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Abstract: The pattern of flux and concentration control coefficients in an integrated 

mitochondrial energetics model is examined by applying a generalized matrix method of 

control analysis to calculate control coefficients, as well as response coefficients The 

computational model of Cortassa et al. encompasses oxidative phosphorylation, the TCA 

cycle, and Ca2+ dynamics. Control of ATP synthesis, TCA cycle, and ANT fluxes were 

found to be distributed among various mitochondrial processes. Control is shared by 

processes associated with ATP/ADP production and transport, as well as by Ca2+ 

dynamics. The calculation also analyzed the control of the concentrations of key regulatory 

ions and metabolites (Ca2+, NADH, ADP). The approach we have used demonstrates how 

properties of integrated systems may be understood through applications of computational 

modeling and control analysis. 

Keywords: Mitochondrial computational model; mitochondrial energetics; excitation-

contraction coupling; calcium dynamics; metabolic control analysis; distributed control; 

control by diffuse loops. 
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1. Introduction  

In the midst of a transition between analytical and integrative periods in biology, cell physiology is 

moving from the unraveling of most metabolic pathways, along with their constituent enzymes, 

towards quantification of integrated networks of reactions [1]. In this new direction, Systems 

Bioenergetics focuses on metabolism, not only as a mesh of biochemical reactions, but also as an 

evolving, dynamic, and spatially organized, mass-energy-information network [2]. Germane to their 

functionality is the understanding of how those networks are controlled and regulated as a whole. 

Metabolic Control Analysis (MCA) was among the earliest attempts to introduce a generalized 

quantification method that could be applied regardless of pathway complexity. Independently 

developed by Kacser and Burns [3] and Heinrich and Rapoport [4], and elaborating on the work of 

Higgins [5], MCA has been extended and improved (see [6] and [7] for reviews). MCA addresses the 

question of what controls, and to what extent, the flux through a metabolic pathway at the steady state. 

Given a network of processes of any complexity, the rates of the individual processes constituting 

such network influence, and are influenced by, the rates of the other interacting processes. In order to 

quantify control at the steady state, a series of coefficients have been introduced. The most frequently 
reported value is the flux control coefficient,
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with Ji representing the flux of interest, and Ek the activity of process k, whose control is quantified 

by i
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EC . This analysis requires the system to be continuous (differentiable) in the neighborhood of a 

steady state. The flux control coefficient measures how much of the flux through a pathway (e.g. 

oxygen consumption flux, Ji) or a single step (e.g. adenine nucleotide translocase, Ji) would be 

modified if any activity in the system changes through a modification in either enzyme abundance or 

activity (e.g., changes in the rate of ATP synthase, Ek). An analogous definition applies for the 

metabolite concentration control coefficient, i
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EC . These two coefficients reflect global properties of 

the network — both are dependent on the rates of all processes in the system. If, for a given process, 

the magnitude of the control coefficient is close to 1.0, it indicates that a change in the flux (e.g. O2 

consumption rate) will be almost proportional to the change in the activity of the process under study. 

Flux control coefficients can be either positive or negative (e.g., an increase in the activity of a 

negative controlling step will decrease the flux), but the summation theorem requires that the sum of 

all flux control coefficients at the steady state should equal 1.0 [6]. 

On the other hand, the elasticity coefficient, kv
Sj , quantifies the dependence of the rate of a specific 

process, k, on the concentration of an intermediate or effector in the network, SJ. The elasticity 

coefficient as defined in Equation 2, computes the magnitude by which an enzyme activity (e.g. ATP 

synthase, vk) changes upon variation in the level of a substrate or an effector (e.g. ADP, Sj). In contrast 

to control coefficients, elasticities depend upon local properties of the enzyme, and the concentrations 

of its substrates and effectors. In practical terms, elasticities correspond to the slope of the relationship 
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between the initial rate of an enzyme-catalyzed reaction and the concentration of the substrate (or  

an effector):  

 

(2)

For a more in depth discussion and development of the analytical tools of MCA, the reader is 

referred to the book authored by D. Fell [6] and to Cortassa et al. [8] for further analysis of the matrix 

method as applied in the present work. 

