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Abstract: Isotope labeling is one of the few methods of revealing the in vivo bidirectionality
and compartmentalization of metabolic fluxes within metabolic networks. We argue that a
shift from steady state to dynamic isotopomer analysis is required to deal with these cellular
complexities and provide a review of dynamic studies of compartmentalized energy fluxes
in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex
metabolic behaviour on a molecular level is prerequisite for the intelligent design of geneti-
cally modified organisms able to realize their potential of revolutionizing food, energy, and
pharmaceutical production. We describe techniques to explore the bidirectionality and com-
partmentalization of metabolic fluxes using information contained in the isotopic transient,
and discuss the integration of kinetic models with MFA. The flux parameters of an example
metabolic network were optimized to examine the compartmentalization of metabolites and
and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state
respiratory growth.
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1. Introduction

Isotope labeling is widely used to gain insight into the operation of metabolic networks despite the
fact that neither the collection of isotopomer data, nor its simulation and analysis is considered routine.
Both experimental and analytical methods enabling dynamic studies that require direct measurement of
the mass and/or positional isotopomers and the pool sizes of intermediate metabolites are developing
quickly [1, 2, 3]. The move from isotopomeric steady state flux analysis to studies involving dynamic
enrichment is required to deal with the complexities of the eukaryotic cell and multicellularity. The
compartmentalization of metabolites into organelles, often with parallel enzyme systems coupled with
complex transport mechanisms makes the application of Metabolic Flux Analysis (MFA) at isotopic
steady state difficult and uncertain.

MFA is an important tool for strain improvement in biotechnology [4] with a vast potential for further
improvement. However it has recently been stated that ”in order to truly exploit the synthetic capacity
of biological systems and broaden the creation of microbial chemical factories, it is necessary to go
beyond natural pathways for the synthesis of natural products towards the de novo design and assembly
of biosynthetic pathways for both natural and unnatural compounds.” [5]. Synthetic Biology, while
probable in the long term, is optimistic in light of our current understanding of metabolic systems and
will depend on knowledge gained from the flux analysis of natural pathways. The great potential for
genetic improvement has not been realized largely due to an incomplete understanding of the metabolic
operation within organisms - especially their dynamic nature.

This paper is a short review of the motivations for moving from MFA using data collected at isotopic
steady state to making full use of the information contained in the isotopic transient. Examples are taken
from recent studies that make good use of this information followed by a short section on performing this
analysis under conditions of unstationary metabolism. An attempt is made to point towards the future
of dynamic modeling of cellular systems using predictive kinetic models–The holy grail of modern
biology. Simulations of isotopic transients are used to explore the information contained in the isotopic
transient and examine techniques to exploit this information. Following this is a short example where the
flux parameters are optimized for the TCA cycle in Saccharomyces uvarum for steady-state respiratory
growth fed with 13C1,2 acetate and unlabeled glucose.

1.1. Motivation for exploiting the dynamic transient

The majority of MFA studies have been conducted at metabolic steady state, and the majority of these
involve measuring isotopomers at isotopic steady state. Recent studies conducted at the metabolic and
isotopic steady state include Blank et al. [6] and Vo et al. [7]. These and other studies have contributed
and will continue to contribute to our understanding of metabolic function, however MFA at metabolic
and isotopic steady state is complicated by a number of factors including compartmentalization [8, 9]
and makes it more difficult to study the robustness of metabolic networks [10] since a separate flux
analysis is required for each metabolic perturbation. Dynamic isotopic analysis allows one to directly
probe metabolic robustness and control.

A recent study demonstrates the use of MFA at metabolic steady state using isotopic transient data
in the pentose phosphate pathway and citric acid cycle (TCA) of E.coli [11]. Their modeling was made
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easier by assuming that the flux from precursor metabolites to free amino acids to protein bound amino
acids was uni-directional and there was no lag in the isotopomer dynamics due to protein turnover and
bi-directional transamination reactions as measured in Saccharomyces cerevisiae [12]. den Hollander et
al. [13] measured this effect in 1981 using 13C NMR to track metabolite dynamics. Although little is
known about protein turnover rates in vivo prokaryotes are expected to display less protein turnover than
eukaryotes [14]. Isotopic dynamics in prokaryotes avoids the most obvious types of compartmentaliza-
tion, so most examples of MFA in this review are taken from eukaryotic systems.

2. Dynamic MFA in eukaryotic systems

MFA using isotopic transient data is more often applied in eukaryotic systems as it is not so easy to
avoid compartmentalization and bi-directional exchange with large metabolic pools. However, since the
nature of many of these dynamic processes has yet to be elucidated, MFA using isotopic transient data
has been performed mostly on small linear branches of the metabolic networks without accounting for
global dynamic behavior [15]. There are a few exceptions however, notably Heinzle et al. [16] who used
a combination of kinetic network modeling and simulation to calculate metabolic fluxes in a secondary
metabolic network in potato (Solanum tuberosum). Shastri and Morgan [17] assess the experimental
needs for conducting isotopic transient MFA experiments on plants, and a few recent papers review
techniques for determining fluxes in plant networks [18, 19].

