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Abstract: Most of our knowledge regarding the process of protein import into 
mitochondria has come from research employing Saccharomyces cerevisiae as a model 
system. Recently, several mammalian homologues of the mitochondrial motor proteins 
were identified. Of particular interest for us is the human Tim14/Pam18-Tim16/Pam16 
complex. We chose a structural approach in order to examine the evolutionary 
conservation between yeast Tim14/Pam18-Tim16/Pam16 proteins and their human 
homologues. For this purpose, we examined the structural properties of the purified human 
proteins and their interaction with their yeast homologues, in vitro. Our results show that 
the soluble domains of the human Tim14/Pam18 and Tim16/Pam16 proteins interact with 
their yeast counterparts, forming heterodimeric complexes and that these complexes 
interact with yeast mtHsp70.  
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1. Introduction 
 

Mitochondria are vital organelles for eukaryotes because they serve as a site for many essential 
processes such as respiration, lipid metabolism, heme metabolism, synthesis of metabolites and metal 
homeostasis. Moreover, in higher eukaryotes, mitochondria participate in calcium signaling and in 
mediation of apoptosis. It is estimated that ~800-1,000 proteins are involved in these and other 
mitochondrial functions. However, only a very small fraction of the mitochondrial proteins is actually 
produced in situ (eight in S. cerevisiae). The rest are encoded by nuclear genes, synthesized in the 
cytosol and then delivered to one of the four mitochondrial compartments: the outer membrane, inner 
membrane, the intermembrane space and the matrix. Consequently, functional import systems for 
nuclear encoded proteins are indispensable for the biogenesis of mitochondria and accordingly for the 
viability of eukaryotic cells. The import of nuclear-encoded proteins into the mitochondria is a multi-
step process mediated by the coordinated action of translocation machineries localized in both the 
outer and inner mitochondrial membranes [1-3].  

In the outer membrane, the multimeric TOM complex serves as both a receptor for recognition of 
mitochondrial precursor proteins and a main portal of protein entry into mitochondria [1-4]. The TOM 
complex is composed of the primary receptors, Tom20 and Tom70, and the subunits Tom40, Tom22, 
Tom7, Tom6, and Tom5 that together form the stable core of the complex. Tom40 forms the protein-
conducting channel, providing a route for precursor proteins to cross the outer membrane. On their 
way to the matrix, proteins that contain cleavable amino-terminal targeting signals are transferred from 
the TOM complex to the TIM23 preprotein translocase. This complex is composed of a core of two 
multispanning integral inner membrane proteins Tim17 and Tim23. The latter forms a channel which 
allows proteins to integrate into, or to cross, the inner membrane. A third protein, Tim50, seems to 
serve as a sorting receptor in the mitochondrial intermembrane space and maintains the permeability 
barrier that is formed by Tim23 [5]. 

The final steps of translocation across the inner membrane are mediated by the mitochondrial 
translocation motor (Presequence translocase-Associated protein import Motor, PAM). The 
translocation motor itself is a multisubunit complex, which contains the ATP-hydrolyzing 70 kDa 
heat-shock protein, mtHsp70, as its central component. Precursor proteins emerging from the matrix 
side of the TIM23 channel bind to mtHsp70, with whose help the protein unfolds and completes its 
translocation into the mitochondrial matrix [2,6-9]. In order to mediate protein import, mtHsp70 must 
anchor to the TIM23 import channel at certain stages of the import process. This is accomplished by 
another component of the translocation motor, Tim44, a peripheral membrane protein that binds 
simultaneously to mtHsp70 and the TIM23 complex [10-13]. MtHsp70 undergoes conformational 
changes that are controlled by ATP hydrolysis upon binding, unfolding and release of precursor 
proteins.  

