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Abstract: This article presents an experimental analysis of the organic content of two 

serpentinized peridotite rocks of the terrestrial upper mantle. The samples have been 

dredged on the floor of the Ashadze and Logatchev hydrothermal sites on the Mid-Atlantic 

Ridge. In this preliminary analysis, amino acids and long chain n-alkanes are identified. 

They are most probably of biological/microbial origin. Some peaks remain unidentified. 
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1. Introduction 

 

The origin of terrestrial life is not yet understood. An accepted hypothesis is that a transition 

occurred between a molecular prebiotic evolution and a biological evolution and that prebiotic organic 

matter could have been delivered to Earth within carbonaceous chondrite meteorites, such as the CM2 

Murchison meteorite.  

At the bottom of the terrestrial oceans, where tectonic forces separate the lithospheric plates along 

mid-ocean ridges, the ultramafic rocks of the upper-mantle, the peridotites, are exposed to circulating 

seawater [1]. They encounter various physico-chemical conditions and the hydrolysis of their silicate 

OPEN ACCESS



Int. J. Mol. Sci. 2009, 10             

 

2987

constituents, the olivine and pyroxenes minerals, into serpentine, occur at different degrees of 

serpentinization depending on the characteristics of the medium: temperature, pressure, oxygen 

fugacity, nature and composition of the fluid phase, fluid flux, pH, rock composition, water:rock ratio 

[2]. The Mid-Atlantic-Ridge, MAR, is covered with several hydrothermal sites and presents black 

smoker activity. The active Logatchev site, 14° 45'N-43'N, at a water depth of 2,970 m and the active 

Ashadze site (12° 58'N, 4,080 m) are located on an ultramafic geological environment of serpentinized 

peridotite rocks, while the Krasnov site (16° 38'N), discovered with the Ashadze site during the 2007 

French-Russian Serpentine cruise [3] is inactive and located on a basaltic environment. Ultramafic 

environments seem enriched in Cu and Zn content compared to the basaltic ones [3]. 

The Logatchev hydrothermal vent fluids originate from the interaction between the underlying 

peridotite rocks and seawater. They have been previously analyzed [4]. The H2 concentration is 

12 mmol/wkg (data from 1996) and 19 mmol/wkg (data from 2005) and the analyses made in 1996, 

2004 and 2005 show a stable composition of the fluids. The analyses of the Ashadze vent fluids [5] 

also show a great amount of H2. Both these vent fluids, as those of the Rainbow site (36° 14'N on the 

MAR, 2,300 m) also contain significant amounts of CO2, CH4, N2, CO. Their pH is acidic ~3-4, the 

temperature of their fluids is ~310-370 °C and the detected saturated hydrocarbons, carboxylic acids 

and methyl esters in the fluids have been proposed of either abiogenic origin or not [5,6].  

An accepted hypothesis to explain the occurence of the carbon-based organic compounds in the 

fluids is the synthesis of these molecules in the context of catalytic Fischer-Tropsch Type (FTT) 

reactions involving hydrothermal CO2. The dihydrogen, formed during the hydrolysis of the peridotite 

terrestrial rocks, which contain ferrous iron-rich minerals, olivine and pyroxenes, could react with 

hydrothermal CO2, to form methane and saturated hydrocarbons. Hydrocarbons have been synthesized 

during experimental serpentinization of olivine at 300 °C and 500 bar [7] and methane, ethane and 

propane were synthesized at 390 °C and 400 bar in an experiment catalyzed with Cr2O3 in combination 

with FeO [8]. A more recent experiment, at 200 °C and 500 bar, simulating subseafloor 

serpentinization produced significant amounts of dissolved H2 when artificial seawater reacted with a 

peridotite rock composed of 62% olivine, 26% orthopyroxene and 10% clinopyroxene. Even during 

the early stages of the reaction, ~25 mmol/kg of water are produced after 2,000 h of experiment and  

77 mmol/wkg after 8,000 h [9]. Experiments conducted at 250 °C and 325 bar on an aqueous solution 

of formic acid (HCOOH) in the presence of Fe produced a series of n-alkanes with typical FTT 

distribution. Volatile hydrocarbons (C1-C6), magnetite (Fe3O4) and siderite FeCO3 were also detected 

[10]. FTT mechanism can be invoked since hydrothermal Fe reacts with water to form magnetite and 

H2 and formic acid decomposes into CO2 and H2. 