Often, the organism of interest cannot be sustained in a steady metabolic state over long periods
of time. To overcome this limitation one could resort to simulating the isotopic transient with a non-
steady metabolism, or shorten the labeling experiment to less than one minute since the concentrations
of enzymes in cells remain constant over short time spans (10 s to 1min) [20].

2.1. Flux analysis with non-steady metabolism

There has been some progress recently in MFA studies with a non-steady metabolism and a lack of
kinetic structure. A few researchers have started the move towards non-stationary MFA, with Wahl et
al. [21] and Baxter et al. [22] recently publishing papers that outline frameworks for performing
transient isotopic experiments under a transient metabolic state. Experimental and analytical techniques
have advanced to the point where it is possible to collect the data needed for studies involving non-
steady metabolism, and this class of dynamic MFA should start becoming more common and will aid in
excluding hypotheses regarding cellular compartmentalization and dynamic metabolic behavior.

2.2. Utilizing metabolic oscillations

It is widely accepted that metabolic systems ubiquitously display oscillations in metabolic fluxes
through temporal compartmentalization, proposed to be driven by oscillating metabolic cycles [23]. By
turning metabolic cycles on and off biochemical reactions can be carried out under optimal conditions
and futile cycles reduced. Fluctuations in fluxes have prompted Wiechert and Noh [14] to argue that
“MFA is currently reaching the biological limits of its applicability” because population inhomogeneities
and flux oscillations prevent one from obtaining meaningful dynamic measurements. There are cases
when these limitations can be minimized through the use of oscillations, however.
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In continuous culture yeast can be enticed to grow with a stable oscillating metabolism with a period
between 40 minutes to 5 hours[24]. While growing in this state the metabolic state of most cells in the
fermenter are operating in synchrony, thus reducing population inhomogeneities to a minimum, although
it should be noted that some inhomogeneities persist, such as that due to cells operating at different stages
in the cell cycle. Tu et al. [25] measured the periodicities of expressed genes while yeast was growing
in this state and found that over half of the (≈ 3,552) yeast genes exhibited periodic expression at a
confidence level of 95%. Tu et al. [25] conclude by arguing that metabolic oscillation may ”constitute
the primordial device upon which the divergent circadian and ultradian biological oscillators of modern
organisms have been built”.

Keeping in mind that enzyme concentrations remain constant over short time spans it is conceivable
that one could use a device like the BioScope [26] to perform transient isotopic pulse experiments at
different stages in the oscillating cycle (at a good approximation to metabolic steady state over the
sampling period) thus avoiding metabolic inhomogeneities in the vast majority of the population and
large flux oscillations. This would enable the analysis of metabolic fluxes using isotopic transient data
at different metabolic states under one cultivation condition. A data set of this nature could also be used
for MFA at the metabolic and isotopic steady state and could aid in the construction of a predictive large
scale kinetic model of yeast metabolism with cell signaling dynamics [27].

3. Building predictive kinetic models

Predictive kinetic models can be created in systems where the in vivo kinetics of many enzyme sys-
tems within the metabolic network are well characterized. For many systems this information is not
available, so development of kinetic models of metabolic systems is much less common than the use of
phenomenological MFA to characterize metabolic activity. However, predictive kinetic models allow us
to use the information content of experimental data points measured at one physiological condition to
predict the dynamic behavior of the system at another physiological condition.

The modeling process involves (1) developing a theory of how the biological system operates, (2)
representing the system as a set of ordinary and/or partial differential equations with direct physical
meaning, (3) fitting the parameters of this system using one dataset, (4) testing the predictive quali-
ties of the system using another related dataset, and (5) adjusting the theory and repeating the process
as required. Metabolic models that have passed this kind of scrutiny allow us to predict bi-directional
metabolic fluxes and system behavior under conditions where measured data is sparse. Great improve-
ments can be achieved with the use of data gathered decades ago, which is often of high quality and
fundamental in nature.

The complexity and scope of the model ought to be limited by the quality and amount of measured
data used to tune it, so introduction of kinetic parameters into dynamic models must be carefully consid-
ered. It is wise to restrict the addition of kinetic parameters to enzyme systems that have been systemat-
ically studied such that the kinetic scheme is biologically relevant and the kinetic parameters are known
with some level of confidence. This ensures that there is additional data available for the tuning process,
and the parameters are physiologically relevant.
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With this approach it is possible to maintain the structural identifiability of the model while adding
more parameters. If many parameter sets can fit the available data, biological insight is severely limited if
not impossible, so it is wise to always check the robustness of the solution during parameter optimization.
With this in mind, it is not recommended to replace phenomenological MFA with phenomenological
kinetic schemes that include more parameters since this only works to reduce the structural identifiability
of the model while adding no biological insight.