Rigorously, MCA applies to the analysis of steady states raising concerns about its use in time-

dependent behavior (see [8] for a more detailed discussion). However, Ingalls and Sauro [9] have 

reported the validity of applying MCA to averages of time-dependent behavior exhibited by systems 

undergoing periodic dynamics. It was shown that under those conditions the summation and 

connectivity theorems of MCA are fulfilled [9].  

2. Control and Regulation of Oxidative Phosphorylation and ATP Provision in the Heart 

Mitochondria were among the first biological systems subjected to MCA, and oxidative 

phosphorylation was the prime example illustrating how control is distributed among several “rate-

controlling”, rather than “rate-limiting”, steps [10]. This was the expected outcome from a method 

accounting for coefficients assessing the impact of both systemic and individual steps in the 

biochemical network. MCA also revealed that the pattern of control changes more quantitatively 

(control strength) rather than qualitatively (steps involved) following changes in physiological 

conditions [11-14]. Since its introduction, MCA has been extensively applied to study properties of 

isolated mitochondria from liver [15-17], muscle [18,19] and other sources [20], although few studies 

have been carried out using intact cells [11,12] or tissue [8].  

The problem of control and regulation of oxidative phosphorylation is of enormous importance in 

the heart, an organ pumping roughly 75 gallons of blood per hour for about 100 years [21]. Over 90% 

of heart metabolism is aerobic [22], accounting for nearly 10% of the O2 consumption of the body at 

rest. Mitochondria provide the bulk of the ATP needed for cardiac muscle contraction (about two 

thirds) and sarcolemmal and sarcoplasmic ion transport (one third), responsible for the electrical 

activity of the cardiac cell [22]. Thus, in the heart, oxidative phosphorylation represents the dominant 

source of energy for matching metabolic/contractile demand.  

Based on MCA of an integrated model of mitochondrial energetics and Ca2+ dynamics, we 

introduced the notion of “push” and “pull” in the context of control of the respiratory flux [23] and the 

framework of the top-down method of MCA with NADH as a "hinge" [24]. A “push” condition 

happens when the steps controlling the respiratory flux occur upstream of NADH (e.g. TCA cycle), 

whereas “pull” corresponds to a situation in which respiration is mainly controlled by processes 

downstream of NADH (e.g. adenine nucleotide translocator, ANT, ATPase, respiration itself). In a 

“push” condition, the NADH/NAD+ ratio is low (oxidized redox potential), and respiratory flux 

depends on activation of the TCA cycle to regenerate NADH. Under these conditions, alpha-

ketoglutarate (KGDH) and isocitrate (IDH) dehydrogenases become the main rate-controlling steps of 
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the respiratory flux. On the contrary, a “pull”-type of control occurs when the control of respiration 

shifts downstream of NADH (e.g. to ANT and ATPase), associated with a high NADH/NAD+ ratio 

(reduced redox potential). In this context, it is instructive and useful to emphasize the differences in the 

meaning of the terms control and regulation, a key conceptual advance contributed by MCA [1,7]. The 

definitions we use here are somewhat different from that proposed in [25]. Under “push” conditions, 

respiration in mainly controlled by KGDH and IDH and regulated by Ca2+, that is, control indicates 

the influence of the rate of a metabolic (e.g. KGDH) or transport reaction on the flux (e.g. respiration), 

whereas regulation refers to the modulation of an enzyme activity (e.g. KGDH) or pathway in 

response to the change in the level of a metabolite (e.g. ADP) or ionic species (e.g. Ca2+ activation of 

KGDH or, in MCA terms, positive elasticity of KGDH toward Ca2+). Recognizing the difference 

between control and regulation is not merely semantic; it informs us about what to look for in order to 

understand network function. More specifically, it is a key issue for recognizing that enzymatic or 

transport reactions as well as posttranslational modifications control whereas metabolic intermediates, 

ions or second messengers, regulate. 

