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Abstract: Caspase-2 activation by formation of PIDDosome is critical for genotoxic stress 

induced apoptosis. PIDDosome is composed of three proteins, RAIDD, PIDD, and 

Caspase-2. RAIDD is an adaptor protein containing an N-terminal Caspase-Recruiting-

Domain (CARD) and a C-terminal Death-Domain (DD). Its interactions with Caspase-2 

and PIDD through CARD and DD respectively and formation of PIDDosome are important 

for the activation of Caspase-2. RAIDD DD cloned into pET26b vector was expressed in 

E. coli cells and purified by nickel affinity chromatography and gel filtration. Although it 

has been known that the most DDs are not soluble in physiological condition, RAIDD DD 

was soluble and interacts tightly with PIDD DD in physiological condition. The purified 

RAIDD DD alone has been crystallized. Crystals are trigonal and belong to space group 

P3121 (or its enantiomorph P3221) with unit-cell parameters a = 56.3, b = 56.3, c = 64.9 Å 

and γ = 120°. The crystals were obtained at room temperature and diffracted to  

2.0 Å resolution.  
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1. Introduction  

 

Death-Domains (DDs) are protein interaction modules composed of six-helix bundle. DDs, together 

with DEDs, CARDs, and PYDs, comprise the DD superfamily and has a pivotal role in apoptosis 

signaling pathway by mediating homotypic interaction [1,2]. Apoptosis signaling pathway is mediated 

by sequential activation of caspases that is cysteinyl protease. Activation of caspases is mediated by 

large molecular complexes in the apoptosis signaling pathway [3,4,5,6]. 

PIDDosome, caspase-2 activating large molecular complex, is composed of three different protein 

components including PIDD (p53-induced protein with a DD), RAIDD (RIP-associated ICH-1 

homologous protein with a death domain), and caspase-2 [5]. Caspase-2 activation by PIDDosome is 

critical for genotoxic stress induced apoptosis [7]. PIDD contains 910 residues with seven leucine rich 

repeats (LRRs), two ZU-5 domains and a C-terminal Death Domain (DD) [8]. PIDD is essential for 

cell death, which it facilitates by activating caspase-2. In addition, PIDD is also critical for cell 

survival due to its interaction with RIP1, a kinase that has been implicated in the activation of NF-κB 

[7]. The results of several studies indicate that PIDD may be a molecular switch that controls the 

balance between life and death upon genotoxic stress [7]. Caspase-2 is the second caspase to be 

identified and is the most evolutionarily conserved caspase cross the species of animal [9]. RAIDD, an 

adaptor protein containing both an N-terminal CARD and a C-terminal DD, interacts to Caspase-2 and 

PIDD through CARD-CARD and DD-DD respectively [10,11]. Despite the fundamental importance of 

the Death-Domain superfamily in apoptotic and inflammatory signaling pathways, limited crystal 

structures are available [12].  

As the first step toward elucidating molecular structure of PIDDosome and further understanding 

homotypic interaction of DD in apoptosis signaling pathway, we over-expressed, purified and 

crystallized RAIDD DD. Although it has been known that most DDs are not soluble under 

physiological conditions [13,14], RAIDD DD was soluble and interacts tightly with PIDD DD under 

physiological conditions. Crystals are trigonal and belong to space group P3121 with unit-cell 

parameters a = 56.3, b = 56.3, c = 64.9 Å and γ= 120°. The crystals were obtained at room temperature 

and diffracted to 2.0 Å resolution. Details of the structure of RAIDD DD should enable us to 

understand the mechanism of the PIDDosome formation via DD:DD interaction.  

 

2. Results and Discussion 

 

 2.1. Over-expression and purification of RAIDD DD 

 

As described below in the Experimental section, a DNA fragment encoding the RAIDD DD (94-

199) was cloned by the polymerase chain reaction (PCR) using a plasmid DNA containing the full-

length RAIDD gene as the template in order to elucidate the molecular structure of RAIDD DD by the 

X-ray protein crystallography. Ligation of the PCR product to the expression vector pET-26b produces 

plasmid pET26RAIDD-DD. This vector construction adds an eight-residue tag including C-terminal 

hexahistidine which has been used as efficient tag for affinity chromatography. The resulting plasmid 

was transformed into BL21 (DE3) E. coli competent cells and expressed by treating the bacteria with 

0.5 mM isopropyl-D-thiogalactopyranoside (IPTG). After Ni-NTA affinity chromatography followed 
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by gel-filtration chromatography, we could obtain pure RAIDD DD protein (Figure 1). The main peak 

that contains RAIDD DD eluted around 10 kDa position. It indicates RAIDD DD is existed as a 

monomer in solution. 

 

Figure 1. Purification of the RAIDD DD. The profile showing the elution of the RAIDD 

DD on Gel-filtration chromatography. SDS-PAGE (15% gel) of the purified RAIDD DD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAIDD DD was concentrated to 4-6 mg mL-1 using an Millipore concentration kit (Millipore) for 

crystallization trials. The selenomethionine-substituted RAIDD DD was expressed in the methionine 

auxotrophic strain B834 (Novagen) grown in minimal medium supplemented with seleno-L-

methionine (Sigma) and other nutrients. It was purified and crystallized using the same procedure as 

used for the native protein. 