Ultimately, the construction of a predictive kinetic model involves the laborious task of studying each
enzyme system in vivo under a wide range of metabolic conditions. With the availability of additional
kinetic insight and data metabolic flux analysis in the heart has progressed along a different path from
the microbial and plant systems mentioned above. Predictive kinetic models in the heart are widespread
since drug development is only possible with fundamental knowledge of enzyme operation, and this work
is best performed in the public domain. With the future shift towards the use of cellulosic biorefineries
it is predicted that there will be an increasing economic stimulus to study the fundamentals of exotic
metabolisms and thus a resurgence in fundamental kinetic studies in plant and microbial systems.

With the complexity of biological systems, predictive models are useful to exclude hypotheses re-
garding their function. Vendelin et al. [28] quantified the oxygen dependence on the workload in rat
cardiomyocytes using published data. By working with the kinetic assumptions in the model they re-
futed the assumption that the ADP concentration does not contain gradients, and found the gradients to
be workload-dependent. Intra-cellular concentration gradients were not required for phosphocreatine,
creatine, and ATP, whose concentrations can be assumed to be in spatial equilibrium. The change in
ADP concentration taken together with changes in inorganic phosphate were found to be major compo-
nents of the metabolic feedback signal to control respiration in muscle cells. Using the same modeling
approach, the control of respiration was found to be dependent on the dynamics of the system [29].

Predictive kinetic models are better suited to exclude hypotheses regarding dynamic metabolism than
phenomenological MFA. Selivanov et al. [30] and Liebermeister and Klipp [31] have published methods
to make use of transient isotopic data in predictive kinetic models of dynamic cellular behavior, although
the application of this technique is in its infancy due to the complexities of the underlying dynamic sys-
tem including the problem of how to analyze multi-compartment labeling. The use of kinetic information
coupled with isotopomer analysis will become an increasingly important tool.

3.1. Measurement of in vivo kinetics

One important tool for probing the mechanisms of complicated kinetic systems in vivo is the NMR
saturation and inversion transfer technique developed in theory by McConnell [32] and in practice by
Forsen and Hoffman [33]. Nuclei having been saturated or inverted with radio frequency radiation can
retain their magnetic orientation through a chemical reaction. Thus, if the time span of the reaction
is short compared to the relaxation time, the NMR spectrum may show the effects of the saturation or
inversion on the corresponding, unirradiated line in the spectrum. Saturation and inversion detects only
the pool of molecular species that are able to react, and gives direct insight into reaction kinetics and
metabolite compartmentalization.
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A number of reviews discuss techniques for using saturation and inversion transfer for studying the
kinetics of complex reaction schemes [34, 35, 36]. The application of saturation and inversion transfer
using 31P NMR to study the energy metabolism in hearts is a good example of how compartmentalization
and bi-directionality of reaction steps complicates the analysis of a small network of reactions.

Early studies observed a discrepancy between the measured forward and reverse rate in the creatine
kinase reaction when the myocardium was operating at steady state. To resolve this discrepancy it was
concluded that analysis of the NMR data should include either compartmentalization of substrates or
enzymes, or include an exchange of ATP with other phosphorus species such as inorganic phosphate [37,
38]. In the case of compartmentalization, each compartmentalized pool will require fitting a different
T1 value [39].

Since the amount of information available from one single magnitization transfer protocol is insuffi-
cient to fit all parameters, Joubert et al. [40] used four different magnitization transfer protocols in one
experiment and used this additional data to fit multiple possible kinetic schemes. They determined that
three different creatine kinase reactions schemes should be considered and both subcellular compart-
mentalization and multiple exchange with inorganic phosphate are important. This work reveals insight
into the spatial and temporal buffering of ATP in cardiac cells [41], which is linked with heart failure
when operating in a sub-optimal mode [42].

A complimentary method for exploring in vivo kinetics was developed to study energy metabolism
in skeletal muscle using mass spectrometry to follow the enrichment of oxygen isotopes into energy
metabolites. Replacing the external cellular environment with H18

2 O results in the incorporation of hy-
droxyl ions from H18

2 O into the phosphoryl groups of energy metabolites resulting in an equilibrium
distribution of phosphoryls with 1, 2, or 3 18O atoms as a function of the enrichment of 18O in the wa-
ter [43]. The size of metabolic pools can be calculated from the distribution of these molecular species
at isotopic equilibrium, and using the time course of 18O incorporation into the high-energy phosphoryls
one can determine the rate of hydrolysis of the energy metabolites [43].

There are a number of technical difficulties when implementing this approach. The analytical work
is very laborious and many animals are required for a statistically significant study. Each dynamic data
point requires sacrificing one animal where an 18O transient is induced, followed by freeze clamping in
liquid nitrogen and a long preparatory procedure prior to analysis in the mass spectrometer.