The exact factors that control the hydrolysis of peridotite remain unknown. Calculations 

considering the thermodynamics of fluid mixing between hydrothermal fluids containing dissolved 

CO2 and H2 at 350 °C, and seawater containing bicarbonate at 2 °C, led to the organic synthesis of 

carboxylic acids, alcohols, ketones [11]. These calculations depend on the fugacity of O2. They show 

that the oxidation state of ultramafic rocks, driven by the equilibrium of the FMQ, fayalite-magnetite-

quartz mineral assemblage, lead to a lower oxygen fugacity and a greater potential for organic 

synthesis than for the PPM, pyrrhotite-pyrite-magnetite assemblage. Numerical models, considering a 

rock composed of 80 wt% olivine, 15 wt% orthopyroxene and 5 wt% clinopyroxene predict that, at  

35 MPa, a peak production of H2 (a few hundred mmol/kg) occurs approximately at temperatures of 
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200-315 °C. These models also predict a decrease in pH from ~11 to ~6, when the temperature 

increases from 50 °C to 400 °C, with pH values of ~9 around 150 °C and ~8 around 200 °C [12]. 

Analyses of hydrothermally altered peridotites drilled between 14°N and 16°N on the Mid-Atlantic 

Ridge (MAR) between 1,800 and 4,000 m depth have been reported [13]. They suggest that extensive 

serpentinization processes occur at all sites and that the transformation of the mineral olivine into 

serpentine, magnetite and brucite with release of H2 is favored at temperatures below 250 °C, while 

pyroxene is replaced by talc and tremolite above 350-400 °C [2,13], where olivine is stable. The 

latitude of these drillings corresponds to the area of the hydrothermal sites Logatchev, Ashadze and 

Krasnov. 

Several experiments have demonstrated the production of hydrothermal organic matter including 

nitrogen atoms at various temperatures, 100-400 °C, and pressures and with various starting 

compounds [14-20 and Ref. therein]. A gas mixture of methane and dinitrogen above simulated 

seawater under ~8 MPa at room temperature was heated to 325 °C. Amino acids were extracted after 

acid hydrolysis of the products [15]. In experiments conducted at 150 °C and 1 MPa with HCN, CH2O, 

NH3 in the presence of the PPM redox buffer, amino acids were also detected [16]. Their yields were 

higher than in previous gaseous spark discharge experiments [14]. Di- and triglycine were synthesized 

in a flow reactor under 24.0 MPa at 200 °C-250 °C with consecutive quenching at 0 °C. The presence 

of copper ions seemed to help synthesize tetraglycine [17]. Using a supercritical water flow reactor 

with temperature control inside the fluids, it is suggested that condensates of glycine, which yielded 

amino acids after hydrolysis, formed even in supercritical water at 400 °C, under 25 MPa pressure 

[18]. When an aqueous mixture of ten amino acids was heated at 200-400 °C, the acid hydrolysis of 

the products led to a higher content in glutamic acid and α-amino acids, such as α-aminobutyric acid, 

5-aminovaleric acid and 6-aminohexanoic acid than in α-amino acids even over supercritical 

conditions of water suggesting that α-amino acids could be chemical markers of abiotic hydrothermal 

systems [18]. Reviews report the various conditions of amino acid syntheses [19-21 and Ref. therein]. 

Recent calculations using measured data of the Rainbow hydrothermal site, show that an abiotic 

synthesis of the five nucleobases and of the two sugars from formaldehyde and hydrogen cyanide is 

thermodynamically favored between 0 °C and 150-250 °C [22 and Ref. therein].  

Some similarities with the Murchison meteorite can be noticed. The Murchison mineral structure is 

dominated with a phyllosilicate (serpentine) matrix which contains minerals such as olivine, 

pyroxenes, calcium carbonates, iron oxides (magnetite), iron-nickel sulfides and sulfates [23-25]. It has 

been altered by water, by heat, by pressure shock waves, by short-lived radionuclides [26,27]. The 

transformation of olivine and pyroxene chondrules seems to grow with the extent of mineral 

hydrolysis and the formation of water-soluble organic compounds is described at temperatures below 

~125 °C [28,29]. Aside from any terrestrial contamination, all the classes of organic molecules 

considered of biological relevance are identified [30-32 and Ref. therein] and also non-terrestrial 

amino acids and enantiomeric excesses [33-35].  