 

2.2. Crystallization of RAIDD DD 

 

Crystallization conditions were initially screened at 297K by the hanging-drop vapor-diffusion 

method using screening kits from Hampton Research (Crystal screening I and II, Natrix, MembFac, 

SaltRX) and from deCODE Biostructures Group (Wizard I and II). Crystals were grown on a 

siliconized cover slip by equilibrating a mixture containing 1 μL of protein solution (4-6 mg·mL-1 

protein in 20 mM Tris-HCl at pH 8.0, 150 mM NaCl) and 1 μL of a reservoir solution (2 M Na/K 

phosphate at pH 7.0) against 0.5 ml of reservoir solution. Crystals appeared in three days and grew to a 

maximum dimension of 0.2 x 0.2 x 0.2 mm (Figure 2). The selenomethionine-substituted RAIDD DD 

crystals were also grown under the similar condition (2.1 M Na/K phosphate at pH 7.0). 
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Figure 2. Crystal of RAIDD DD. A native RAIDD DD crystal grown in three days  

in the condition of 2 M Na/K phosphate at pH 7.0. Its approximate dimentions are 0.2 X 

0.2 X 0.2 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Preliminary X-ray diffraction studies 

 

For diffraction experiments, crystals were transiently soaked in a solution corresponding to the 

reservoir solution but supplemented with 20% (v/v) glycerol. The crystals were cryocooled at 110K. A 

single-wavelength anomalous diffraction (SAD) data set was collected at the selenium peak 

wavelength (E=12664ev, λ=0.979Å) at the X4A beamline of National Synchrotron Light Source 

(NSLS). Selenium labeled methionine will be found and the structure will be phased using the program 

SOLVE/RESOLVE [15]. Data processing and scaling was carried out in the HKL2000 package [16]. 

A native data set was collected and used for model refinement using CNS [17]. The data-collection 

statistics are summarized in Table 1. The structure was determined and deposited at protein data bank 

(PDBID: 2O71) [19]. 

 

Table 1. Crystallographic statistics. 

Data collection Se-Met Native 

Space group P3121 P3121 

Cell dimensions   

a, b, c 56.3Å, 56.3Å, 64.9Å 56.1Å, 56.1Å, 64.9Å 

Resolution 50-2.0Å 50-2.0Å 

†Rsym  6.2% (27.4%) 5.5% (17.9%) 

†I/σ(I) 17.2 (2.8) 14.5 (2.3) 

†Completeness  100.0% (100.0%) 99.7% (99.8%) 

†Redundancy 11.0 (10.6) 8.9 (8.9) 
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Table 1. Cont. 

Refinement  

Resolution  50-2.0Å 

No. reflections used 

(completeness) 
 8063 (96.9%) 

Rwork/Rfree  23.1%/24.1% 

No. atoms   

Protein  704 

Water and other small molecule  55 

Average B-factors   

Protein  32.0 Å2 

Water and other small molecule  40.4 Å2 

R.m.s deviations   

Bond lengths  0.005Å 

Bond angles   1.0° 

Ramachandran Plot  

Most favored regions 

Additional allowed regions  

 

 

91.3% 

8.7% 

†Highest resolution shell is shown in parenthesis. 

 

2.4. Functional test of RAIDD DD 

 

DDs mediate protein-protein interaction. RAIDD DD is protein interaction module that is involved 

in the interaction to PIDD DD to form a PIDDosome. This homotypic interaction is critical for 

caspase-2 activation and genotoxic stress induced apoptosis. To test the function of purified RAIDD 

DD, we purified PIDD DD and analyzed binding ability of RAIDD DD to PIDD DD. Gel-filtration 

profile and SDS-PAGE clearly showed that RAIDD forms a tight complex with PIDD DD (Figure 3A, 

3B). The absolute molecular mass of 103 kDa (Figure 3C), determined by analytical equilibrium 

ultracentrifugation, indicates that the stoichiometry of the RAIDD DD: PIDD DD complex is 4:4 or 5:5. 

 

3. Experimental Section  

 

3.1. Expression and purification 

 

The construct for expression of human RAIDD DD (94-199) was made as follows. The cDNA of 

full length RAIDD DD was used as a template for the polymerase chain reaction (PCR) and the 

plasmid vector pET26b (Novagen, USA) was used to add a hexahistidine tag at the carboxy-terminus 

of RAIDD DD for affinity purification. PCR products were digested with NdeI and XhoI (New 

England Biolabs, USA) restriction enzymes and ligated into pET26b. This vector construction adds an 

eight-residue tag including C-terminal hexahistidine (LEHHHHHH). 
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Figure 3. Functional test of RAIDD DD. A. Profile of Gel-filtration chromatography. 

