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Abstract: The citric acid cycle (CAC) is the central pathway of energy transfer for many 

organisms, and understanding the origin of this pathway may provide insight into the 

origins of metabolism. In order to assess the thermodynamics of this key pathway for 

microorganisms that inhabit a wide variety of environments, especially those found in high 

temperature environments, we have calculated the properties and parameters for the revised 

Helgeson-Kirkham-Flowers equation of state for the major components of the CAC. While 

a significant amount of data is not available for many of the constituents of this 

fundamental pathway, methods exist that allow estimation of these missing data. 
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1. Introduction  

 

The citric acid cycle (CAC), also known as the Krebs or tricarboxylic acid cycle, is a fundamental 

pathway in intermediary metabolism among all the domains of life. Organisms that use the CAC (or 

especially the reverse or reductive CAC) are represented among the most deeply-rooted autotrophic 

hyperthermophilic Archaea and Bacteria and the most derived of organotrophic evolutionary lineages 

[1-4]. The key role of iron-sulfur proteins, thioester intermediates, and the reductive use of the CAC in 

hyperthermophilic autotrophs link the CAC to prebiotic theories of energy metabolism and abiotic 

carbon fixation at deep-sea hydrothermal vents [5-7]. Because of the fundamental metabolic roles and 

evolutionary importance of the CAC and the reverse CAC, it is of interest to understand the conditions 

constraining the many reactions of which it may be composed under the considerable range of physical 

and chemical environments where it functions.  Most thermodynamic data available for the substrates 

used in the CAC are incomplete and have only been determined at the 25 °C and 0.1 MPa standard 

state. Therefore it is difficult to predict accurate reaction thermodynamics well beyond those 

conditions, including those likely to have hosted the emergence of life [7-10]. For examination of CAC 

reactions under the relatively extreme high-temperature and high-pressure conditions where life can 

thrive and may have originated, and to determine the geochemical environments where prebiotic 

conditions may have been favorable, the high pressure and temperature thermodynamic parameters of 

the substrates must be determined. 
To evaluate the standard Gibbs free energy ( 0

rG ) of reaction for a given set of products and 

reactants at temperatures and pressures beyond the 25 °C – 0.1 MPa reference conditions in an 

aqueous system, the standard Gibbs free energy of formation ( aqG f
0 ) for each substance at non-

standard temperature and pressure must be calculated. Most thermodynamic data available for aqueous 

organic molecules beyond the 25 °C and 0.1 MPa reference conditions are generally for compounds 

that are either potential growth substrates or metabolic by-products. Only in a few works are there data 

available for compounds that are intermediates in the ubiquitous biochemical pathways found in 

nature. The general lack of empirical data for aqueous organic compounds at elevated temperature and 

pressure has lead to the development of various equations of state to describe the behavior of various 

thermodynamic properties at non-standard temperature and pressure [11,12]. The revised Helgeson-

Kirkham-Flowers equations of state [11,13], along with methods for the estimation of high pressure 

and temperature thermodynamic properties [14-20], can be used to predict accurately reaction 

thermochemical properties for aqueous organic compounds well within the thermal and pressure range 

of the possible environments where these reactions may be expected to occur in biological processes. 

In addition to aqueous organic compounds [13,18,21,22], the revised HKF equations of state have been 

used to calculate accurately the thermodynamic reaction properties, without the benefit of high 

pressure and temperature data, for aqueous inorganic [17] and organic ions [13,23], and inorganic 

electrolytes [19] at subcritical temperatures and pressures up to 500 MPa. Such versatility makes it one 

of the more useful tools for evaluating geochemical and biochemical reaction properties in a wide 

variety of environments, as the revised HKF allows calculation of species and reaction properties 

among minerals, gases and aqueous species.  This provides a framework for understanding many 

interdependent metabolic and geochemical processes [24]. 
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Figure 1. The reverse citric acid cycle (modified from [25]). 
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Data for reactions depicted in Figure 1 are used as a suggestion for a prebiotic reductive CAC. 

However, estimation of the thermochemical properties of the thioester intermediates may also function 

as proxies in lieu of high pressure and temperature reaction data for coenzyme A or other thioester 

intermediates found in Archaea. 

 

2. Methods 

 
The revised HKF equation of state uses the standard [26] aqG f

0 , aqueous partial molal entropy 

( aqS 0 ), partial molal volume ( 0V ), and constant pressure molal heat capacity ( 0
PC ), along with fitting 

parameters that integrate the change in the partial molal property, into the aqG f
0  at the desired 

temperature and pressure conditions. In regard to the revised- HKF equation of state, the 25 °C – 0.1 
MPa properties are referred to as the reference state, i.e. 

rr TPf aqG ,

0 , and the calculated partial molal 

property at P and T, the standard state, i.e. TPf aqG ,

0 . For substances for which incomplete 

thermodynamic data are available, the use of group contribution, or additivity, algorithms has become 

the most pragmatic method available in light of the vast number of naturally occurring and synthetic 

organic compounds. Group additivity relationships have been used to generate 25 °C, 0.1 MPa 

reference state thermodynamic properties and group values. These estimation methods have been used 

for pure phase gas, liquid and solid organic compounds [27-29] and aqueous neutral and ionic organic 

compounds. Namely among the aqueous species are n-alkanes, n-alkenes, n-alcohols, n–alkanones 

[30], aldehydes [15], amino acids [18,22], carboxylic, hydroxy and dicarboxylic acids, and their 

respective ions [23], as well as numerous biochemically-relevant organic compounds (e.g.[31,32]). 

 

2.1. Strategy used for the estimation of missing reference state values 

 

The approach taken to estimate reference state values herein is to utilize methods using state 

variables and reaction data, where available, to calculate missing values. In absence of state or reaction 

data, the group contribution method is used, with emphasis on attaining data for the closest structural 

analogues as a base structure. In doing so, the fewest group values are used to modify the base 

structure as a means of decreasing the probability of error accumulation. The selection of methods 

used to estimate reference state data are summarized in Figure 2 using the neutral species as examples. 