Several hypotheses are proposed for the production of meteoritic organic matter, either solar-nebula 

processes or secondary processes which occurred after the accretion, on asteroidal parent bodies [35-

39, 23, 40-46 and Ref. therein]. Among these are FTT reactions; ion-molecule and radical-radical 

reactions; γ-, proton- and UV-irradiation; Strecker's type reactions involving aqueous processing of 

simple molecules such as H2O, HCN, H2CO and NH3; internal heating of the parent body produced by 
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the radioactive decay of short-lived nuclides. Although quite significant amounts of glycine are 

detected in the Murchison meteorite, no ascertained interstellar glycine has yet been identified since its 

first observational report in 1979 [47] suggesting that molecules formed in the interstellar medium, 

ISM, underwent further processing. It has been suggested that the primary products from proton 

irradiation of a mixture of CO, N2/NH3, H2O are amino acid precursors, molecules that provide amino 

acids after acid hydrolysis [36,38]. Amino acids recovered after acid hydrolysis of products obtained in 

vacuum UV-photolysis of H2O, CO, CO2, CH3OH, CH4, NH3, simulating the ISM, do not match the 

Murchison meteorite distribution, suggesting that the organic molecules found in the meteorite parent 

bodies experienced contact with water [46]. Indeed, it has been demonstrated that bound amino acids 

in aqueous solution exposed to γ- and UV- rays are much more photostable than the corresponding free 

amino acids [39]. 

Thus, it seems consequently plausible to imagine that the H2, released during the serpentinization 

processes of the peridotite terrestrial rocks, could react with the CO2 embedded inside the rock, to form 

methane and saturated hydrocarbons, in the context of catalytic reactions involving hydrothermal CO2. 

The simple molecules H2O, H2, CO2, CH4, would be present as a consequence of mineral reactions of 

the terrestrial peridotites with seawater and, with the N2 of the environment and with an activation 

source such as gamma rays, they could form the simple organic molecules of biological relevance [48-

50,22,51 and Ref. therein].  

These reactions could occur at temperatures ~150-200 °C, where olivine transforms into serpentine, 

magnetite and brucite with the release of H2. At these temperatures, combined with the pressures 

encountered at the hydrothermal sites, many compounds are in their supercritical state and peculiar 

chemistry can occur. In this IJMS issue on the Origin of Life, syntheses of amino acids in a mixture of 

supercritical CO2-liquid water (10:1) starting with hydroxylamine hydrochloride and pyruvic or 

glyoxylic acid are reported [52]. A hypothesis for the origin of the living systems could consequently 

be found at the bottom of the oceans, in ultramafic hosted hydrothermal systems, where tectonic plates 

separate to leave the upper mantle rock reacts with seawater to form hydrothermally altered peridotites 

and lead to the necessary molecules for life to emerge.  

In this hypothesis, serpentinized peridotite rocks located on hydrothermal sites could contain 

organic molecules. Here we report organic analyses made on two peridotite rocks of Ashadze  

(12° 58'N, 4,080 m) and Logatchev (14° 43'N, 2,970 m) hydrothermal sites in the Mid-Atlantic Ridge. 

The samples have been dredged on the seafloor in march 2007, during the French-Russian Ifremer 

Serpentine cruise [53]. These organic analyses provide the first observations of organic compounds in 

the serpentinized peridotite rocks of Ashadze and Logatchev hydrothermal sites. They are reported 

here for the first time.  

 

2. Experimental Methods 

 

The analyses have been carried out in the Institute of Biogeosciences of the Japan Agency for 

Marine-Earth Science and Technology, in Yokosuka. The rock sample was pre-washed by ultra-pure 

methanol to eliminate possible exogenous compounds from the external surfaces. An aliquot of dried 

and grounded sample powder (ca 0.5 g) was dispensed into 16 x 100 mm reaction vials with PTFE-

lined caps and acid hydrolyzed with 6 M HCl at 110 °C for 12 h. Non-polar fraction was extracted by 
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liquid/liquid separation in HCl solution and 2.0 mL of a hexane/dichloromethane (6:5, v/v) mixture in 

two portions. The hexane/dichloromethane fraction was recovered and dried under a gentle nitrogen 

flow, and then 200 L of dichloromethane was added to the final non-polar fraction. 

Another procedure was used for the polar fraction, especially for amino acids. After drying the 

hydrolysis residue under N2 flow, the samples were adjusted to pH 1 with 0.1 M HCl, and the amino 

acid fraction was isolated with cation-exchange column chromatography. The purification of amino 

acid fractions via application to an AG-50W-X8 (200-400 mesh; Bio-Rad Laboratories) cation 

exchange resin column was performed by the procedure described earlier [46]. Briefly, a slurry of resin 

in deionized water was poured into a disposable glass pipette column plugged with quartz wool. 