The analysis of the data is also tricky since phosphotransfer dynamics contain compartmentalized
metabolites and bi-directional reaction steps. To simplify the analysis of their transient experimental
data on the uptake of 18O in the energy metabolites of toad skeletal muscle, Dawis et al. [43] assumed
that the fluxes through the enzymatic complexes were uni-directional and only one 18O could be incorpo-
rated per molecular turnover. They judiciously discussed the issues bi-directional reaction steps within
enzymatic complexes and wrote that “In practice, it will be difficult to verify a multiple-reversal model
for the intact cell. Consequently, it will not be easy to choose between a multiple reversal model and a
compartmentalization model.” Dawis et al. [43] also stressed that the influence of bi-directional reaction
steps “should be examined but will be difficult to prove.”

A proper study of the bi-directionality of phosphotransfer networks has yet to be completed, and the
amount of data collected in 18O transfer studies is probably not enough to distinguish between possible
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reaction networks with various combinations of compartmentalization and bi-directional fluxes. Because
of these limitations the above assumption of uni-directional fluxes was applied in a series of papers that
explored the kinetics and compartmentalization of energy metabolism in rat skeletal muscle [44, 45, 46,
47, 48]. However, the assumption of uni-directional fluxes is not a necessary limitation of the method
and should be evaluated in future studies.

Saturation and inversion using 31P NMR can be enhanced by the use of either a 17O or 18O induced
isotope shift in the 31P NMR spectra. Pucar et al. [49] introduced the 18O assisted 31P NMR method to
study energetics in mouse heart. The method was employed in a series of papers exploring compartmen-
talized energetics [50, 51, 52] [53, Pages 178-181], with each study using the above mass spectroscopy
method to determine longer time 18O transfer kinetics, all with the same assumption of uni-directional
fluxes. The development of improved methods utilizing NMR saturation and inversion will extend the
range of applicability of this powerful technique [54, 55] while reducing the labor required.

Table 1. Metabolite abbreviations within each compartment.

Metabolite Abbreviation
Cytosolic Mitochondrial

acetate ACo
acetyl-CoA AcCoAo AcCoAm
pyruvate PYo PYm
PY biomass precursor PBm
citrate/isocitrate CIm
oxaloacetate OAo OAm
succinate SUm
malate MAm
2-oxoglutarate OGm

4. Simulation of isotopic transients

The isotopic transient contains information about the underlying behavior of the metabolic system.
The task is to build a model of the metabolic system that can best reproduce both the isotopic tran-
sient and the steady state isotopomer distribution of all metabolites. This involves finding the sizes of
metabolic pools, the bi-directional rates of exchange between compartments in the cell, and the effect
of bi-directional enzyme reactions on the isotopomer distribution. Of these, only the sizes of metabolic
pools do not affect the steady state labeling state of the metabolites and the biomass created from them.

4.1. Composition of the metabolic network

To aid in the discussion of extracting information from isotopic transient data, we have composed a
simple example of the TCA cycle with carbon enrichment found in Figure 1. Included in the metabolic
scheme are atom mappings between all species including the amino acids and their respective biomass
precursors, with the carbon numbers corresponding to chemical nomenclature as in Maaheimo et al.
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[56]. Pyruvate and acetate are inflows to the system, and carbon dioxide and biomass precursors are
outflows. The metabolic system is assumed to operate at steady state and is thus simulated with net
flux distributions that satisfy this criteria. There are eight degrees of freedom in this system, so eight
net fluxes are specified. The remaining dependent net fluxes were calculated from equations that were
generated symbolically.

Figure 1. Metabolic scheme with atom mapping and bi-directional compartmentalization
between mitochondria (shaded green) and cytosol. Carbon numbers correspond to chemical
nomenclature and the arrows between them indicate bi-directionality. Each reaction label
is given above the red arrows that indicate the assumed net positive reaction flux. Pyruvate
(PYx) derived from extracellular glucose and acetate (ACx) are inflows to the system (blue),
and CO2 and amino acids are outflows(red). Metabolite abbreviations are given in Table
1. Green carbons indicate biomass precursor metabolites with mappings to the amino acids
they produce. Carbons of the same color are equivalent due to molecular symmetry.
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Analogous schemes can be drawn for any biological isotope including oxygen, phosphorus, and nitro-
gen isotopes, although the atom transitions in these networks are less well defined and functional groups
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containing these elements tend to be more reactive resulting in a network with a significant number of
side reactions and sinks that complicate analysis as in the above phosphotransfer network studies.