3. Control and Regulation of Overall Network Function in Isolated Mitochondria 

Very recently, we applied a generalized matrix method of control analysis [8,26,27], to calculate 

flux and concentration control coefficients, as well as response coefficients to an integrated cell 

model[8] of Excitation-Contraction (EC) coupling and Mitochondrial Energetics (ECME model) [28]. 

This quantitative analysis revealed the complex interdependence of sarcolemmal, cytoplasmic, and 

mitochondrial processes that contribute to the control of energy supply and demand in the heart.  

Scheme 1. Scheme of the model ECME subjected to control analysis. 

 
 

 



Int. J. Mol. Sci. 2009, 10             

 

 

1504

Scheme 1. Cont. 

Processes accounted for by the ME model are numbered according to the following key: 

Number Abbreviation Name 
1 TCA Tricarboxylic acid cycle 
2 VRC Respiratory electron transport 
3 HNe Respiratory chain proton pumping 
4 HFe Succinate-driven proton pumping 
5 ATPsy Mitochondrial ATP synthase 
6 Hu Proton pumping through ATP synthase 
7 Leak Proton leak 
8 ANT Adenine nucleotide translocator 
9 Cauni Mitochondrial Ca2+ uniporter 
10 VNCE Mitochondrial Na+ Ca2+ exchanger 

The scheme shows mass transformation interactions between the state variables of the 

mitochondrial energetics (ME) model. In the model the TCA cycle starts from AcCoA, i.e. the 

common intermediary metabolite derived from sugars and fatty acids degradation, thus, not 

accounting for the activity of pyruvate dehydrogenase, one of the targets of Ca2+ regulation [23]. In 

the scheme, regulatory interactions were omitted for simplicity (see [8] for more details). State 

variables are indicated in rectangular (ion or metabolites) while boxes depict a light blue 

background when the state variables participate in conservation relationships (ATP/ADP, 

NAD+/NADH) or a dark blue background for ionic species. The hexagonal box denotes the input of 

carbon substrate that corresponds to a parameter in the model. Arrowheads point to the products of 

the numbered processes, whereas lines without arrowheads indicate inputs to those processes. The 

TCA cycle was considered as a single step in the stoichiometric matrix; however, for the 

quantification of the elasticity coefficients of the TCA cycle with respect to the intermediates, the 

disaggregated individual rate expressions and their dependence with respect to Ca2+
m, NAD+, 

NADH, ADPm, and ATPm were taken into account. The individual elasticities were then added 

together to compute the overall elasticity of the TCA cycle (see [8] for details). m correspond to 

the mitochondrial membrane potential.  

In the present work, we present selected results obtained with the generalized method of control 

analysis by Reder [27], as applied to the isolated mitochondrial energetics (ME) model (Scheme 1). 

The matrix method does not assume complete fulfillment of the MCA theorems; however, as expected 

from applying it to the steady state, we found that the summation theorems for the flux (= 1.0) and 

intermediate concentration (= 0) control coefficients were satisfied, along with the summation of the 

response coefficients (= -1.0) for metabolites [8]. All of these tests ascertain the consistency of the 

calculations performed in accordance with the principles of MCA. 

The analysis revealed the highly distributed control exerted by different mitochondrial processes on 

ATP synthesis, the TCA cycle, and the ANT flux (Figure 1). The ATP synthesis flux, VATPsy, is mainly 

controlled negatively by the activity of the respiratory chain carriers (VRC); positively by the proton 

transport associated with respiratory electron transfer chain (VHNe); and negatively by the proton 

transport linked to ATP synthesis (VHu). Additionally, VATPsy is significantly and negatively controlled 

by the Ca2+ uniporter (VCauni) and, positively, by the adenine nucleotide translocator (VANT) (Figure 
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1a). Relatively minor, but significant, positive control of ATP synthesis is contributed by the TCA 

cycle (VTCA) and the proton flux associated with succinate-driven respiration (VHFe), and the ATP  

synthase (VATPsy).  