 
2.2. Calculation of reference state aqG f

0  and estimation of missing values 

 
The aqG f

0 values selected for neutral and ionic organic species are shown in Table 1. The 

aqG f
0 for organic acids and ions for which there were no data available were calculated from the 

ionization constants (pKa), critically compiled in [33], and aqG f
0 of the respective ion or acid for 

which there were reliable data. The only acid-anion pair for which aqG f
0 values were unavailable was 

succinyl thioester. Therefore, estimation of its aqG f
0  was necessary and attained through the addition 

of the aqG f
0 for the (>C=O) and (–S-) groups to pentanoic acid-pentanoate aqG f

0 for the succinyl 



Int. J. Mol. Sci. 2009, 10             

 

 

2813

thioester acid-anion pair. The aqG f
0  (>C=O) group value was calculated from the difference in the y-

intercepts for regression equations between n-alkanones and (n-1) n-alkanes (both taken from 
reference [18]). The aqG f

0  (–S-) was calculated similarly, from the difference in y-intercepts from 

dialkylsulfides [34] and n-alkanes [18], with the same number of carbon atoms. Data for other 

components of the citric acid cycle (ethyl thiol and acetic acid; see Figure 1) are available in the 

literature [16,23]. 

 

Figure 2. Group contribution method used to estimate (a) the standard partial molal 

entropy (S°) and volume (V°) and (b) the heat capacity (Cp
°) and free energy (Gf

°) of 

aqueous organic species considered in this study.  

(a) 
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Figure 2. Cont. 
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a-value taken from reference shown in Table 1. b- group values from [35]. c- the carbonyl group value was estimated from the 
difference in 0V  between succinic acid [23] and -ketoglutarate [36]. d-estimated using group values from [31]. e-malonic acid 
from [23]. f-group aqS

f

0  value for >C=O assumed to be the difference in aqS
f

0  between -ketoglutaric acid [37] and succinic acid 
[23]. g-calculated form pKa values from [33] and aqG

f

0  for ions from Table 1 (as described in text). h-value for aqG
f

0 was taken 
from [38], the aqH

f

0 was from [33], and elementsS
f

0 were the CODATA values from [39]. i-estimated from 0V of H-fumarate-1 
(Figure 2) assuming the same difference in 0V between the acid and ion as between succinic acid and H-succinate-1 from [23]. j-
estimated by subtracting the difference in y-intercept values for 0

P
C  between n-alkanes and n-alkenes (taken from [18]) from that 

of succinic acid (taken from [23]). k- calculated from pKa and aqG
f

0  values from [33] for ions (as described in text) , aqH
f

0 was 
from [37)] and elementsS

f

0 were the CODATA values from [39]. l-the 0

P
C for succinic acid was taken from [23]. The group value for 

the >C=O was taken from [31] . m-from [18]. n-group value estimated from difference in aqS
f

0 values between ethyl sulfide (as 
described in Appendix) and n-butane (taken from [18]). o- group value from [40]. p- group value estimated from difference in 

0

P
C values between ethyl sulfide [34] and n-butane (taken from [18]. q-from [23]. r-group value estimated from difference in y-
intercepts of aqS

f

0 between n-alkanones and n-1 n-alkanes taken from [18]. s- group value from [30]. t- group value estimated 
from difference in y-intercepts of 0

P
C between n-alkanones and n-1 n-alkanes taken from [18]. u- group value estimated from 

difference in y-intercepts of aqG
f

0 between n-alkanones and n-1 n-alkanes taken from [18]. v- group value estimated from 
difference in aqG

f

0 values between ethyl sulfide (calculated from gG
f

0 and G
hyd

  from [34] and n-butane (taken from [18)]. 
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Table 1. Summary of the aqueous reference state (25 °C, 0.1 MPa) partial molal properties 

of organic species and parameters for the revised HKF equations of state used to 

extrapolate to elevated temperatures and pressures. 

 Gf
0 a S0 b V0 c CP

0 b a1
 d,ee a2 

d a3 
e a4 

f,hh c1 
g c2 

f b 

pyruvic acid -489.1j 179.9 k 54.6 h 114.6 h 3.9096 5745.0 ff 2.478 -140079 24.645 384086 jj -129222 mm 

pyruvate-1 -474.9 I 171.5 k 41.5 t -52.8 bb 3.2601 4220.3 ff 17.617 -133776 22.278 -178281 ii 42208 ll 

oxalaoacetic acid -838.3 j 287.5 h 72.4 h 108.7 h 4.8998 7178.9 ff 24.687 -146006 27.207 377592 jj -52158 mm 

H-oxalaoacetate-1 -823.7 j 233.1 p 60.3 u -77.7 cc 4.3045 6672.1 ff 10.473 -143911 -10.600 -181300 ii 330604 ll 

oxalaoacetate-2 -798.7 I 107.9 q 46.7 v -328.1 cc 3.8109 5513.3 ff 13.850 -139121 -176.230 -211639 ii 1139579 ll 

malic acid -891.6 k 283.8 h 82.8 w 227.7 w 5.5023 8481.8 ff 21.621 -151393 117.243 509492 jj -75348 mm 

H-malate-1 -872.4 l 227.7 r 69.4 x 41.2 dd 4.8234 7890.2 ff 6.924 -148947 106.200 -166880 ii 344473 ll 

malate-2 -843.1 l 126.8 r 55.7 x -209.1 dd 4.3174 6702.4 ff 10.385 -144037 -62.817 -197220 ii 1170226 ll 

fumaric acid -645.8 k 261.1 k 78.8 h 154.7 h 5.2807 8963.5 ff 39.867 -153384 58.786 428516 jj -95650 mm 

H-fumarate-1 -628.1 k 203.3 k 65.4 y -31.8 dd 4.6074 7383.1 ff 8.401 -146851 38.350 -175733 ii 373932 ll 

fumarate-2 -601.9 k 105.4 k 51.7 y -282.1 dd 4.0998 6191.7 ff 11.873 -141925 -131.082 -206072 ii 1185066 ll 

-ketoglutaric acid -842.3 j 315.1 h 89.0 z 173.4 h 5.8421 9216.6 ff 24.128 -154430 78.884 449296 jj -35121 mm 

H--ketoglutarate-1 -829.4 j 243.5 s 75.6 x -13.1 dd 5.1687 8700.7 ff 4.562 -152298 51.025 -173461 ii 292131 ll 

-ketoglutarate-2 -802.0 I 136.0 s 61.9 x -263.4 dd 4.6661 7520.8 ff 8.000 -147420 -117.057 -203800 ii 1117934 ll 

citric acid -1243.4 m 329.4 l 113.6 w 322.5 w 7.2438 12247.7 ff 39.901 -166961 195.456 614557 jj -23333 mm 

H2-citrate-1 -1226.3 k 286.2 k 98.1 aa 187.9 k 6.4344 11671.9 ff -4.096 -164580 241.056 -149109 ii 248464 ll 