Additional components of the motor are suggested to play a regulatory role in either the function or 
stability of the motor. These include accessory proteins that directly regulate the function of mtHsp70 
[7]. For example, Mge1 acts as a nucleotide-exchange factor and promotes the release of imported 
precursor proteins from mtHsp70. J-domain containing proteins, DnaJs, usually enhance the ATPase 
activity of Hsp70 chaperones. Such enhancement of the ATPase activity is required for promoting the 
tight binding of unfolded substrate proteins to the peptide-binding pocket of mtHsp70. The latter role 
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is played by the membrane-bound J-domain-containing protein named Tim14/Pam18 [11,14,15]. 
Biochemical and in-organelle studies has shown that Tim14/Pam18 forms a stable complex with 
another protein, Tim16/Pam18 [16-18] which acts as an antagonist to the Tim14/Pam18 ATPase 
enhancement [16,19]. High resolution structure of the complex has been published recently and 
provided valuable mechanistic insight into the function of the yeast Tim14/Pam18-Tim16/Pam16 
heterdimer [20].  

Homologues of yeast Tim14/Pam18 and Tim16/Pam16 were also identified in humans (DNAJC19 
and Magmas respectively). DNAJC19 and Magmas are of great interest since they are associated with 
several human disorders. A novel autosomal recessive disorder called "DCMA syndrome" has already 
been associated with a mutation in the DNAJC19 protein [21], while Magmas is suspected to be 
involved in increased rates of anaerobic metabolism, resistance to apoptosis and altered growth-factor 
sensitivity, characteristic of cancer cells [22-25]. In this study, we used recombinantly purified proteins 
to investigate the ability of human Tim14/Pam18 and Tim16/Pam16 to form hetero-oligomers with 
each other and with their yeast homologues. Our results suggest that there is structural conservation 
between the yeast and human homologues. 

 
2. Results and Discussion 
 

The aim of this work was to study in vitro, for the first time, the structural properties of two human 
disease-associated proteins, Tim14/Pam18 and Tim16/Pam16 (also named DNAJC19 and Magmas, 
respectively). It is noteworthy that, while the yeast proteins have been studied extensively both in vivo 
and in vitro, little has been done to study the human proteins. Even complex formation between human 
Tim14/Pam18 and Tim16/Pam16 has never been demonstrated. In particular, we wanted to examine 
the following aspects. i) Do human Tim14/Pam18 and Tim16/Pam16, similar to their yeast 
homologues, interact to form a stable complex? ii)  Which forces stabilizes the human Tim14/Tim16 
complex? iii) Do the human Tim14/Pam18 and Tim16/Pam16 proteins form stable complexes with 
their yeast counterparts? Answers to these questions will provide important information on the 
evolutionary conservation of these complexes. 
 
2.1. Purification of a Tim14/Pam18 - Tim16/Pam16 complex 

 
It was demonstrated that in solubilized mitochondria yeast Tim14/Pam18 and Tim16/Pam18 form a 

stable hetero-oligomeric complex with a reduced ability to stimulate the ATPase activity of mtHsp70, 
compared to Tim14/Pam18 alone. Additionally, the formation of the Tim14/Pam18-Tim16/Pam16 
complex is essential for the correct function of both proteins in vivo [16]. Previous studies have also 
shown that the J-domains alone of Pam18/Tim14 and Pam16/Tim16 are able to form a complex [16, 
20,26]. Therefore, in order to test the ability of human Tim14/Pam18 to interact with yeast 
Tim16/Pam16 and to form a complex, we cloned the soluble J domains of both proteins (a.a 24-116 
and a.a 25-130, respectively) and co-expressed them in bacteria. Since only the yeast Tim16/Pam16s 
(a.a 25-130 of Tim16/Pam16) contains an octahistidine tag, the efficient purification of both proteins 
during all steps of isolation indicates that a complex is indeed formed between hTim14/Pam18s and 
yeast yTim16/Pam16s (figure 1). The proof of concept for this strategy, using the homologous yeast 
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proteins, was published previously [26]. As shown in Figure 1, human Tim14/Pam18 was able to form 
a complex with yeast Tim16/Pam16. Using the same strategy, we were also able to demonstrate 
complex formation between yeast Tim14/Pam18 and human Tim16/Pam16 (not shown) and between 
human Tim14/Pam18 and human Tim16/Pam16 (not shown). We conclude that the putative human 
Tim14/Pam18 and Tim16/Pam16 do interact, in vitro, to form heter-oligomers and that they can also 
form heterologous complexes with their yeast counterparts. 