Figure 1. Control of metabolic fluxes in the ME model. 

 
The control coefficient by each of the steps of the ME model are represented for (a) the ATP 

synthase, (b) the TCA cycle, and (c) the . See the legend of Scheme 1 for abbreviations. Panel 

(a) reprinted from Cortassa, S.; O’Rourke, B.; Winslow, R.L.; Aon, M.A. Control and regulation of 

mitochondrial energetics in an integrated model of cardiomyocyte function. Biophysical Journal 

2009, 96, 2466 – 2478 with permission from Elsevier.  

The control of the flux through the TCA cycle shows some significant differences with respect to 

ATP synthesis. Among the most relevant is the strong positive control by the activity of the respiratory 

chain carriers (VRC) followed by VCauni > VHu > VANT whereas VHNe exerted a strong negative control 

(Figure 1b). This control pattern reveals that an increase in the amount of electron carriers in the 

respiratory chain as well as the H+ flux through the ATPase, which consumes the proton motive force 

(pmf) and activates respiration, exert positive control on the TCA cycle. However, an increase in the 

pmf will exert a negative control over the TCA flux due to the negative control that VHNe exerts on 

respiration. That is, any process downstream of NADH that increases respiration, thus consuming 

NADH, will in turn exert a positive control over the TCA cycle.  

The adenine nucleotide translocator (ANT) has been shown to exert a significant control on the 

respiratory flux in several earlier studies [10,15,29]. Figure 1c depicts how the flux through the ANT 

(VANT) is also controlled in a highly distributed manner. The VANT is strongly and positively controlled 
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by VHNe and VANT, whereas VHu and VCauni exert negative control (Figure 1C). Relatively lower and 

positive control on VANT was exerted by VTCA > VATPsy > VHFe > VRC. 

We have previously pointed out the relevance of metabolites such as ATPi, an energetic 

intermediate such as m, and an ionic species such as mitochondrial Ca2+ (Ca2+
m) as main regulators 

of VO2 [8]. Due to the importance of mitochondrial matrix redox and phosphorylation potentials as key 

indicators of mitochondrial physiology, here we focused on the processes controlling the 

concentrations of NADH and ADP in the mitochondria. As expected, VTCA and VRC are the two main 

controllers of mitochondrial NADH levels; the concentration control coefficients were almost the same 

(~ 23%) but with opposite signs: positive for VTCA and negative for VO2. About ten-fold lower positive 

control was exerted by both VHNe and VCauni on NADH concentration, as compared with VTCA and VO2, 

whereas VNCE > VHu exerted low magnitude negative control. ADPm was positively controlled by 

VCauni > VHu > VANT and negatively by VHNe > VTCA ≈ VATPsy > VHFe > VRC. 

4. Control by Diffuse Loops in Mitochondria 

Energy supply and demand in the heart appears to be controlled by diffuse loops [8]. The concept of 

diffuse loops emerged from studies trying to visualize the structure of control of metabolic and 

transport networks of the myocyte as a whole [8]. We defined control by diffuse loops as the control 

exerted by a process A over another, e.g., C (mechanistically unrelated or indirectly related to process 

A) through at least one intermediate process B. We pointed out that the existence of diffuse loops 

provides a rationale for understanding that an action on one part of the network (e.g. by a 

pharmacological agent) may bring about changes in other parts without obvious direct mechanistic 

links between them. 

Mitochondria also exhibit control by diffuse loops. The control exerted by some mitochondrial 

processes on the flux of ATP synthesis (Figure 1) can be readily interpreted based on first principles. 

Discriminating between the proton fluxes associated with respiratory electron transport (VHNe and 

VHFe), and ATP synthesis (VHu) we show that ATP synthesis is positively controlled by the buildup of 

the pmf (VHNe and VHFe), and negatively controlled by the flux of H+ associated with ATP synthesis. 