H-citrate-2 -1199.2 k 202.3 k 88.5 aa 0.84 k 6.1522 11009.3 ff -2.165 -161841 131.407 -171775 ii 1038339 ll 

citrate-3 -1162.7 k 92.1 k 72.0 aa -254.8 k 5.4914 9458.3 ff 2.355 -155429 -40.909 -202760 ii 1874470 ll 

succinyl thioester -496.6 n 394.5 h 140.5 h 216.1 h 8.7769 15562.9 ff 115.513 -180666 113.931 496645 jj -13856 mm 

succinyl thioester-1 -468.9 o 292.0 h 133.7 h 78.0 h 8.4641 16436.3 ff -17.979 -184277 133.088 -162424 ii 187278 ll 

acetyl thioester -140.1 n 400.1 h 107.3 h 255.5 h 6.9314 10305.7 gg 36.887 -158933 171.102 342400 kk -160625 mm 

a-kJ mol-1. b- J mol-1 K-1. c-cm3 mol-1. d-J mol-1 bar-1. e- J mol-1. f-J K mol-1. g- J mol-1 K-1. h-value as described in Table 1. 
i- from [33]. j-calculated from pKa values from [33] and aqGf

0 of oxaloacetate-2 from above. k-from [38]. l-from [37]. m-

from [41]. n-estimated as described in Figure 2 . o-estimated as was succinyl thioester in Figure 2, except using 
pentanoate, taken from [23], as the base structure. p- estimated as was oxaloacetic acid in Figure 2, except using H-
malonate-1, taken from [23], as the base structure. q- estimated as was oxaloacetic acid in Figure 2, except using malonate-

2, taken from [23], as the base structure. r-calculated from aqS f
0 of malic acid in above table using the Sion from [33]. s-

estimated from aqS f
0 of a-ketoglutaric acid from above table assuming the same Sion as between succinic acid and its 

respective ions in [23]. t-estimated from 0V of pyruvic acid in above table assuming the same Vion as between lactic acid 

and lactate, in [23]. u-estimated as was oxaloacetic acid in Figure 2, but using H-malonate-1, from [23] as the base 
structure. v- estimated as was oxaloacetic acid in Figure 2, but using malonate-2, from [23] as the base structure . w-from 
[42]. x-estimated by assuming the same Vion as between succinic acid, taken from [35] and its respective ions, taken from 
[23]. y-from [43]. z-from [36]. aa-from [44]. bb-estimated from 0

P
C of pyruvic acid in above table assuming the same 0

PionC  as 
between lactic acid and lactate in [23] . cc-estimated as described in Figure 2 for oxaloacetic acid but using respective 0

P
C of 

H-malonate-1 or malonate-2 . dd-estimated form the acid in the above table assuming the same 0
PionC  as between succinic 

acid and the respective –1 or –2 ion from [23]. ee – estimated using Equation (6) ff-estimated using Equation (7) . gg- 
estimated using Equation (8) . hh-calculated from the a2 parameter in above table as described by [23]. ii- calculated using 
Equation (10) . jj- calculated using Equation (11). kk- calculated using Equation (12) . ll-calculated from aqS

f

0 in above table 

using Equations (30-32) from [18]. mm-estimated as described in text. 
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The estimation of high temperature and pressure thermochemical properties for cis-aconitate and 

isocitrate, for the reactions between citrate and α-ketoglutarate, were not calculated due to deficient 

reference state data. Since citric acid and its ions are the only feasible tricarboxylated base structures 

available to use for the estimation, this approach was rejected to avoid circularity. Furthermore, the 

primary goal of estimating the high pressure and temperature parameters for CAC reactions calculated 

herein is primarily driven to examine these reactions under the near equilibrium conditions that are 

present in anoxic systems. Extant microbes that use the CAC reductively to fix carbon generally only 

contain a partial cycle where the pathway is used to supply precursors for biosynthesis via succinyl-

Coenzyme A or α-ketoglutarate [2-4,45]. 

 
2.3. Calculation of the reference state entropy ( aqS 0 ) and estimation of missing values 

 
The aqS 0  values selected are shown in Table 1. If aqS 0 values were not available, third-law 

entropies were calculated from the aqueous enthalpy and Gibbs free energy values along with the sum 

of entropies of the elemental constituents using Equation (1): 

  


 0

00

0

elements

ff S
T

aqGaqH
aqS      (1)  

The aqS 0 for some anions in Table 1 were calculated from the aqS 0  of the acid using Sion  for the 

ionization reactions from Miller and Smith-Magowan [33]:  

  aqS 0  (acid) = aqS 0  (ion-1) + Sion      (2) 

The aqueous formation entropies for H-α-ketoglutarte-1 and α-ketoglutarte-2 were estimated by 
assuming similar Sion from succinic acid and its mono- and divalent anions (from Shock [23]). The 

carbonyl group aqS 0  contribution value (54.3 J mol-1) used for oxaloacetic acid and its respective 

anions was calculated from the difference in aqS 0  between α-ketoglutaric acid and succinic acid from 

Shock [23]:  

 aqS 0  (α-ketoglutaric acid) - aqS 0
 (succinic acid) = aqS 0  (>C=O)            (3) 

To calculate the aqS 0  needed for acetyl thioester the value of aqS 0
 (-S-) was calculated from the 

difference in aqueous entropies between ethyl sulfide (see Appendix A, Equation 21), and n-butane [18]. 

The aqS 0
 (>C=O) value used for succinyl thioester and its anion was estimated from the difference 

(68.15 J mol-1 K-1) in y-intercepts between n-alkanones and (n-1) n-alkanes, both from Shock and 

Helgeson [18]. The aqS 0
 (>C=O) value used here was chosen since the value derived from an n-

alkanone may be more likely to represent the value of a subterminal carbonyl adjacent to a sulfur atom, 

as opposed to the α-carbonyl adjacent to a carboxylic acid, as was used above for oxaloacetic acid. 
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2.4. Calculation of the reference state partial molal volume (V°aq) and estimation of missing values 

 
The chosen partial molal volume values are shown in Table 1. The group value 0V  (>C=O) used for 

the oxaloacetate series was estimated by the difference in 0V  between α-ketoglutaric acid [36] and 

succinic acid [35] such that:  

  0V  (α-ketoglutaric acid) - 
0V  (succinic acid) = 0V  (>C=O) .    (4) 

This 0V  (>C=O) was used for pyruvic acid and pyruvate as well since it may rather well represent the 

volume of an α-carbonyl ( 0V ~5 cm3 mol-1) adjacent to a carboxylic acid, rather than n-alkanone’s 

carbonyl with a much larger volume of (~14-15 cm3 mol-1 [30,31]).   