 
Figure 1. SDS–PAGE analysis of the purified recombinant hTim14/Pam18s-
yTim16/Pam16s complex. Human Tim14/Pam18s and yeast Tim16/Pam16s were co-
expressed in bacteria. Only the latter contained an octahistidine tag. Purified protein was 
analyzed using 16% SDS–PAGE, and stained with Coomassie blue. A) Ni-agarose column. 
B) Cleavage of the octahistidine tag with TEV protease. C) Gel filtration column. The 
fraction number is indicated on top of the gel. M: molecular weight markers (a similar 
approach has been used to isolate the yeast Tim14/Pam18-Tim16/Pam18 complex [26]). 

 
 
2.2. The oligomeric state of recombinant Tim14/Pam18s-Tim16/Tim16s complexes 

 
Previous studies showed that yTim14/Pam18s and yTim16/Pam16s assemble into hetero-dimers in 

solution, [16,19,26]. We used cross-linking to examine the oligomeric state of the three complexes 
purified in this study (one homologous human hetero-dimer and two heterologous human/yeast hetero-
dimers). The purified complexes were cross-linked using DSS and the cross-linking products were 
analyzed using SDS-PAGE. The results presented in figure 2 show clearly that upon exposure to the 
cross-linker, bands representing the monomeric proteins weaken while at the same time hetero-dimer 
cross-linking products appear, in all three complexes examined. A similar pattern, indicative of 
dimeric molecules, was observed previously for the homologous yeast complex [26]. The similarity in 
the cross-linking pattern of the three complexes examined in this study, together with the previously 
described cross-linking pattern for the yeast Tim14/Pam18-Tim16/Pam16 complex, supports the idea 
that the interaction between the yeast and human Tim14/Pam18-Tim16/Pam16 complex is 
evolutionarily conserved. This suggests that their function is also most likely conserved.  

 



Int. J. Mol. Sci. 2009, 10            2045 
 

Figure 2. Cross-linking experiments of the different Tim14/Pam18s-Tim16/Pam16s 
complexes. A) Cross-linking of the hTim14/Pam18s-yTim16/Pam16 complex. B) Cross-
linking of the yTim14/Pam18s-hTim16/Pam16s complex. C) Cross-linking products of the 
hTim14/Pam18s-hTim16/Pam16s complex. Cross-linking was carried out with 1 mM DSS 
at room temperature in a buffer containing 20 mM Na-Hepes pH 7.4, 200 mM NaCl, 100 
mM KCl and 1 mM MgCl2, at a protein concentration of 15 µM. The cross-linking 
reactions were stopped at different times by addition of 10 μl SDS sample buffer and 
further boiling for 5 minutes. The cross-linking products (15 μl) were analyzed using 16% 
acrylamide gels. **minor amount of higher oligomeric cross-linked forms, presumably 
tetramers, of Tim14/Pam18s-Tim16/Pam16s. M: molecular weight markers. The Mw is 
indicated to the left of the gel. 

 
 
2.3. The folding and thermal stability of the purified complexes 

 
Yeast Tim14/Pam18 and Tim16/Pam16 are members of the J and J-like protein families, 

respectively. These proteins are characterized by a large domain composed of three α helices. As such, 
they exhibit distinct CD spectra [26]. Since hTim14/Pam18 and hTim16s/Pam16 are homologues of 
these yeast proteins, oligomers containing them should display a similar CD spectrum, assuming they 
fold into similar structures. To determine whether this is indeed the case, we carried out a CD analysis 
to determine the secondary structure of the purified constructs of hTim14/Pam18s (not shown), 
hTim16/Pam16s (figure 3), a complex of yTim14/Pam18s-hTim16/Pam16s (figure 3) and a complex 
of hTim14/Pam18s-hTim16/Pam16s (figure 3). A similar CD spectrum was obtained for all proteins 
tested, which was characterized by two minima at 222 nm and at 208 nm, typical of α-helical proteins 
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(Figure 3). The results indicate that the human and yeast purified proteins are similarly folded and 
contain essentially α-helical structures.  