The results indicate that when the pmf is built up by VHNe, it feeds back positively on the ATPase (i.e., 

higher m, higher ATPase activity) whereas, when the pmf is dissipated (mainly through m), the 

ATPase activity decreases. In the ME model, VO2 and VATPsy depend upon both m and pH [23]. 

The overall fluxes of respiration [8] and ATP synthesis (Figure 1a) are strongly dependent on m 

within a certain range, and follow the general flux-force relationship and dependence upon m and 

pH described for numerous biological free-energy transduction processes [23,30,31]. These effects 

explain the diffuse loop acting as a negative control exerted by VCaUni on ATP synthesis (Figure 1a). 

The latter control is mediated by m dissipation due to the electrogenic uptake of Ca2+ through the 

uniporter [23]. This m–mediated diffuse loop can be further clarified if we take into account the 

dual effect of Ca2+ transport; on the one hand activating the TCA cycle dehydrogenases thereby 

stimulating NADH production and respiration, and on the other hand, dissipating m because of the 

inward transport of positive charges. Quantitatively, the negative control by VCaUni on ATP synthesis 

happens because m dissipation is larger than the Ca2+-mediated TCA cycle activation. 
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Although less intuitive at first sight, the control over VANTby numerous mitochondrial processes 

can be readily understood if we take into account the diffuse loop involving m dissipation. Any 

mitochondrial process contributing to the buildup of m (e.g. TCA, VHNe) will control positively 

VANT whereas those dissipating m (e.g. VCaUni, VHu) will exert a negative control owing to its 

electrogenic nature (ATP efflux/ADP influx is equivalent to a negative charge moving out, driven by 

the electrical gradient). Control of metabolite concentrations also involves diffuse loops. Mitochondrial 

Ca2+, NADH and ADP concentrations are examples (Figure 2). 

Figure 2. (a) Control of NADH and ADP concentrations in the ME model. Represented 

are the control coefficients of NADH (a) and DP (b), extracted from the computed matrix 

of metabolite concentration control coefficients. 

 

In the case of Ca2+, the interpretation is straightforward, since its concentration is positively 

controlled by the uniporter (control coefficient = 0.609) and negatively controlled by Na+Ca2+ 

exchanger (VNCE; control coefficient = -0.606) (not shown). Additionally, in the case of NADH, the 

major control over its concentration is given, positively, by the TCA cycle, and, negatively, by the 
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activity of the respiratory chain carriers (VRC) (Figure 2a). More indirectly, and to a much lesser 

extent, mitochondrial NADH is controlled positively and negatively, respectively, by VCauni and VNCE 

through matrix Ca2+. Thus, from a quantitative standpoint, mitochondrial Ca2+ levels are controlled by 

the Ca2+ uniporter and the Na+Ca2+ exchanger, whereas NADH concentration is largely controlled by 

the opposing activities of the VTCA and VRC and to a lower degree by VCauni and VNCE. A consequence 

of this analysis is that the TCA cycle or the respiratory chain, and not the Ca2+ transporters, will 

normally predominate in determining the NADH concentration in mitochondria. 

As expected, the control of the ADP concentration in the matrix follows an opposite pattern to that 

of ATP synthesis (compare Figures 1a and 2b). ADP is positively controlled by all the processes that 

dissipate the pmf such as VCauni > VHu > VANT whereas ADP is negatively controlled by all other 

processes that tend to recharge the pmf being VHNe the strongest then followed by VTCA > VATPsy > 

VHFe > VRC (Figure 2b). VANT was the only exception to this control pattern since both ADP and the 

ATP synthesis flux were positively controlled by the ANT although to a much lower extent in the case 

of ADP concentration. 