The 0V for fumarate-2 was used to estimate the 0V  of fumaric acid and the H-fumarate-1 anion by 

assuming the same Vion relationship for fumaric acid and its ions as for succinic acid from Criss and 

Wood [35], and H-succinate-1 or succinate-2 anion, from Shock [23], as demonstrated in Figure 2. The 

same relationship, using the Vion (13.13 cm3 mol-1) between lactic acid and lactate from Shock [23] 

was used to estimate the 0V  for pyruvate from its acid. 

The partial molal volume of the (-S-) group for a thioester was estimated by the addition of the 

value of 0V  (-S-) from a value published by Lepori and Gianni [40] to the 0V of 2-butanone taken from 

Shock and Helgeson [18]. The 0V of succinyl thioester and its anion were estimated by the addition of 
0V  (-S-) [40] and 0V  (>C=O) to the 0V  of pentanoic acid and pentanoate, respectively (both from Shock 

[23]). The 0V  (>C=O) value was estimated to be the difference between the 0V  of n-alkanones and (n-1) 

n-alkanes (both taken from Shock and Helgeson [18]).  

 

2.5. Calculation of the reference state heat capacity (C°p aq) and estimation of missing values 

 

The standard molal isobaric heat capacities at the reference temperature and pressure are shown in 
Table 1 and estimation procedures in Figure 2. The 0

PC of pyruvate ion was assumed to have the same 

difference in 0

PionC  from its acid, as did the lactic acid-lactate pair [23], of 167.4 J mol-1 K-1. The 0

PC  

for oxaloacetic acid was estimated by adding the 0
PC  (>C=O) value (-52.0 J mol-1 K-1) from that reported 

by Cabani et al. [31] to that of malonic acid [23]. For the estimation of 0
PC values for both H-

oxaloacetate-1 and oxaloacetate-2 ions, it was assumed that the difference from the acid was the same as 

between succinic acid and it respective anions from Shock [23]. This assumption was also used to 
estimate 0

PC  values of the H-mono- and divalent anions of malate, fumarate, and α-ketoglutarate. The 
0
PC  of fumaric acid was estimated through subtracting the values for the difference (70.7 J mol-1 K-1) 

in y-intercepts between n-alkanes from n-alkenes (both values being from Shock and Helgeson [18]) 
from that of succinic acid. For α-ketoglutaric acid, the 0

PC  (>C=O) value (-52.0 J mol-1 K-1) reported by 

Cabani et al. [31] was added to that of succninc acid. The 0
PC  for succinyl thioester was estimated 

from addition of the 0
PC  (>C=O), and the 0

PC  (-S-) (-81.2 J mol-1 K-1), both calculated in this work, to the 
0
PC  of pentanoic acid from Shock [23]. The 0

PC  (-S-) for succinyl thioester was calculated from the 

difference in y-intercepts of C2,C4,C6 n-diaklysulfides [34] and C2,C4,C6 n-alkanes [23]. The 0
PC  (>C=O) 

value (-135.2 J mol-1 K-1) was calculated to be the difference between 2-pentanone and n-butane, both 
from Shock and Helgeson [18]. This value for 0

PC  (>C=O) was chosen for succinyl thioester because a 
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carbonyl from an n-alkanone may be more likely to represent the 0
PC (>C=O) in a thioester, as opposed to 

that from a α-carbonyl adjacent to a carboxylic acid. The resulting value of 216.1 J mol-1 K-1 is in close 

agreement with the sum of group values provided by Cabani et al. [31], using the (-S-) calculated here, 
of 216.4 J mol-1 K-1. The 0

PC  of the succinyl thioester anion was assumed to have the same difference 

from its acid as that between pentanoic acid and pentanoate [23]. The 0
PC  of acetyl thioester  

was estimated by adddition 0
PC  (-S-), as described above, to that of 2-butanone from Shock and 

Helgeson [18]. 

 

2.6. Extrapolation of reference state data to high pressures and temperatures 

 
Starting with 25°C, 0.1 MPa reference state data, calculating the TPf aqG ,

0  at the elevated P and T 

involves the integration of Equation (5) as:  

   dPVTdCTdTCTTSGG
P

P

T

T
P

T

T
PrTPTPTP

rrr
rrrr  0000

,

0

,

0

, ln     (5) 

The revised-HKF model allows for the incorporation of the changes in the partial molal volume and 

heat capacity as described in Appendix B.  

 

2.7. Estimation of the temperature and pressure effects on the partial molal volume of aqueous organic 

species: the non-solvation contribution 

 

The partial molal volume of a substance in the revised HKF model is defined by Equation (24). At 

temperatures of  ~150°C, at the water-saturation vapor pressure (Psat), the solute-dependent 
contribution (the non-solvation volume, 0

nV ) to the partial molal volume term dominates the partial 

molal volume. The 0

nV  term is calculated from Equation (25) utilizing fitting parameters (a1, a2, a3, 

and a4) to integrate the 0

nV  term into 0V  at a desired pressure and temperature. The a1 and a2 

parameters have been generated from empirical data gathered at high pressure and temperature 

conditions for a variety of compounds [11,15-20,46,47]. The a1 variable is correlated to a high degree 
with the 0

nV  of a wide range of neutral and charged aqueous organic compounds with a variety of 

functional groups (Figure 3) and can therefore be used to estimate the values of a1 for compounds with 

structural homology to those with high pressure and temperature data for which there are no 

volumetric data beyond the reference state.  

For the range of compounds regressed in Figure 3, the line is defined by:  

   a1 = 0.5711 0

nV  + 7.4803      (6) 

where a1 is in J mol-1 K-1 and 0

nV in cm3 mol-1. This regression equation was used to generate the a1 

parameter for all neutral and charged compounds in this work.    
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Figure 3. Regression plot of the non-solvation parameter a1 against the non-solvation 

volumes of short-chained aqueous organic species taken from the literature [15,18,23]. The 

non-solvation volumes were calculated using Equation (25) with the partial molal volumes 

and effective Born coefficients of (C3-C5) carboxylic acids, (C2-C6) carboxylate anions, 

(C3-C5) hydroxy acids, (C3-C6) hydroxylate anions, (C2-C6) dicarboxy acids, 

dicarboxylate-1, and dicarboxylate-2 anions [23], (C3-C5) n-alkanones, n-alkanes, n-alkenes, 

n-alcohols [18] and (C3-C5) aldehydes [15]. 