Elution volume around 12 mL indicates molecular weight of 120 kDa; B. 15 % SDS-

PAGE showed that the peak from profile of gel-filtration chromatography is a complex. 

Fraction #12 and #14 showed that uncomplexed left over proteins; C. The equilibrium 

radial absorbance profiles at 25,000 rev./min by analytical ultracentrifugation analysis for 

RAIDD DD: PIDD DD complex. 

 
 

The resulting plasmid was transformed into BL21 (DE3) E. coli competent cells. The expression 

was induced by treating the bacteria with 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG) for 

overnight at 293 K. The bacteria were then collected, resuspended and lysed by sonication in 50 mL 

lysis buffer (20 mM Tris-HCl at pH 7.9, 500 mM NaCl, 5 mM imidazole). The bacterial lysate was 

then centrifuged at 14,000 g for 1 hr at 277 K. The supernatant fraction was applied to gravity-flow 

column (Bio-Rad, USA) packed with Ni-NTA affinity resin (Qiagen, USA). The unbound bacterial 

proteins were removed from the column using washing buffer (20 mM Tris-HCl at pH 7.9, 500 mM 

NaCl, 60 mM imidazole and 10% glycerol). The C-terminal His6-tagged RAIDD DD was eluted from 

the column using an elution buffer (20 mM Tris-HCl at pH 8.0, 500 mM NaCl, 250 mM imidazole). 

The protein purity was further improved by using a Superdex 200 gel filtration column 10/30 

(Pharmacia) which was pre-equilibrated with a solution of 20 mM Tris-HCl at pH 8.0 and 150 mM KCl.  

RAIDD DD was concentrated to 4-6 mg mL-1 using a Millipore concentration kit (Millipore, USA) 

for crystallization trials. The selenomethionine-substituted RAIDD DD was expressed in the 
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methionine auxotrophic strain B834 (Novagen, USA) grown in minimal medium supplemented with 

seleno-L-methionine (Sigma, USA) and other nutrients. It was purified and crystallized using the same 

procedure as used for the native protein. 

 

3.2. Crystallization 

 

Crystallization conditions were initially screened at 297 K by the hanging-drop vapor-diffusion 

method using screening kits from Hampton Research (Crystal screening I and II, Natrix, MembFac, 

SaltRX) and from deCODE Biostructures Group (Wizard I and II). Crystals were grown on a 

siliconized cover slip by equilibrating a mixture containing 1 μL of protein solution (4-6 mg mL-1 

protein in 20 mM Tris-HCl at pH 8.0, 150 mM NaCl) and 1 μL of a reservoir solution (2M Na/K 

phosphate at pH 7.0) against 0.5 mL of reservoir solution. Crystals appeared in three days and grew to 

a maximum dimension of 0.2 x 0.2 x 0.2 mm (Figure 1). The selenomethionine-substituted RAIDD 

DD crystals were also grown under the similar condition (2.1 M Na/K phosphate at pH 7.0). 

 

3.3. Data collection and analysis 

 

For diffraction experiments, crystals were transiently soaked in a solution corresponding to the 

reservoir solution but supplemented with 20% (v/v) glycerol. The crystals were cryocooled at 110 K 

using a nitrogen stream (Cryocool, Cryo Industries, New Hampshire, USA). A single-wavelength 

anomalous diffraction (SAD) data set was collected at the selenium peak wavelength (E=12664ev, 

λ=0.979Å) at the X4A beamline of National Synchrotron Light Source (NSLS). Data processing and 

scaling was carried out in the HKL2000 package [16]. A native data set was collected and used for 

model refinement. The data-collection statistics are summarized in Table 1. 

 

3.4. Gel filtration chromatography 

 

Purification method for PIDD DD is described at Park et al. [18]. Separately purified and quantified 

RAIDD DD, PIDD DD were incubated for 1hr at room temperature. Following pre-incubation, the 

mixture was concentrated to 15 ~ 20 mg mL-1 using a concentration kit (Millipore, USA). The 

concentrated protein mixture was then applied to a Superdex 200 gel-filtration column 10/30 (GE 

healthcare, USA), which was pre-equilibrated with a solution of 20 mM Tris-HCl at pH 8.0 and  

50 mM NaCl. Formation of the complex was then detected by evaluating the positions of the eluted 

peak followed by SDS-PAGE.  

 

3.5. Ultracentrifugation 

 

Analytical ultracentrifugation experiments were performed using a Beckman XL-1 analytical 

ultracentrifuge at 298 K. Absorbance was measured at the maximum wavelength as a function of 

radius at 25,000 rev./min. 
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4. Conclusions  

 

In the current study, the RAIDD DD (94-199) of human RAIDD was over-expressed and purified. 

The recombinant RAIDD DD was fully functional by tight binding to PIDD DD which is well known 

binding partner. The purified RAIDD DD alone has been crystallized. Crystals are trigonal and belong 

to space group P3121 with unit-cell parameters a = 56.32, b = 56.32, c = 64.95 Å and γ = 120°. The 

crystals were obtained at room temperature and diffracted to 2.0 Å resolution.  
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