5. Discussion 

By applying a generalized matrix method of Metabolic Control Analysis to study the network of 

metabolic and transport reactions in a model of mitochondrial energetics, we could investigate the 

control of basic physiological functions such as respiration and ATP synthesis as well as the matrix 

concentration of key metabolites and ions such as NADH, ADP, and Ca2+. This work shows how 

control by diffuse loops also operates at the mitochondrion level. Diffuse loops were previously found 

in a similar analysis applied to an integrated model of cardiomyocyte function (ECME model, [8,28]. 

We defined control by diffuse loops as the influence exerted by a process A over another C through at 

least one (may be several, see below) intermediate process B [8]. As an example, the negative control 

exerted by the Ca2+ uniporter (process A) over ATP synthesis (process C) is mediated by m (process 

B). The mechanistic relationship between m and ATP synthesis allows us to see that decreasing 

m within a certain range (e.g. by Ca2+ transport through the uniporter) has a strong negative impact 

on the ATP synthase activity (see Figures A5B and A6B in [23]). 

Another contribution of the present work is to quantify the impact of Ca2+ transport on 

mitochondrial matrix NADH level. An extensive body of work in the literature shows the distinct role 

of Ca2+ on mitochondrial energetics as well as on the contractile and electrical functions of the heart 

[32,33]. Germane to our discussion is the impact of Ca2+ on mitochondrial redox. Our previous work 

showed that mitochondrial physiology can be characterized by “push” or “pull” conditions depending 

on the control residing on mitochondrial processes upstream or downstream of NADH. The fact that 

mitochondria are in “push” or “pull” is largely associated with the NADH/NAD+ ratio; with high ratios 

corresponding to “pull”. Previously reported data in the literature confirm that the NAD+/NADH ratio 

in heart or liver mitochondria is much lower than in the cytosol (8 versus 725 [34]) in tune with a more 

reduced NADH pool [35]. The pattern of control of oxidative phosphorylation is also in agreement 

with a “pull” rather than a “push” condition in isolated mitochondria [25] as well as in living cells [36] 

or tissues [37]. These facts highlight the importance of the mitochondrial matrix NADH/NAD+ status 

for the control of mitochondrial function. 
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Previously, we showed a large control by the respiratory chain and the ANT on the respiratory flux 

under “pull” conditions [23]. The latter situation corresponds closely to that described by Borutaite et 

al. [38] regarding the control of respiration in heart mitochondria. Moreover, experimental data 

obtained for isolated rat liver cells show that control of respiration and oxidative phosphorylation is 

primarily downstream of NADH [36]. Accordingly, rat liver mitochondria would be predominantly in 

the pull condition, inasmuch as 49% of the control is exerted by the processes of ATP synthesis, 

transport and consumption, 22% by proton cycling not coupled to ATP synthesis, and only 29% by 

respiration and upstream processes. 

Since processes downstream of NADH are flux-controlling under “pull”, ATP synthesis is less 

stimulated by cytoplasmic Ca2+ when compared to “push” conditions, a condition in which the TCA 

cycle dehydrogenases are more rate-controlling. A drawback of the “push” condition is that the 

simulated NADH levels are much lower than the values that have been observed experimentally. 

Brown et al. [36] estimated that 15 – 30% of the control over respiration would be exerted by 

processes involved in NADH generation. However, in our simulations, under “pull” conditions, the 

stimulation of oxidative phosphorylation by increasing cytoplasmic Ca2+ concentration is small. These 

results led us to conclude that cytoplasmic Ca2+ is better able to stimulate the rate of mitochondrial 

ATP synthesis only when the TCA cycle exerts a significant control on respiration [23].  