 

The a2 parameter is somewhat more dependent on the functional group characteristics of a 
particular molecule. In Figure 4 the 0

nV of aldehydes, hydroxy acids, carboxylic acids, and 

dicarboxylic acids, and their respective anions, are plotted against a2.  

The data are fit by the line  

    a2 = 1.341 0

nV  - 16.764      (7) 

where a2 is also in J mol-1 K-1. For n-alkanones and n-alcohols (Figure 4) the slope is somewhat 

shallower and the y-intercept lower so these values are fit better by the line   

    a2 = 1.129 0

nV  - 19.213      (8) 
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Figure 4. Regression plot of the non-solvation parameter a2 against the non-solvation 

volumes of short-chained aqueous organic species taken from the literature [15,18,23]. (a) 

Regression of non-solvation volumes calculated with Equation (25) using the partial molal 

volumes and effective Born coefficients of (C3-C5) carboxylic acids, (C2-C6) carboxylate 

anions, (C3-C5) hydroxy acids, ( C3-C6) hydroxylate anions, (C2-C6) dicarboxy acids, -1, 

and –2 anions [23], and aldehydes [15]. (b) Upper line: Regression plot generated from 

points in upper figure. Lower line: Regression of non-solvation volumes calculated with 

Equation (25) using the partial molal volumes and effective Born coefficients of (C3-C5) n-

alkanones, and (C2-C5) n-alcohols [23]. 

  (a) 
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The a2 parameter for all dicarboxylic acids, and dicarboxylate anions, citric acid and its anions, 

pyruvic acid and pyruvate, and succinyl thioester and its anion were estimated with Equation (7). Since 

the only apparently large departures from the line in Equation (7) are for shorter- chained carboxylate 

and hydroxylate anions, a fit for hydroxylates was considered separately to calculate the a2 parameter 

for pyruvate. The y-intercept for hydroxylates (Equation (9)) is slightly lower with a steeper slope than 

Equation (8): 
    a2 = 1.398 0

nV  - 14.611     (9) 

However, if the y-intercept value for n-alcohols vs. n-alkanones can be considered comparable to 

that of the hydroxy and carbonyl groups in hydroxy- and  keto-acids, respectively, then pyruvate’s y-

intercept would shift toward the line in Equation (7). Therefore the a2 value for pyruvic acid using 

Equation (7) was retained. The a2 parameter for acetyl thioester was estimated with the line defined by 

Equation (8) for n-alcohols and n-alkanones.  

All a4 parameters were generated, as suggested by Shock and Helgeson and Shock [18,23], using 

the correlation with the a2 fitting parameter. The a3 parameter was then calculated  
by solving the rearranged non-solvation molal volume term ( 0

nV ) of Equation (25) at 25 °C and  

0.1 MPa. 

 

2.8. Estimation of temperature and pressure effects on the isobaric heat capacity of aqueous organic 

species: The non-solvation contribution 

 
The non-solvation and solvation heat capacity contributions to the partial molal heat capacity are 

defined in Equation (27). The non-solvation contribution term of Equation (27) is expanded in 
Equation (28) and combines the influence of pressure on the 0

,nPC  with incorporation of a substance’s 
a3 and a4 fitting parameters, from above, and the influence of temperature by the use of two heat 
capacity fitting parameters, c1 and c2. The c2 parameter correlates closely with the reference state 0

PC  
for compounds with similar functional groups (Figure 5).  

Therefore, from this correlation high temperature and pressure data from structurally similar 
compounds can be used to predict the c2 parameter of molecules for which no high temperature heat 
capacity data are available. Figure 5a shows the plot of c2 vs. 0

PC  values, taken from Shock [23], for 
organic acid anions. The regression of these values for the range of compounds shown is described by 
the line in Equation (10): 

    c2 = 0.0507 0
PC  - 17.188     (10) 

where c2 is in J mol-1. This regression equation was used to estimate the c2 parameters for all the 
dicarboxylate and carboxylate anions from the reference state 0

PC  used in this study.  Equation (11) 
describes the upper line in the plot of c2 vs. 0

PC  values from organic acids (taken from Shock [23]) in 
Figure 5b:  

    c2 = 0.4641 0
PC  - 25.704     (11) 

which was used to estimate the c2 parameter for all organic acids. The lower line in Figure 5(b) is a 
plot of the c2 vs. 0

PC  of short-chained n-alcohols and n-alkanones [18] and is described by the line in 
Equation (12), which was used to estimate the c2 parameter for acetyl thioester: 

    c2 = 0.283 0
PC  - 16.970     (12) 
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Figure 5. Regression plots of the non-solvation molal heat capacity variable c2 against the 

reference state heat capacity of neutral and ionic organic species from the literature 

[18,23]. (a) Plot of organic acid anions: (C2-C5) hydroxylates, (C2-C5) carboxylates and 

(C3-C6) H-dicarboxylate-1 and dicarboxylate-2 ions (all from reference [23]) used to 

generate Equation (10). (b) Upper line: Plot of neutral acids: (C4-C5) carboxylic acids, (C3-

C5) hydroxy acids, and (C4-C6) dicarboxylic acids from reference [23] used to generate 

Equation (11). Lower line: Plot of (C3-C5) n-alkanones and (C2-C5) n-alcohols from 

reference [18] used to generate Equation (12). 
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2.9. Estimation of temperature and pressure effects on the partial molal properties of aqueous organic 

species: The solvation contribution 

 

At temperatures of ~150°C, at the water-saturation vapor pressure (Psat), the solvent-dependent 

contribution to the partial molal volume (Equation (26)) and heat capacity (Equation (29)) terms begin 

to dominate each partial molal function. The conventional (ω) and effective (ωe) Born coefficients, 

respectively, are used to describe the substance-specific solvation properties of an ionic species or 

electrolytes, and neutral species (see Appendix B).  

 

2.10. Calculation of the conventional Born coefficient () for ionic species 

 
The ω of ionic species has been demonstrated to have a strong correlation with the aqS f

0 [17] and 

can therefore be calculated from this quantity. In Figure 6 ω is plotted against the aqS f
0  for a variety 

of mono-, di- and trivalent inorganic and organic anions (taken from Shock and Helgeson (1988) [17]) 

using relationships in Equations (30-32) to calculate ω, which was also used to calculate the ω for all 

anions in this work (data also shown in Figure 6).  