4.2. Solving for the isotopic transient state

Isotopomer balance equations can be generated from the metabolic network, and using these, an
isotopic transient can be simulated. The transient is induced by a step change in any or all members of
the isotopomer population distribution of all metabolites that act as inputs or outputs to the system. For
isotopomers that act as outputs to the system, the bi-directionality of the exit reaction step will induce
isotope labeling in reverse direction to the net flux. The isotopomer distributions of all metabolites in
the system begin at the natural labeling state of 1.1% 13C and end at isotopic equilibrium at an enriched
13C state with steady isotopomer population distribution. Thus, the steady state isotopomer distribution
for each metabolite is found from the last points of the simulation when the system has reached isotopic
steady state.

We used the most direct approach to solve for the isotopic transient by numerically solving the full set
of isotopomer balances. Various strategies have been devised to transform this system into an equivalent
system that is computationally more efficient to solve, including the bondomer approach [57], decom-
position of the network into Elementary Metabolite Units (EMU) [58], and transforming the isotopomer
equations into cascaded cumomer systems [59] where lumped variables are used to represent groups of
isotopomers. The 252 isotopomer balance equations in our small example network are solved in 0.4 to
6 seconds when setting the metabolic pool sizes as being equal, so use of the above methods to speed up
simulation is not required in this case.

To illustrate the information one can obtain from the isotopic transient, we present two sets of sim-
ulations. Our nomenclature for isotopomers in the figures and discussion below can be summarized as
follows: The carbons are numbered according to chemical nomenclature and start at the right with 0’s
representing 12C and 1’s representing 13C.

The first set was obtained by continuously feeding pyruvate and acetate while performing a step
change in the acetate isotopomer population from natural enrichment to 100% fully labeled 13C1,2 ac-
etate. Two simulations were made with two different sets of metabolic pool sizes (A and B). The pool
sizes of all metabolites in both sets were selected at random over three orders of magnitude. All net flux
and exchange flux parameters were the same in both simulations. Since only metabolic pool sizes were
changed between simulations, the steady state isotopomer distribution are identical for both simulations,
as expected. The isotopic transients of the most highly enriched isotopomers of mitochondrial citrate
from both simulations are given in Figure 2. Comparing the transient curves for the same isotopomers
between pool size set A and B, it is clear that they exhibit the same general transient shape with the
main difference being the time scale of the transient. Figure 2 does not show every isotopomer, however
all carbons become enriched in 13C when acetate is used as the tracer illustrating the usefulness of this
inexpensive tracer for studying the TCA cycle.

The second set of simulations was obtained by continuously feeding pyruvate and acetate. The three
simulations were made by performing (1) a step change to fully labeled acetate as above, (2) a step
change from natural enrichment to 100% fully labeled 13C1,2,3 pyruvate, and (3) a step change in both
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fully labeled acetate and fully labeled pyruvate together. All other parameters, including metabolic pool
sizes, net fluxes, and exchange fluxes were the same in all three simulations. The citrate isotopomers
from these three simulations are given in Figure 3.

Figure 2. The isotopic transient of the metabolic system given in Figure 1 was simulated
with two different sets of metabolic pool sizes chosen at random over three orders of mag-
nitude. All other parameters are the same between the two simulations. For clarity, only the
isotopomers of mitochondrial citrate reaching the highest enrichment are included with their
nomenclature explained in the text.
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Different isotopomers from each of the three simulations display similar dynamics as the metabolic
system is operating in the exact same way. Comparing the dynamics of the citrate isotopomers between
the acetate and pyruvate switch, three pairs of isotopomers reach the same proportion of the steady state
isotopomer population: (1) the unlabeled citrate isotopomers, (2) the 000011 and 111100 complimentary
pair, and (3) the 100011 and 011100 complimentary pair. Different isotopic tracers reveal the same un-
derlying metabolic behavior at steady state for the TCA cycle intermediates, with the dynamics revealing
complimentary information.

When fully labeled acetate is fed to the metabolic system, the 000011 citrate isotopomer reveals
similar dynamics as the same isotopomer when both acetate and pyruvate are fed to the metabolic system.
When fully labeled pyruvate is fed to the metabolic system, the 011100 citrate isotopomer reveals similar
dynamics as the 011111 citrate isotopomer when both acetate and pyruvate are fed to the system.
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When both labeled acetate and labeled pyruvate enter the metabolic system, we see both types of
isotopomer dynamics appear, however in this case when the isotopomer populations of pyruvate and
acetate consist of 100% fully labeled compounds all information about the steady state is lost as the
system becomes fully labeled. Thus the use of multiple labeling experiments on the same metabolic
system under the same growth conditions is useful to study the dynamic behavior of the metabolic
system, and is thus useful to gain insight into the metabolic pool sizes, compartmentalization, and the
bi-directionality of metabolic fluxes.