In a comprehensive review Brown [25] stated that: “…there is no simple answer to the question 

“what controls respiration?” Part of the difficulty not only resides in the extreme reactivity of 

mitochondria to incubation and source conditions, but also stems from the lack of a clear quantification 

of control and regulation. As stated above, control is the extent to which a flux through a pathway, or 

the concentration of an intermediary metabolite, is altered by changing the activity of one or more 

steps, and is quantified by flux and concentration control coefficients [6,7]. Regulation refers to how 

the flux of a pathway is modified through the effect on the rate of an individual step by cellular factors, 

which may include intermediary metabolite concentrations, the ionic environment, etc., and is 

quantified by the response coefficient. The response coefficient measures the fractional change in flux, 

e.g. respiration, in response to a fractional change in a parameter P (e.g., an effector such as Ca2+) other 

than enzyme activity. Therefore, regulation implies the response of a pathway to an effector on two 

levels: (i) the extent of control exerted on the pathway by the enzyme that is the effector’s target, and 

(ii) the strength or elasticity of the effect of P on that enzyme. The response coefficient defined in this 

manner is the product of control and elasticity coefficients.  

According to Chance and Williams [39], increased ATP usage causes increased respiration and 

ATP synthesis. However, the chain of events leading to the realization of this basic mechanism of 

respiratory control is not straightforward in complex, integrated, metabolic and transport networks. 

Cortassa et al. (2009) [8] produced the first overall calculation of an integrated mitochondrial 

energetics and EC coupling model of cardiomyocyte function. One main finding was that when the 

contractile force is close to its maximum, and the energy consuming pumps are nearly at maximal 

work during the contraction cycle, the control of the respiratory flux is not only widely distributed 

among mitochondrial processes but also among the major cytoplasmic ATPases: VAM-ATP, VSERCA, INaK 

and plasmalemmal Ca2+ ATPase (VPMCA) [8]. While VAM-ATPase exerts a positive control on respiration, 

the others exhibit a negative control: INaK > VSERCA > VPMCA, because of their important effects on Ca2+ 

dynamics. Moreover, the calculation also showed that the control of respiration by cytoplasmic 
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ATPases differs between resting and working conditions, with the ATPases exerting more control at 

higher work. Surprisingly, when analyzing the control of the ATP synthesis flux we found that, 

counter-intuitively, the myofibrillar ATPase, VAM-ATPase, exerted a negative (not the expected positive) 

control on ATP synthesis. This was a good example of control by diffuse loops [8]: in this case, the 

decrease in ATPi brought about by an increase in AM-ATPase caused a decrease in the activity of the 

SERCA pump, which, in turn, increased the concentration of Ca2+
i in the cytoplasm. The increase in 

Ca2+
i concentration resulting from the decrease in SERCA activity produced an increase of VCauni, 

transporting more Ca2+ into the mitochondria (also reflected by a large positive control of AM-ATPase 

on VCauni). The effect of the Ca2+ uniporter to dissipate m overrode the small positive control of the 

ANT brought about by the increase in ADP produced by the AM-ATPase. The net effect was a 

decreased flux through the ATP synthase [8], a remarkable counterintuitive result.  

The predictions raised by the analysis presented here are, indeed, subjected to the soundness of the 

underlying model. Thus, the validity of the predictions depends upon a correct description of the 

individual processes taken into account by the model. To this respect, the mitochondrial energetics 

model has been extensively validated by its ability to reproduce experimental behavior standing as is 

[23], or coupled to a model of excitation contraction coupling of cardiomyocyte from guinea pig [28]. 

Moreover, the analysis herein, as applied to isolated mitochondria or single cells, is not limited to 

small changes in enzyme activity as could be interpreted from the definitions of the coefficients (see 

Equations 1 and 2) [40]. Control analysis is essentially derived from the modular behavior of the 

model components which includes built-in stoichiometric and regulatory interactions accounted for by 

the stoichiometry- and elasticity- coefficients matrices, respectively. 

6. Conclusions 

Overall, concerning the control and regulation of mitochondrial respiration and ATP synthesis, this 

work shows the following distinct features: i) it is distributed to a different extent among several 

processes; ii) it is exerted by diffuse loops acting through intermediary processes; iii) the concentration 

of key regulatory metabolites (ADP, NADH) and ions (Ca2+) are in turn controlled by the major rate-

controlling steps of respiratory and ATP synthesis fluxes. This work demonstrates the insight into the 

properties of integrated systems that may be gained through applications of computational modeling and 

control analysis. 
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