Before the injection of the sample to the column, the resin was cleaned by passing three bed volumes 

(resin/carrier, 1:3, v/v) of 1 M HCl, H2O, 1 M NaOH, and H2O through the column in succession (i.e., 

2 mL of AG50 resin requires 6 mL of 1 M HCl for the first prewash). Immediately before the injection 

of the sample, the resin was reactivated to the H+ form with three bed volumes of 1 M HCl and then 

rinsed with three bed volumes of H2O. The sample solution was loaded and then eluted with three bed 

volumes of H2O to retain only the amino acid fraction. Finally, the amino acid fraction was eluted with 

three bed volumes of 10% NH3 aqueous solution, and then dried by nitrogen flow for the next 

derivatization procedure. 

The esterification reaction was performed with 500 L of a thionyl chloride/(S)-(+)-2-butanol 

mixture (1:4, v/v) at 110 °C for 2 h. After the solution had been cooled to ambient temperature, it was 

evaporated to dryness under a gentle nitrogen flow at ~80 °C. The acylation reaction was then 

performed with 500 L of a pivaloyl chloride/dichloromethane mixture (1:1, v/v) at 110 °C for 2 h. 

After cooling, the solution was again evaporated to dryness with a gentle nitrogen flow at ~80 °C. The 

N-pivaloyl-(S)-2-butyl esters (NP/S2Bu) of the amino acid diastereomers [46] were extracted by 

liquid/liquid separation in 0.5 mL of distilled water and 1.0 mL of a hexane/dichloromethane (6:5, v/v) 

mixture for two times. The hexane/dichloromethane mixture fraction containing the NP/S2Bu esters 

was recovered and dried under a gentle nitrogen flow. Then, 200 L of dichloromethane was added to 

the final fraction. The NP/S2Bu esters of the amino acid diastereomers (Figure 1) were identified by a 

gas chromatograph/mass spectrometry (GC/MS; Agilent Technologies 6890N/5973MSD). The 

capillary column used for GC was an HP-5 (30 m  0.32 mm i.d., 0.52 m film thickness; Agilent 

Technologies). The GC oven temperature was programmed as follows: initial temperature 40 °C for  

4 min, ramped up at 10 °C min–1 to 90 °C, and ramped up at 5 °C min–1 to 220 °C, where it was 

maintained for 10 min. The MS was scanned over m/z of 50–550 with the electron-impact mode set at 

70 eV. Optically active (S)-(+)-2-butanol (purity 99%; boiling point 99-100 °C) was obtained from 

Sigma-Aldrich Co. All glassware was heated at 450 °C for 4 h before use to eliminate any possible 

contaminants. 

 

3. Results and Discussion 

 

As seen in Figure 2, we identify a wide variety of amino acids including protein and non-protein 

amino acids. Among these, glycine and glutamic acid are more predominant than the others. Although 

non-proteinous amino acids such as sarcosine, beta-alanine (BALA) and gamma-aminobutyric acid 

(GABA) have been found as products in laboratory experiments simulating hydrothermal systems 
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[15], in our experiment sarcosine is under detection limit and BALA and GABA are present as minor 

constituents. The peak at 17.9 min could not be identified. Figure 1 illustrates the mass spectrum of the 

N-pivaloyl-(S)-2-butyl esters obtained for the identification of the D- and L-alanine of the gas 

chromatogram (Figure 2). It corresponds to the retention times of the alanine peaks in the 

chromatogram. 

Figure 1. Mass fragment pattern of the N-pivaloyl-(S)-2-butyl esters of the D- and L-

alanine diastereoisomers. 

 
 

For amino acids formed abiotically [15], the D/L ratio of amino acids converges to around 1. On the 

other hand, large enantiomeric excess of L-form amino acids may indicate that the amino acids are 

derived from sub-seafloor biogenic processes [54] or abiogenic racemization reaction during the 

pathway of stereochemical conversion via alpha-hydrogen elimination. The racemization of amino 

acid standards during 22 hours hydrolysis treatment ranged 0.5-1.3% for D-alanine generated from L-

alanine [55]. Here, as seen in Figure 3a for the Ashadze peridotite rock, the molar fraction (%D- and 

%L-) of D-alanine: L-alanine in the serpentine sample is 15:85, hence D/L ratio is 0.18 and other amino 

acids are also L-form predominant. On Figure 3b the D/L ratios of the sedimentary amino acids, Ala, 

Asx (asparagine and aspartate) and Glx (glutamine and glutamate) shows the racemization process 

during early diagenesis as a function of depth over 10,000 years [56]. The similarities in the values on 

D/L ratios provide a plausible conclusion of a biological origin for the amino acids identified in the 

Ashadze peridotite sample and also for the Logatchev sample. Although the prokaryotic community in 

hydrothermal sediments of the Alvin zone location, ~3,500 m, near the TAG mound, ~26°N on the 
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MAR, seems present with a low total cell count [57], we conclude in a biological origin for the 

identified amino acid peaks. 