Figure 3. Three simulations of isotopic dynamics in the metabolic system given in Figure
1 were performed with identical net flux, exchange flux, and metabolic pool sizes. Isotopic
transients of mitochondrial citrate are given following a switch to: (1) fully labeled acetate,
(2) fully labeled pyruvate, and (3) both fully labeled acetate and pyruvate. For clarity, only
the isotopomers of mitochondrial citrate reaching the highest enrichment are included.

AC

Citrate

PY

11

111

AC 11 PY 111+

Input

Fr
a
ct

io
n
 o

f 
is

o
to

p
o
m

e
r 

in
 c

it
ra

te
 p

o
o
l

To make these two example simulations quantitative one must find the appropriate metabolite pool
sizes, net fluxes, and exchange fluxes that adequately reproduce a sufficient amount of transient iso-
topomeric data, possibly supplemented with additional steady state isotopomeric data, measurements of
metabolic pool sizes, substrate utilization rates, and biomass production rates.

5. Extracting information from isotopomeric data

Any difference between measured data and model predictions can be used in an optimization routine
to find sets of net fluxes, exchange fluxes, and pool sizes that can reproduce the measured data within
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experimental errors. If the optimization routine cannot obtain a realistic fit with a sufficient amount of
data, the metabolic scheme must be adjusted, possibly with the inclusion of compartmentalization and
the process repeated. After finding a set of model parameters that can sufficiently reproduce measured
data, one can gain insight into the operation of the metabolic network.

All types of isotopomeric measurement can be compared with the output from the dynamic solver,
including data collected at isotopic steady state: Mass isotopomers from mass spectrometers, NMR po-
sitional enrichments, double enrichments, triple enrichments, and beyond all contain information about
the operation of the metabolic scheme. Each measurement type requires one to sum up the appropriate
pool of simulated isotopomers that correspond to the measured 13C enrichment probability.

It should be noted that the process of optimization is not restricted to experiments performed with one
enriched substrate. Data from multiple experiments at the same metabolic state using different labeled
substrates can be combined to optimize one set of parameters. In this case the optimizer must simulate
the isotopomer balance equations once for every experiment with a different step change in labeled
substrate using the same set of parameters, and comparing each with their respective set of experimental
data. The three simulations in Figure 3 could each be matched with data collected using labeled acetate,
labeled glucose or a mixture of both to optimize the single set of parameters that govern the metabolic
system.

5.1. Inclusion of metabolic pool sizes

Since it is difficult to accurately measure many metabolic pools, making the transient simulation
quantitative typically requires additional transient isotopic data. Using an optimization routine it is
possible to find a realistic set of metabolic pool sizes that best match isotopic transient data and pool
size measurements. To accomplish this, the optimizer would be allowed to manipulate all metabolic
pool sizes, thus changing the isotopic transient, while attempting to minimize the difference between
measured isotopomeric data and measured pool sizes. In practice one would not usually optimize only
the metabolic pool sizes as one usually needs to optimize the net flux and exchange flux parameters at
the same time.

Figure 2 shows a dramatic increase and then decrease in the 13C1,2 isotopomer of citrate. With this
in mind, transient data that is able to capture the shape and timing of major transient curves like this one
are useful for constraining not only the net fluxes and bi-directionality of the metabolic network, but also
metabolic pool sizes. If the pool size found by optimization does not match that measured during the
experiment, it could be a clue that this metabolic pool is compartmentalized. Other clues in the shape of
these transients also aid in identifying compartmentalization.

5.2. Compartmentalization is revealed in the dynamics

Information about the bi-directionality of fluxes and the compartmentalization of metabolic pools is
contained in the isotopic dynamics. Compartmentalization is revealed in a number of ways. Consider a
linear pathway:

A −−⇀↽−− B −−⇀↽−− C (1)
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If the labeling in C becomes enriched faster than B, B is compartmentalized. This means that one
should optimize the flux parameters for at least two separate pools of B:

A −−⇀↽−−

Bj

�

Bi
−−⇀↽−− C (2)

The shape of the isotopic transient depends on the exchange of Bi with Bj and their pool sizes. ATP
exhibits compartmentalization in cardiomyocytes and astrocytes, as evidenced by a 31P NMR saturation
and inversion analysis of the creatine kinase reaction[60]:

PCr2− + MgADP− + H+ −−⇀↽−− Cr + MgATP2− (3)

The kinetic data suggest that ATP exchanges with inorganic phosphorus and participates in other
reactions via separate compartments:

PCr
k1f−−⇀↽−−
k1r

γATP1
k2f−−⇀↽−−
k2r

Pi
k3f−−⇀↽−−
k3r

γATP2 (4)

Fitting the data to this kinetic scheme suggests the need to consider both the function of the bound
enzymes and restrictions of diffusion in the system, which both may lead to localized compartmentaliza-
tion. Evidence for diffusional restrictions and compartmentalization of ATP was explored by Sonnewald
et al. [61] who observed large gradients in ATP concentration in astrocytes. Monge et al. [62] per-
formed a kinetic analysis of oxidative phosphorylation in rat brain synaptosomes and mitochondria and
found evidence for localized cycling of ADP and ATP between mitochondrial creatine kinase and ade-
nine nucleotide translocase.