 

Figure 6. Regression plot of the conventional Born coefficients against the partial molal 

entropy of various anions. The upper, middle, and lower lines are the correlations for the 

tri-, di-, and monovalent anions, respectively, from Equations (30-32) using values of 

inorganic ions (taken from Shock and Helgeson [17]), organic anions (taken from Shock 

[23]) and compounds calculated in this work. 
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2.11. Calculation of the effective Born coefficient (e) for neutral species 

 
The effective Born coefficient used to describe the solvation contribution of neutral species in the 

revised-HKF model has been calculated from aqS f

0 [13,22,23] and the Gibbs free energy of hydration 

( Ghyd
0 ) (Appendix C) in the absence of high temperature 0

PC  and 0V data. It has been demonstrated 

from empirical data that ωe generally has a negative value for low- molecular weight neutral organic 

compounds. The negative value is the result of the inflection of 0
PC  and 0V  values towards positive-

infinity near the critical point of water. As the properties of a set of molecules become increasingly 

polar, the solute-solvent interaction increases. In the case of some neutral inorganic polyhydroxyl 

compounds such as aqueous silica, of which the hydrated form is thought to be H4SiO4, and boric acid 

(H3BO3), both demonstrate electrolyte-like behavior and thus positive ωe values. The mechanism 

associated with this phenomenon is thought to arise from water-solute versus water-water competition 

near the critical point [48], where solutes that are associated with more solvent molecules than is the 

solvent itself, and will have 0
PC  and 0V  values that approach -∞. The volatility of a substance in 

comparison to water is also thought to have influence over this process as well. This issue is discussed 

in detail by Amend and Plyasunov [49], where predictions were made concerning the near-critical 

point behavior of carbohydrates. It is clear, through their discussion and others, that the relationship 

between e and solvation at higher temperatures is not an obvious one. For instance, the non-

electrolyte amino acid proline displays low-temperature solvation behavior that is best described with a 

negative value for ωe. As the temperature increases, however, proline’s solvation is best fit with a 

positive ωe. However, this type of solvation behavior may be particular to the proline zwitterion due to 

its particularly asymmetrical dipole and spatial arrangement of hydrophobic and hydrophilic moieties 

[22]. If the high density of polar functional groups, as in polyhydroxy compounds, is to be viewed as 

an indicator of near-critical behavior of compounds with hydroxyl functionalities, then for dicarboxylic 

acids, oxalic acid with an ωe that displays neutral behavior may be the closest analogue.  
In Table 1, different values for e are displayed as calculated from the correlations with 

the Ghyd
0 (Equation (44)) and entropy (Equation (45)), as has been done previously. Also included is a 

systematic estimation of ωe using values provided by Shock and Shock and Helgeson [18,23] with 

results shown in Figure 7 in comparison to other series of neutral organic compounds.  

The values of these estimations were used for ωe in all the neutral compounds in this work. The ωe 

for pyruvic acid was estimated by taking the ωe from lactic acid and subtracting the difference between 

n-propanol and acetone: 

  ωe lactic acid – (ωe n-propanol – ωe acetone) = ωe pyruvic acid     (13) 

The ωe for oxaloacetic acid was estimated from the value for malonic acid with addition of the 

carbonyl group value such that: 

  ωe malonic acid + (ωe 2-pentanone – ωe n-butane) = ωe oxaloacetic acid   (14) 

Malic acid’s ωe value was estimated by from succinic acid from: 

 ωe succinic acid + (ωe hydroxybutanoic acid – ωe butanoic acid) = ωe malic acid   (15) 

to add the value of the hydroxyl group. For fumaric acid the difference in n-alkanes and n-alkenes 

were used to modify succinic acid as: 
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ωe succinic acid + (ωe n-butene – ωe n-butane) = ωe fumaric acid   (16) 

The ωe for α-ketoglutaric acid also used succinic acid and carbonyl value for oxaloacetic acid: 

e succinic acid + ( e 2-pentanone – e n-butane) = e  α-ketoglutaric acid   (17) 

Since there are currently no analogous compounds (tricarboxyl) for citric acid, its ωe was estimated 

to be the same as a C6 compound using the slope and y-intercept for dicarboxylic acids.  The value for 

succinyl thioester was estimated by:  

ωe hexanoic acid + (ωe 2-pentanone – ωe n-butane) + (ωe diethyl sulfide – ωe n-butane) = ωe succinyl thioester   (18) 

using the value from [22] for diethyl sulfide. The ωe estimation for acetyl thioester also used the same 

value for diethyl sulfide: 

ωe diethyl sulfide + (ωe 2-pentanone – ωe n-butane) – (ωe alkane – ωe alkane(n-1)) = ωe acetyl thioester .   (19) 

 

Figure 7. Plot of the effective Born coefficient vs. the number of carbon atoms of neutral 

organic compounds. The lines are regressions generated from values of the selected 
functional series of compounds noted in Table 1. Datum points are the values of e for the 

neutral compounds calculated as described in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In consideration of consistency with previous works and the pragmatic aspects of the temperature 

ranges to be expected to be relevant for these compounds, negative values for ωe were chosen. In 
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addition, for practical purposes, since the pKa of the strongest acid among these compounds is 2.49 

(pyruvic acid from reference [33]), at pH above 3-4 the acids of these compounds will not usually be 

germane in writing reactions.  

 

3. Results 

 

3.1. Analysis of the possible error associated with methods used in estimating reference and standard 

state parameters  

 
Since the motivation for this work is to estimate the high temperature and pressure thermochemical 

parameters for compounds for which there was no data, the credibility of the resulting values need be 

examined. The effects of errors on the reference state data, as well as for values calculated beyond the 

reference state, can be analyzed by the comparison of expected calculations, using the estimated 

values, with calculations from values in which a sensible error is incorporated. Figure 8a demonstrates 

the influence of the over- and underestimation of e  on the partial molal volume of propanoic acid 

along Psat calculated using Equations (25) and (26) with revised HKF parameters from Shock [23]. 