 
Figure 3. Represenatative Circular Dichroism (CD) analysis of some of the purified 
proteins. Spectra were obtained at 4° C in PBS buffer (pH=7.4). (Δ) CD spectra of 
hTim16/Pam16s (○) CD spectra of yTim14/Pam18s-hTim16/Pam16s complex (■) CD 
spectra of hTim14/Pam18s/-hTim16/Pam16s complex. Similar spectra were obtained for 
all constructs presented in Table 1. 

 
 

Figure 4. Thermal denaturation of purified proteins and complexes, as obtained from CD 
spectroscopy: Representative experiments. Similar experiments were carried out to extract 
the data presented in table 1. The fraction of denatured protein (% unfolding) was obtained 
by following changes in the ellipticity at 222 nm at various temperatures. A) (Δ) 0.1 
mg/mL hTim16/Pam16s. B) (○) 0.1 mg/mL yTim14/Pam16s-hTim16/Pam16s. C) (■) 0.1 
mg/mL hTim14/Pam18-hTim16/Pam16s. 
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We reported previously that yTim14/Pam18s and yTim16/Pam16s are only marginally stable 
proteins that undergo unfolding at very low temperatures (Tm values for the individual proteins of 
16.5°C and 29°C, respectively) [26]. Upon mixing the purified proteins, or when both proteins are co-
expressed in bacteria, yTim14/Pam18s and yTim16/Pam16s form a hetero-dimer that is thermally 
more stable (Tm of ~40° C) compared to the individual proteins. Consequently, we proposed that any 
dissociation of the yeast Tim14/Pam18-Tim16/Pam16 hetero-dimer complex in vivo would 
theoretically lead to denaturation of these essential import components. Therefore, it was speculated 
that the formation of a stable Tim14/Pam18-Tim16/Pam16 complex is favored in vivo and the 
regulation of their function on the translocation motor is exerted through conformational changes [26]. 

We determined unfolding midpoints (Tm) by monitoring changes in the secondary structure 
content, detected by CD spectroscopy at 222 nm. The unfolding midpoints of individual Tim/Pam 
proteins and their complexes are summarized in Table 1. The results indicate that while the three 
proteins yTim14/Pam18, yTim16/Pam16s and hTim16/Pam16s are essentially unstable proteins (Tm 
of 16.5, 29, 22.5° C, respectively) the human Tim14/Pam18s is significantly much more stable (Tm of 
~45). Complex formation between the yeast proteins, yTim14/Pam18 and yTim16/Pam16s, and 
subsequent conformational changes lead to the stabilization of their complex [26]. Interestingly, when 
hTim16/Pam16s interacts with hTim14/Pam18s, the stability of the complex is similar to that of the 
latter protein. Thus, two different factors contribute to the stability of yeast and human Tim/Pam 
proteins. In the case of the yeast proteins, the individual proteins are significantly less stable than their 
complex. Thus, complex formation between them probably increases their folding which in its turn 
increases complex stability (41o C compared to 16.5o C and 29o C for the individual proteins). In the 
case of the human proteins, the Tm of their complex is very close to that of hTim14/Pam18s. In 
general, when we formed a complex that contained one of the human Tim/Pam proteins, the stability 
of the complex was not increased further than the stability of either of the individual proteins. We 
conclude that the thermal stability of human Tim14/Pam18s determines the stability of the full human 
complex. 
 

Table 1. Tm values of Tim14/Pam18 and Tim16/Pam16 constructs. Tm values were 
extracted from experiments carried out as described in figure 4. 

Name of construct Tm (oC) 
yTim14/Pam18s 16.5 
yTim16/Pam16s 29 
yTim14/Pam18-yTim16/Pam16 41 
hTim14/Pam18s 45 
hTim16/Pam16 22.5 
hTim14/Pam18s-yTim16/Pam16s 52 
yTim14/Pam18s-hTim16/Pam16s 35 
hTim14/Pam18s-hTim16/Pam18s 49 
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2.4. The effect of the y Tim14/Pam18-hTim16/Pam16 complex on the ATPase activity of yeast mtHsp70 

 
As mentioned above, mtHsp70 serves as the core of the mitochondrial protein import motor 

