descriptors are removed, and the others calculated 
descriptors would be used as original variable set. 

 
3.2. The theory of the modeling methods 
 
3.2.1. Theory of PSO 
  

Particle swarm optimization (PSO) is an optimization algorithm, which simulates the movement 
and flocking of birds [47]. Similar to other population-based algorithms, such as evolutionary 
algorithms, PSO can solve a variety of difficult optimization problems but has shown a faster 
convergence rate than other evolutionary algorithms on some problems [48]. The other advantage of 
PSO is that it has very few parameters to adjust, which makes it particularly easy to implement. 

PSO is based on the fact that in order to reach the optimum solution in a multidimensional space, a 
population of particles is created whose present coordinate determines the cost function to be 
minimized. After each iteration the new velocity and hence the new position of each particle is updated 
on the basis of a summated influence of each particle’s present velocity, distance of the particle from 
its own best performance, achieves so far during the search process and the distance of the particle 
from the leading particle, i.e. the particle which at present is globally the best particle producing till 
now the best performance, i.e. minimum of the cost function achieved so far. 

Let x and v denote a particle position and its corresponding velocity in a search space, respectively. 
Therefore, the i th particle in the d-dimensional search space can be represented as xi = (xi1, xi2,…, xid) 
and vi = (vi1, vi2,…,vid), respectively. Each particle has its own best position (pbest), pbi= (pbi1, pbi2, …, 
pbid) corresponding to the personal best objective value obtained so far at time t. The index of the best 
particle among all the particles in the group is represented by the pbg, which represents the best 
particle found so far at time t. The new velocity of each particle is calculated as follows: 

.,2,1,,2,1)),(())(()()1( 2211 djmitxpbrctxpbrctvwtv ijjgijijijij LL ==−+−+×=+      (1) 

where, m is the number of particles in a group; d is the number of members in a particle; c1, c2 are 
constants, which control how far a particle will move in a single iteration; r1, r2 are two independent 
random numbers uniformly distributed in the range of [0, 1] and w is the inertia weight. A larger 
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inertia weight facilitates global exploration and a smaller inertia weight tends to facilitate local 
exploration to fine-tune the current search area [49,50].  

Thus, the position of each particle is updated iteration according to the following equation: 

.,2,1,,2,1),1()()1( djmitvtxtx ijijij LL ==++=+                                                 (2)  

where vi (t) is the velocity of a particle i at iteration t, maxmin )( jijj vtvv ≤≤ and xi (t) is the current position 

of a particle i at iteration t. Generally, the value of each component in vi by Equation (1) can be 
clamped to the range [-vmax, vmax] to control excessive roaming of particles outside the search space. 
Then the particle flies toward a new position according to Equation (2). This process is repeated until a 
user-defined termination criterion is reached, and the termination criterion is determined according to 
whether the maximum iteration or a designated value of the fitness function.  
 
3.2.2. Theory of AdaBoost algorithm 
 

Boosting is a learning process to make a strong classifier by combining multiple weak classifiers. 
The weak classifier just has slightly better performance than random classification [51]. And boosting 
demands prior knowledge of the accuracy of the weak learners. In 1997, Freund et al. proposed a 
method that does not have this requirement [52]. This method is called Adaptive boosting (AdaBoost). 
AdaBoost algorithm is the most frequently used Boosting method. Depending on the purpose and data 
structure, variants on AdaBoost algorithm have been developed, such as Discrete AdaBoost, Real 
AdaBoost and AdaBoost.MH [53]. Here the Discrete AdaBoost has been employed. The other two 
have been described in detail [48] and will not be repeated here.  

Suppose there is a training data set with N samples to in two classes. The two classes are defined as 
y∈{-1,1}, 1 and -1 corresponding to high and low, respectively. A sequence of N training examples 
(labelled instances) (x1, y1), ..., (xN, yN) is drawn randomly from X×Y according to distribution ζ. We 
use boosting to find a hypothesis hf which is consistent with most of the sample (i.e., hf (xi)=yi for most 
1≤i≤N). 

The Discrete AdaBoost algorithm can be implemented as follows [51-54]: 
Step 1 Distribution D over the N training examples, initializes the weight vector: 

N
wi

11 =  for i = 1, 2,…, N                                                      (3) 

Step 2 Do for t = 1, 2,…, T  

Step 2a   Set   
∑ =

= N

i
t
i

t
t

w
wp

1

                                                   (4) 

Select a data set with N samples from the original training set. The chance for a sample to be 
selected is related to the distribution of the weights pt. A sample with a higher weight has a higher 
probability to be selected. 

Step 2b Call Weaklearn Ft(x), which is done with SVM in our case, with the training set base on the 
current distribution pt and get back a hypothesis ht(x): Ft(x)→ht(x).  
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Step 2c Calculate the sum of the weighted errors of all training samples according to hypothesis 
ht(x).  