Although the reference state 0

rrTPV is unaffected by ωe, the error in the calculated 0

PTV  increases with 

temperature as the partial molal volume is influenced increasingly by the solvation term, although at 

higher pressures the error is diminished (Figure 8b). However, as we are most concerned with 

providing data for reaction thermodynamics at elevated pressure and temperature, the effects of 

inaccurate estimation of the 0

,TPG are of primary concern. As can be seen in Figure 8c, the revised-

HKF method is quite insensitive to even a 2-fold under- or over estimation of ωe, with a maximum of 

~0.3% relative error at 3500C. The insensitivity to errors from the estimation methods can be further 

tested by swapping the HKF parameters of one compound for another, while using the original 

aqG f
0 . To demonstrate this, for compounds in Figure 8d the original aqG f

0 values were retained 

while the remaining values ( aqS 0 , a1-a4, c1, c2, and Born coefficients) were mutually swapped from 

another compound: pyruvic acid and propanoic acid, H-oxaloacetate-1 and H-α-ketoglutarate-1, and 

oxaloacetate-2 and α-ketoglutarate-2 (all values are from Table 2 or Shock [23] for propanoic acid) and 

used to solve Equation (39). The largest error (~4% relative at 350 °C) is encountered when the 

equation of state parameters from propanoic acid are replaced with those of pyruvic acid. Considering 

that there is a relative difference (compared to pyruvic acid) of 15%, 24%, and 12% between the 

aqS 0 , 0V , and 0
PC of propanoic acid, respectively, this level of error is quite tolerable, as group 

additivity estimations generally give relative errors of ~5% for these classes of organic compounds 

[50]. At 1500C the error is approximately half that at 3500C and is likely to fall below the analytical 

errors encountered when quantifying the concentrations of these substances.  
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Figure 8. Plot of the error in partial molal properties of neutral and ionic organic 

compounds expected from the improper estimation of HKF parameters as a function of 

temperature and pressure. (a) and (b) Partial molal volume of propanoic acid, taken from 

[23], calculated using Equations ((25) + (26)) with the over- and under-estimation of the 

effective Born coefficient. (a) The solid line is the predicted 0V  of propanoic acid at Psat 
using the e from [23]. The upper dashed-line is the 0V predicted by underestimating e  by 

0.5-fold. The lower dashed-line is the 0V predicted by a 2-fold overestimating of e . (b) 

The percent relative error expected in 0V as a function of pressure at 0.5x and 2.0x e . (c) 

The effect of the over- and under-estimation of e on relative error in PTG ,  at Psat (from 

Equations (38) and (39)). (d) Plot demonstrating the relative error in PTG ,  at Psat expected 

from gross misestimation of HKF parameters. Using the reference state aqG f
0  (from Table 

1) for the labeled acid or ion, the remaining values ( aqS f
0 , a1, a2, a3, a4, c1, c2, and e ) 

were swapped: propanoic acid (taken from [23] for pyruvic acid, and the respective -

ketoglutarate anion for H-oxaloacetate-1 and oxaloacetate-2 ions (Table 1), and vice versa. 
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Table 2. The effective Born functions (; J mol-1) used for neutral organic species 

calculated by different methods. 

a b c 

pyruvic acid -1.2922 -1.2679 1.2156 

oxalaoacetic acid -0.5216 -0.4495 2.4908 

malic acid -0.7535 -0.5100 2.7785 

fumaric acid -0.9565 -0.7306 -1.7418 

a-ketoglutaric acid -0.3512 -0.2814 1.3690 

citric acid -0.2333 -0.2780 4.0067 

succinnyl thioester -0.1386 0.0107 7.7939 

acetyl thioester -1.6063 0.0453 -3.7706 
a-calculated as described in text and Figure 6. 
b-calculated from aqueous entropies from Table 4 using Equation (45). 
c-calculated from the hydration Gibbs free energy using Equation (44). 

 

3.2. Estimation of equilibrium constants at high temperatures and pressures 

 

As an example of the usefulness of these data, values of the logarithm of the equilibrium constant 
(log K) for acid dissociation reactions were calculated at different temperatures from the 0

,TPG  values 

at Psat using Equations (38) and (39) and:  

     logK 
G

2.303RT
      (20) 

with the partial molal properties and equation of state parameters in Table 1 (Figure 9). These values 

allow us to evaluate the potential for each of these reactions to occur under different geochemical 

conditions. The plots in Figure 8 allow investigation of the pH dependence of the speciation among 

CAC components. Similarly, the data and parameters, along with the revised HKF equation of state, 

allow evaluation at wide ranges of temperatures and pressures of reaction energetics among species in 

the various steps of the CAC (see Figure 1) to determine the thermodynamic viability of these 

reactions for a variety of conditions. If life did indeed begin under hydrothermal geochemical 

conditions, these calculations can help identify the conditions necessary for this development. 

 

4. Concluding Remarks 

 

Using the thermodynamic data that have either been measured experimentally or estimated through 

methods described and provided in this paper for the constituents of the citric acid cycle, we can begin 

to place the fundamental biological process of energy transfer into a geochemical context. With the 

data and parameters presented in this paper, we can for the first time calculate thermodynamic reaction 

properties for the citric acid cycle under hydrothermal conditions, whence life may have emerged. 

Furthermore, we can use calculations such as the ones described above to evaluate the energy cycles of 

microorganisms that live at elevated temperatures and pressures and thus gain insight into the 
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conditions necessary for the initiation of these cycles. We are now also able to evaluate quantitatively 

the steps in the reverse or reductive citric acid cycle, which may have preceded the more modern 

oxidative citric acid cycle as the primary energy transfer mechanism for life. Such calculations are 

facilitated through use of the computer program SUPCRT92 [51]. 

 

Figure 9. Plot of the logarithms of equilibrium constants for dissociation reactions (as 

indicated) involving organic species from this work as a function of temperature at Psat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, we can gain some insight into the conditions (including factors such as pH, 

temperature, pressure and concentrations of the chemical components) on the early Earth that may 

have facilitated the initiation of the central metabolic pathways such as the reductive and oxidative 

citric acid cycles in biological energy systems by evaluating quantitatively the energy gained through 

various metabolic reactions.  

For example, careful examination of Figure 9 reveals that the logarithms of the equilibrium 

constants of many of the deprotonation reactions involving components of the citric acid cycle vary by 
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up to an order of magnitude over the known temperature range for life (currently up to 122°C). 