Localized compartmentalization of energy metabolites in cells with high energy requirements is well
known [63, 64]. Kaasik et al. [65] studied the energy metabolism in mouse cardiomyocytes and demon-
strated that this localized cycling of energy metabolites was effective enough to maintain a moderate
workload even in genetically modified mice deficient in creatine kinase. These studies clearly show
the functional importance of localized compartmentalization separated by diffusional barriers. Further-
more, diffusional restrictions of ADP in rat cardiomyocytes could influence the control mechanisms of
oxidative phosphorylation, as shown in several modeling studies [66, 67].

Vendelin and Birkedal [68] found diffusion coefficients in rat cardiomyocytes using a fluorescently
labeled ATP analogue and found them to be anisotropic. For this, raster image correlation spectroscopy
(RICS) was extended to discriminate anisotropy in the diffusion tensor. Although the reason for the
anisotropic diffusion is unclear, it may be related to the ordered structure of the cardiomyocytes or local-
ized diffusional barriers. To explore these localized diffusional barriers on a cellular level using math-
ematical models, the accurate geometry of mitochondria within the muscle cells is required. Vendelin
et al. [69] developed a method to analyze the two dimensional positioning of mitochondria in various
muscle types, and extended this method to three dimensions in a comparative physiology study between
trout and rat cardiomyocytes [70].

Compartmentalized metabolic pools may play a role in controlling shifts in metabolism. Separate
cytosolic pools of pyruvate in astrocytes have been observed to switch between acting as the precursor
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for energy production depending on the substrate being consumed [71]. In general compartmentalization
is more complex than we have previously assumed and we may only be scratching the surface with
regards to studying compartmentalized metabolism in cellular systems. With this view it is hard to avoid
introducing realistic kinetic schemes into dynamic flux analysis.

5.3. Example optimization of the TCA cycle in yeast

To illustrate the process of extracting information from isotopomeric data using isotopic simulation
coupled with optimization, we have included a simple example of the TCA cycle in Saccharomyces
uvarum. This example introduces the basic process of extracting information from isotopomeric data
and does not include many details in the modeling process such as sensitivity analysis and a through
discussion of the flux parameters found. Judicious analysis of this system will require a separate publi-
cation.

The metabolic system is given in Figure 1 and was optimized using a non-linear constraint optimizer
[72] using data collected by Paalme et al. [73]. We optimize a subset of their data where they performed
a step change to fully labeled acetate while feeding yeast a mixture of glucose and acetate. Paalme et al.
[73] measured 13C NMR absolute and conditional enrichments from the carbon skeleton of proteinogenic
amino acids harvested and hydrolyzed at isotopic steady state. This excludes the optimization of pool
sizes so they have all been set to be equal to simplify simulation, and all comparisons to measured data
were made at the last time point simulated after all isotopic dynamics reached steady state.

We have included measurements of the rate of biomass production from all TCA metabolites in Figure
1 to constrain the net fluxes that exit the system. These net fluxes include all biomass production,
including production of amino acids, nucleic acids, and lipids, however, only amino acids are included in
the metabolic scheme since it was their isotopomers that were used to constrain the isotopic steady state.
By not constraining the metabolic system explicitly using the biomass production rates the optimizer is
given more flexibility to find better solutions by roaming around the full flux parameter space.

The optimization was carried out with the following reactions set to be bi-directional: malate dehy-
drogenase (EC 1.1.1.37), fumerase (EC 4.2.1.2), citrate synthase (EC 2.3.3.1), and the three transport
reactions for oxaloacetate, pyruvate, and acetyl-coenzyme A. All reactions involving carbon dioxide,
except for the bi-directional production of bicarbonate via carbonic anhydrase (EC 4.2.1.1), were set to
be uni-directional.

By starting at a large number of plausible starting points selected at random over the range of the free
flux parameters, the optimizer always settled on one single optimal solution and occasionally stopped at
a few other local optima that did not reproduce the data very well. Changing the weighting of measured
data points within the optimizer and excluding one or two at random did not significantly change the
optimal solution found as this solution matched all available data quite well. The optimal fit to the
isotopomeric data is given in Figure 4. It is immediately seen that the fit between the NMR data and the
model predictions is very good. This means that this metabolic system can adequately account for the
observed labeling pattern and no important elements of the metabolic system are missing. With regards
to net fluxes, the optimal fit matches that found in [73].



Int. J. Mol. Sci. 2009, 10 1711

With respect to bi-directional reactions, malate dehydrogenase was found to be very bi-directional
with ν5f

ν5r
= 1.3, while the ratio for fumerase ν4f

ν4r
= 575.0. The transport of pyruvate was found to be

quite reversible with ν200f

ν200r
= 1.2, while the transport of acetyl-coenzyme A was much less reversible

with ν100f

ν100r
= 12.4, and the transport of oxaloacetate was found to be essentially uni-directional.