2
)(

1∑ =
−

=
N

i iit
t
i

t

yxhp
ε                                                         (5) 

Step 2d Update weights of the correctly classified samples and let the misclassified samples 
unchanged among all the original training samples.  

t
t
i

t
i ww β=+1 , i refers to the samples that are correctly classified.                (6) 

Where 
t

t
t ε

εβ
−

=
1

ln
2
1                                    (7) 

According to formula (6) and (7) the weights of the samples that are correctly classified are 
decreased while the weights of the misclassified samples are unchanged. 

Step 2e The confidence index of hypothesis ht(x) is calculated as: 

t
t β

α 1log=                                                                  (8) 

The lower the weighted error made by hypothesis ht(x) on the training samples, the higher the 
confidence index of the hypothesis ht(x). 

Step 2f  If εt<0.5 or t ≤ T, repeat step (1) ~ step(5); otherwise, stop and T = t - 1.  
After T iterations in Step 2, there is T hypothesis ht(x)s which is associated with T base learning 

algorithm Ft(x)s.  
Step 3 The performance of Discrete AdaBoost is evaluated by a test set. For a sample j of the test 

set, the final prediction is the combined prediction obtained from the T learners. Each prediction is 
multiplied by the confidence index of the corresponding learner ht (x). The higher confidence index of 
a learner ht (x), the higher its role in the final decision:  

))((
1∑ =
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t jttj xhsigny α                        (9) 
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3.2.3. Methodology 

 
After the descriptors are selected using two variable selection methods (Stepwise-MLR and PSO), 

the next step is to build the classification model using SVM (support vector machines) [55] and 
Adaboost-SVM methods, respectively. These models can be shown as Stepwise-MLR-SVM, 
Stepwise-MLR-Adaboost-SVM, PSO-SVM and PSO-Adaboost-SVM. As the Adaboost algorithm has 
been depicted in the previous section, we only give a simple description on the theory of SVM. 

The support vector machine (SVM), was introduced by Vapnik [56] as a novel type of learning 
machine, gaining popularity due to many attractive features and promising empirical performance. 
Originally, SVM was developed for pattern recognition problems. And now, with the introduction of a 
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ε-insensitive loss function, SVM has been extended to solve nonlinear regression estimation and  
time-series prediction and excellent performances have been obtained [57].  

For the classification problem, in brief, this involves the optimization of Lagrangian multipliers αi 
with constraints 0 ≤αi≤ C and ∑αiyi=0 to yield a decision function: 

)),(()(
1

bxxKysignxf i

l

i
ii += ∑

=

α                        (10) 

Where sign (u) implies a sign function which returns +1 when u>0, and -1 when u≤0; yi is input 
class labels that take a value of -1 or +1, xi is a set of descriptors; and K(x, xi) is a kernel function, 
whose value is equal to the inner product of two vectors x and xi in the feature space Φ(x) and Φ(xi). 
That is, K(x, xi)= Φ(x) .Φ(xi). Any function that satisfies Mercer’s condition can be used as the  
kernel function.  

In SVM, we chose c-SVC [55] as the base classifier and the kernel function was the Gaussian radial 
basis function (RBF) function. 

All the algorithms were written in MATLAB and run on a personal computer (Intel(R) Pentium(R) 
4 / 3.20 GHz, 1.00GB RAM). 
 
3.2.4. The evaluation of prediction power 

 
In this study, the quality of a model is assessed by several statistical measures, including  

false-negative (FN), false-negative rate (FNR), false-positive (FP), false-positive rate (FPR), and total 
accuracy (TA). 

FP: false-positives, the number of chemicals predicted to be active but inactive in the assay, 
FN: false-negatives, the number of chemicals predicted to be inactive but active in the assay, 
FPR and FNR defined as follows: 

−

=
N
FP  FPR                                     (11) 

+

=
N
FN  FNR                                      (12) 

N
FN-FP-N TA =                                     (13) 

where, N- denotes the total number of inactive chemicals in the data set, N+ denotes the total number of 
active chemicals in the data set, N denotes the total number of active and inactive chemicals in the  
data set.  
 
4. Conclusions 

 
In this work, AdaBoost-SVM has been developed for the QSAR analysis of 5-HT1A selective 

ligands. The binding affinities of 153 5-HT1A selective ligands were classified. The variables for the 
molecular descriptors were determined by PSO. Compared with other descriptors in the  
Adaboost-SVM model and SVM model, the Topological descriptor composed of AdaBoost-SVM 
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model exhibited the best prediction accuracy (the accuracy for the overall data set reached 95.0%). 
The combination of Adaboost-SVM and PSO gives a useful tool for QSPR/QSAR studies and 
classification investigations. 
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