Figure 2. Representative chromatogram of chiral separation for D- and L-amino acids in 

polar fraction extracted from the Ashadze serpentinized peridotite rock sample by GC/MS 

analysis. Abbreviations: D-Ala, D-Alanine; L-Ala, L-Alanine; Gly, Glycine; BALA, beta-

Alanine; D-Val, D-Valine; L-Val, L-Valine; L-Leu, L-Leucine; L-Ile, L-Isoleucine; GABA, 

gamma-aminobutyric acid; L-Thr, L-Threonine; D-Thr, D-Threonine; D-Ser, D-Serine; L-

Ser, L-Serine; D-, L-Asp, D-, L-Aspartic acid; L-Phe, L-Phenylalanine; D-Glu, D-Glutamic 

acid; L-Glu, L-Glutamic acid; D-,L-Tyr, D-,L-Tyrosine. 

 
 

We also detect a long-chain n-alkane compound (< n-C28H58) in the non-polar fraction (Figure 4) 

under GC conditions up to 220 °C. Although we do not identify lipid compounds in this non-polar 

fraction, long-chain n-alkanes may have two origins. One can be fossilized past biota and/or present 

microbes which migrated within hydrothermal fluids and the other can be hydrothermally synthesized 

and/or altered organic molecules.  
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Figure 3. D/L amino acid ratios in the analysed Ashadze peridotite rock and in sedimentary 

rocks.: Ala (alanine), Asx (asparagine and aspartate) and Glx (glutamine and glutamate). 

 
 

Figure 4. Representative chromatogram of hydrocarbons including n-alkanes in non-polar 

fraction of the Logatchev rock sample. Select ion monitoring (SIM) was also performed to 

identify n-alkane chain analogs. 
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The GC/MS of the n-alkanes shows a decrease in intensity with increasing carbon number, which 

seems to be a characteristic of abiotic synthesis [10]. Recently, an abiogenic hydrocarbon production 

by FTT at Lost City hydrothermal field has been proposed wherever warm ultramafic rocks are in 

contact with water [58]. However, as discussed for the Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean 

[54] and for the Lost City, Mid-Atlantic Ridge [59] hydrothermal systems, it is difficult to differentiate 

biotic/abiotic sources. An experimental analysis of the isotopic fractionation of the stable carbon-13 

and carbon-12 elements in the organic compounds detected in the Ashadze and Logatchev samples 

would, as it is widely thought, indicate if these organic compounds derive from microbial 

decomposition or from an abiotic synthesis. However, it has been demonstrated in laboratory 

experiments conducted at 250 °C and 350 bar, that organic products, synthesized abiotically in FTT 

reactions, are depleted in 13C to a degree typically ascribed to biological processes [10]. These 

experiments indicate that the analysis of the carbon isotopic fractionation is an ineffective diagnostic to 

distinguish between abiotic and biotic origin of organic compounds. Consequently, we will not 

proceed to the carbon isotopic analysis of the rocks and we do not conclude yet in a biotic or abiotic 

origin for the identified n-alkanes. 

 

4. Conclusions 

 

This preliminary analysis of the organic composition of two peridotite rock samples dredged on the 

ocean floor of the Logatchev and Ashadze hydrothermal sites on the Mid-Atlantic Ridge allows the 

identification of amino acids and long-chain n-alkanes. Many peaks of the amino acid gas 

chromatograms remain unidentified. Further analyses need to be made with non terrestrial amino acids 

as references. Signals of abiotically formed organic compounds may be present with negligible 

intensity compared to the intensities of the identified biotical signals. Consequently, we conclude in a 

biotic origin for the identified amino acids but we do not exclude an abiotic origin for some amino 

acids which correspond to the not yet identified peaks. Especially because it is difficult to conclude 

anything about a biotic/abiotic origin for the n-alkanes, since carbon isotopic fractionation is 

inefficient in distinguishing these sources. It would be more appropriate to analyze samples which are 

drilled far beneath the ocean floor and which would be less exposed to biological contamination. That 

could be one goal of a next IODP (Integrated Ocean Drilling Program) cruise.  
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