[9,27,28]. This chaperone drives insertion of unfolded precursors into the matrix in an ATP-dependent 
manner. In vivo, mtHsp70 functions with the aid of several co-chaperones that regulate its ATPase 
activity. The first is the nucleotide exchange factor, Mge1, which enables ADP/ATP exchange and 
recycling of mtHsp70 [29-31]. The second co-chaperone is the yeast Tim14/Pam18, known to have a 
major role in stimulating the ATPase activity of mtHsp70 [11,14,15]. The third component, yeast 
Tim16/Pam16, antagonizes the function of Tim14/Pam18. Tim16/Pam16 specifically inhibits the 
Tim14/Pam18-induced ATPase stimulation of mtHsp70 [16,19]. We wanted to examine whether the 
human Tim/Pam homologues can affect the ATPase activity of yeast mtHsp70. An effect on ATP 
hydrolysis will indicate that not only the structure of the human Tim/Pam proteins is conserved, but 
also their function. To this end, we studied the ATPase activity of yeast mtHsp70 in the presence of the 
various co-chaperones (Figure 5).  

 
Figure 5. The effect of human Tim/Pam proteins on the ATPase activity of yeast mtHsp70.  

 
 
The ATPase assay was carried using the pyruvate kinase/lactate dehydrogenase-coupled assay as 
described previously [33]. The reaction mixture (total volume of 300 µl) contained the following 
components: 50 mM Tris-HCl pH=7.4, 50 mM K-Acetate pH=7.4, 10 mM Mg-Acetate pH=7.4, 0.3 
mM NADH, 0.2 mM phosphoenolpyruvate, 20 units of pyruvate kinase, 10 units of lactate 
dehydrogenase and the indicated combinations of the following proteins mtHsp70 (2.5 µM), Mge1 
(5 µM), full length Tim14/Pam18 and the soluble domain of Tim16/Pam16 from either 
Saccharomyces cerevisiae or human (2.5 µM). The reaction was initiated by the addition of 2 mM 
ATP. Rates were extracted from the linear phase of the reaction. Each column represents at least 
four independent repeats of the experiment. 1) mtHsp70. 2) mtHsp70+Mge1. 3) 
mtHsp70+Mge1+yTim14/Pam18 (full length). 4) mtHsp70+Mge1+yTim14/Pam18 (full 
length)+yTim16/Pam16s. 5) mtHsp70+Mge1+yTim14/Pam18 (full length)+hTim16/Pam16s. 
 

In the absence of any additional components or in the presence of Mge1, mtHsp70 displays a low 
basal ATPase activity (1 turnover/min). Further addition of the purified yTim14/Pam18, containing a 
J-domain, significantly increases the rate of hydrolysis. Upon addition of the yTim16/Pam16s, there is 
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an evident decrease in the ATPase activity [19,32], approximately 65% compared to the maximal 
hydrolysis activity, obtained for mtHsp70 in the presence of Mge1 and yTim14. These results 
demonstrate that the J domain of Tim14/Pam18 is less active in stimulating mtHsp70's ATPase activity 
when in complex with the soluble domain of Tim16/Pam16. This is in agreement with previous reports 
[19,32]. A similar effect was observed using human Tim16/Pam16s, which inhibited the increase in 
the ATPase activity of mtHsp70 (obtained due to the presence of yTim14/Pam18) by almost 50%. The 
latter result indicates that hTim16/Pam16s can replace its  yeast Tim16/Pam18s homologue, in vitro, 
and can act as a negative regulator of yTim14/Pam18. Based on the ATP hydrolysis experiments,we  
conclude that the function of Tim/Pam proteins is conserved between yeast and humans. 
 
3. Experimental Section 
 
3.1. Cloning and Purification of the proteins used in this study 
 

Human Tim14/Pam18 and human Tim16/Pam16 were isolated by PCR from a human cDNA library 
and cloned as individual proteins or complexes into a modified version of the bacterial expression 
vector pET21d, in which a TEV protease site was inserted between the histidine tag and the N-
terminus of the protein. The proteins used in this study are detailed in Table 2. The purification of the 
constructs 1-2 in Table 2 was carried out as described previously for the soluble domains (constructs 3-
4) of yeast Tim14s/Pam18s and Tim16s/Pam16s [26]. Constructs 5-7 were purified as described 
previously for construct 8 [26]. Constructs 9-10 were purified carrying an octa-histidine tag on Ni-
agarose following manufacture's protocol. In constructs 1-8, the hisitidine tag was removed from the 
final purified protein by proteolysis with TEV protease. In constructs 9-10, the hisitidine tag was not 
removed from the final purified protein. 
 