Because these reactions are functions of pH, changes in the equilibrium constants over the temperature 

range will change the range of pH at which they would be thermodynamically favorable. A full 

evaluation of the geochemical parameters attending any environment would be required to determine 

the effect each would have on reaction favorability and the viability of the citric acid cycle.  
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Appendices 

 

Appendix A 

 
The aqS 0  of ethyl sulfide was calculated from Equation (21) using values of lS f

0 [29], 0Hhyd , 
0Ghyd [52], and 0Hvap [53], along with:  

0

,

0000

0

sl

vapvaphydhyd

aq S
T

GH

T

GH
S 





          (21) 

and the gGf

0  [52] and lG f
0 [28], which were used to calculate vapG

0 from the relationship: 

     0Gvap  = gG f

0  - lG f

0   .     (22) 

 

Appendix B 

 

The revised HKF eos combines substance specific structural or non-solvation (  0

n
 ) and solvent 

dependent or solvation-  0

s
  partial molal properties to predict the conventional standard molal 

properties( 0
) of aqueous species: 

 000

sn         (23) 

The non-solvation contribution to the standard molal term is a summation of the intrinsic property 

of a substance and its affect the solvent structure in its local vicinity and is the dominant contribution 

to the partial molal quantity at temperatures of ~150 °C. The solvent contribution to the standard 
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molal term is a factor of the intrinsic properties of water and the Born transfer properties of solvation 

[11]. In effect, for a given structural moiety of a compound the greater the degree or hydrophilicity (i.e. 

compounds that form hydrogen bonds and/or ions), will reflect in the collapse of the local solvent 

structure, whereas more hydrophobic moieties will necessitate the formation of cavities within the 

solvent.  The solvation contribution to a standard molal property has the greatest affect when the 

solvent (H2O) is undergoing the greatest degree of change in permitivity, volume, and heat capacity as 

these functions are influenced by high temperature and pressure. The non-solvation and solvation 

contribution to the partial molal volume for ions, electrolytes, and neutral aqueous organic species is 

defined by: 

 0V  0

nV + 0

sV       (24) 

where the non-solvation term is defined by: 
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and the solvation term for ions and electrolytes is: 
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For neutral organic species, the non-solvation term partial derivative function  TP  is taken to 

be zero, simplifying the term to -eQ since the effective Born coefficient is used. 

The combination of non-solvation and solvation function for integration of the heat capacity 

function is: 
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sPnPP CCC         (27) 

where the non-solvation contribution is defined by: 
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and the solvation term for ions and electrolytes is: 
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and reduces to eTX for neutral organic species, where  T P
 and 2 P 2 

P
 terms become zero. 

The a1, a2, a3, a4, c1, and c2 coefficients define the substance-specific non-solvation parameters and  

and e parameters are the conventional and effective Born coefficients for ionic species or electrolytes 

and neutral species, respectively. The Q, X, and Y coefficients are the solvent, and P-T dependent 

Born functions from [11].  and  are the solvent parameters corresponding to 2600 bar and 228 K, 

respectively. T and P are the temperature and pressure of interest, respectively, and the Tr and Pr terms 

are those of the reference state temperature of 298.15 K and pressure of 0.1 MPa.     
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The conventional Born coefficient of an ion was calculated by first utilizing the correlation of the 

standard partial molal entropy with the effective electrostatic radius (re) of the jth aqueous species 

(from [17]) at 1 bar and 25 °C, such that: 

 
Zj

j

je aqS

YZ
r









0

2

,

100
       (30) 

where Zj is the charge of the j th aqueous species,  is the quantity equal to N0e2 / 2 (N0 is Avogadro’s 

number 6.02252 x 1023 mol –1, and e is the absolute electronic charge (esu) of 4.80898x 10-10). Y is the 

Born function at 250 C and 1 bar [47] and αz is the charge-dependent factor from [17], equal to 72, 141, 

and 211 for mono-, di-, and trivalent anions, respectively. The effective electrostatic radius is the 

related to the conventional Born coefficient of the j th ionic species (j) by: 
abs

Hj

abs

jj Z          (31) 

where: 

je

j

je

jabs

j r

Z

r

ZeN

,

2

,

220

2


        (32) 

The factor abs

H   is the absolute Born coefficent for the hydrogen ion equal to 0.5387 x 105 cal mol-1 

at 1 bar and 25 °C [54]. The partial and second derivative functions for the conventional Born 

coefficient for ionic species at T and P were calculated with Equations (33-35) from [47] using X1 and 

X2 values using Equations (36) and (37) (from [11]), respectively.  
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X1   k j

j1


j 

 Z j
3 | re, j

2  Z j 3.082  g 2     (36) 

 

X2  2 k j

j1


j 

 Z j
4 | re, j

3  Z j 3.082  g 3      (37) 

The variable  corresponds to the quantity equal to N0e2 / 2 (N0 is Avogadro’s number 6.02252 x 

1023 mol –1, and e is the absolute electronic charge (esu) of 4.80898x 10-10), k and Z are the kth 

electrolyte and charge of the its j th species, respectively (from [11]). The term g is the solvent 

dependent function from [47]. 
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Appendix C 

 
Calculation of the effective Born coefficient (we) from Ghyd

0  

 

The effective Born coefficient (e) for neutral organics was calculated form the correlation 
described by [50] with the Gibbs free energy of hydration ( Ghyd

0 ) and the Henry’s constant of a 

neutral species. Since the Henry’s constant (KH) approximates the equilibrium constant [50] for a 

reaction:  

aqg AA          (40) 

the KH is:  

g

aq
H

C

C
K 

        (41) 

where Caq is the moles of solute in solution and Cg is the equilibrium vapor pressure (MPa) of the 

solute. If both fugacity and molality are considered to be unity for the gas and aqueous species, 
repectively, then the Ghyd

0  can be calculated by:  

Hhyd KRTG ln0         (42) 

Henry’s constant values for pyruvic acid [55], citric, malic, and α-ketoglutaric acids [56], and acetyl 
thioester [52] were used. The Ghyd

0  for oxaloacetic and fumaric acids, and succinyl thioester were 

calculated from the aqGf

0  from Table 3 and the gG f

0  calculated from [28] by: 

Ghyd
0  = aqG f

0  - gG f

0       (43) 

Then using the correlation from [50]: 

 e  10 5  2 .61 
324 .1

hyd 0

G  90 .6

     (44) 
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Calculation of the effective Born coefficient (we) from aqS f

0  

 

Aqueous entropy values have been used to estimate the effective Born coefficient for different 

classes of neutral organic compounds [18,22,23]. The correlation used for the neutral compounds in 

this study were determined by Shock [23]: 

 245900277010 05  fe S       (45) 

where all values are in J·mol-1.  
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