Figure 4. Optimization of example system with absolute and conditional 13C NMR data.
Simulated points are marked with stars and measured data are marked with circles. Absolute
enrichments are written with one carbon label, and conditional enrichments have a second
carbon label. Conditional enrichment is the probability of 13C enrichment in the first carbon
when the second carbon is a 13C.
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The pyruvate fit was the least perfect and the fit required the pyruvate transporter (R200) to be bidi-
rectional. This may be telling us that the assumption that mitochondrial pyruvate is the sole precursor
for Ala production is not entirely true, although at least some production of Ala from mitochondrial
pyruvate is required to fit the data. Ala is produced from cytosolic pyruvate during fermentative growth
so it is possible that both mitochondrial and cytosolic pyruvate act as precursors for Ala production,
but this must be confirmed with additional data and future simulations possibly with the inclusion of an
additional compartmentalized pool.

Pyruvate is a metabolite that participates in a large number of intersecting central metabolic pathways,
typically has a low intra-cellular concentration, and has been observed to exhibit multiple cytoplasmic
compartments along with mitochondrial compartmentalization [71, 74]. This hub metabolite may be
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compartmentalized in a more complicated way than has been supposed and should be studied with a
larger data set containing dynamic isotopic transients.

The steady state isotopomer profiles of the cytosolic and mitochondrial pools of oxaloacetate are given
in Figure 5. The labeling pattern in each compartment is quite different and has important implications
for the origin of Asp biosynthesis as discussed by Paalme et al. [73]. These simulations support the
previous findings that Asp synthesis originates from mitochondrial oxaloacetate since no adequate set
of net flux and exchange flux parameters could be found that give a steady state isotopomer profile for
cytosolic oxaloacetate that matched with the measured enrichments in the respective carbons in Thr and
Ile [73].

To make the transient of this optimization quantitative we would have to include slow bi-directional
exchange with storage compounds, since this has been found to dramatically influence the time scale
of isotopic dynamics. The isotopic dynamics of TCA cycle metabolites such as 2-oxoglutarate, succi-
nate, fumerate, glutamate, and aspartate, are all influenced by reversible aminotransferase reactions that
transfer amino groups from α-amino acids to α-keto acids [12]. This makes the isotopic dynamics in
the TCA cycle on the same temporal order of magnitude as reaching steady-state isotopomer labeling in
the biomass. Accurate simulation of short time TCA dynamics requires a long term dynamic component
that can only be quantified with labeling data from a long labeling experiment. Without accurate steady
state labeling data, the interpretation of short term labeling experiments is difficult [75].

Figure 5. Simulated steady state isotopomer distribution of mitochondrial and cytosolic
oxaloacetate. Since the isotopomers differ between compartments comparing the simulation
with measured data can help determine the functional location of biosynthesis reactions.
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6. Conclusions

We have shown that dynamic isotopic transients reveal important insights into the operation of metabolic
networks, including the bi-directionality of enzyme and transport reactions, and the compartmentaliza-
tion of metabolites, including localized compartmentalization not separated by a membrane barrier and
that caused by diffusional restrictions. Our optimization of the TCA cycle illustrates that using dynamic
isotopic models does not complicate the analysis of steady state isotopomeric data if the transient part
of the simulation is excluded, and the possibility for additional insight with the inclusion of only a small
amount of transient data should not be overlooked. Models that make use of isotopic transient data are
expected to become increasingly important as steady state isotopomeric models currently struggle with
the realities of compartmentalization.

The predicted rise in the use of dynamic models is supported by the rapid development of analytical
techniques to measure both isotopomeric transients and the kinetics of individual reactions in vivo. Nu-
merical tools are also developing rapidly, however the current state of dynamic modeling continues to
grapple with the difficulties of compartmentalization. Teasing out the details of compartmentalization
using dynamic models involves the addition of more parameters. When introducing such parameters,
the structural identifiability of the model must be preserved so that biological insight can be extracted
from the measured data. This is a challenge for large metabolic systems and can only be accomplished
by including as much information as possible to constrain the trajectories of the model solution. Ex-
amples include thermodynamic constraints, constraints on the pool sizes, integration of known kinetic
information, and the fitting of isotopomeric data from as many experiments as possible.

Although a vast amount of kinetic detail is required to build predictive kinetic models, their use within
isotopic transient models is expected to improve and expand phenomenological MFA. It is hoped that
fundamental kinetic studies will once again become a funding priority and through their continuation
support the use of kinetic schemes within realistically sized metabolic models, since the marriage of
kinetics and MFA is predicted to become an ever increasingly important tool in systems biology.
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