3.2. Circular dichroism (CD) 

 
All CD measurements were performed with an Aviv CD spectrometer, as described previously [26]. 

 
3.3. Cross-linking experiments 

 
Cross-linking of the proteins was carried out at room temperature in 20 mM of Na-HEPES (pH 7.4), 

containing 100 mM of KCl, with 1 mM DSS. A protein concentration of 0.5 mg/mL was used. The 
cross-linking reaction was stopped at different times by the addition of SDS-containing sample buffer 
and boiling for 5 min. The cross-linking products (20 µL) were analyzed by 16% SDS-PAGE [26]. 

 
3.4. Miscellaneous 
 

mtHsp70 was purified as described in [34]. ATPase assays were carried out as described in [33]. 
The concentrations of proteins were determined with the Bicinchoninic Acid Protein Assay (Sigma; 
Cat. no.B9643) using BSA as a standard [33]. 
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Table 2. Constructs used in this study and their abbreviations. 

 Description 
Amino acids 

included in construct 
Abbreviated name 

1 soluble domain of human Tim14/Pam18 24-116 hTim14s/Pam18s 
2 soluble domain of human Tim16/Pam16 24-125 hTim16s/Pam16s 
3 soluble domain of yeast  Tim14/Pam18* 84-168 yTim14s 
4 soluble domain of yeast Tim16/Pam16* 25-130 yTim16s/Pam16s 
5 yeast Tim14s/Pam18s in complex with 

human Tim16s/Pam16s 
84-168 
24-125 

yTim14s/Pam18s-
hTim16s/Pam16s 

6 Human Tim14s/Pam18s in complex with 
yeast Tim16s/Pam16s 

24-116 
25–130 

hTim14s/Pam18s- 
yTim16s/Pam16s 

7 human Tim14/Pam18 in complex with 
human Tim16s/Pam16s* 

24-116 
24-125 

hTim14s/Pam18s-
hTim16s/Pam16s 

8 yeast Tim14s/Pam18s in complex with 
yeast Tim16s/Pam16 

84-168 
25-130 

yTim14s/Pam18s-
yTim16s/Pam16s 

9 full length yeast Tim14 1-168 yTim14/Pam18 
10 yeast Tim14/Pam18 in complex with yeast 

Tim16/Pam16 (both full length) 
1-168 
1-149 

yTim14s/Pam18s-
yTim16s/Pam16s 

* The purification of these constructs was reported previously. 
 
4. Conclusions 
 

The major goal of this study was to characterize the structure of human Tim14/Pam18 and 
Tim16/Pam16 (individually and in complex) and to show that their function is evolutionarily 
conserved with their yeast homologues. Human Tim14/Pam18 and Tim16/Pam16 (originally known as 
DNAJC19 and Magmas, respectively), have recently been identified [21,22,25]. So far, very limited in 
vitro data has been accumulated regarding these two proteins. The results presented in this study show 
clearly that the human proteins associate and form a complex in vitro. The formed complex has similar 
properties to those of a complex formed by yeast Tim14/Pam18 and Tim16/Pam16: i). Both complexes 
assemble into hetero-dimers containing one copy of each subunit. ii)  Both complexes exhibit CD 
spectra typical of proteins with α helical structures. Interestingly, we found that factors contributing to 
the stability of the yeast complexes against heat denaturation are distinct from those that stabilize the 
human proteins. In the case of the yeast complex, stabilization is achieved by simultaneous 
conformational changes on both proteins, Tim14/Pam18 and Tim16/Pam16. In contrast, stabilization 
of the folded state of the human complex is governed by the human Tim14/Pam18 protein, which is 
more stable to heat denaturation than the other individual proteins. The conservation of the structural 
properties between the yeast and human proteins (including their ability to form heterologous 
complexes) together with the ability of human Tim16/Pam16 to affect the ATPase activity of the yeast 
mitochondrial Hsp70 chaperone suggest that the function of both complexes is evolutionary conserved 
from yeast to humans. 
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