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Abstract: In the past few decades, technology has made immeasurable strides to enable 
visualization, identification, and quantitation in biological systems. Many of these 
technological advancements are occurring on the nanometer scale, where multiple 
scientific disciplines are combining to create new materials with enhanced properties. 
The integration of inorganic synthetic methods with a size reduction to the nano-scale has 
lead to the creation of a new class of optical reporters, called quantum dots. These 
semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes 
and fluorescent proteins, and are brighter and more stable against photobleaching than 
standard fluorescent indicators. Quantum dots have tunable optical properties that have 
proved useful in a wide range of applications from multiplexed analysis such as DNA 
detection and cell sorting and tracking, to most recently demonstrating promise for in 
vivo imaging and diagnostics. This review provides an in-depth discussion of past, 
present, and future trends in quantum dot use with an emphasis on in vivo imaging and its 
related applications. 
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1. Introduction 
 

Fluorescence techniques are commonplace in life science applications, but are constantly evolving 
as novel optical reporters and imaging instrumentation continues to be developed. Specific 
conventional biological applications employing fluorescence include cellular and molecular imaging, 
cell labeling and tracking, multiplexed analyses, and DNA detection. The broad applicability of 
fluorescence studies, as well as the constant desire to perform more sensitive or advanced 
measurements, has driven the development of more versatile, reliable fluorescent reporters useful for 
both single- and multi-color experiments. An ideal fluorescent marker for single-color applications 
should be bright, biocompatible, non-toxic to the sample, and be stable against photobleaching; in 
multi-color experiments, fluorophores should exhibit these same characteristics as well as have 
spectrally resolvable emission profiles with narrow, symmetric emission spectra. In addition, for 
simplicity and cost benefit, a preferable experimental protocol employing fluorescent reporters should 
be amenable to relatively inexpensive instrumentation, such as the need for a single excitation source. 

Standard fluorescent labels, such as organic dyes, can be problematic, or even limiting, particularly 
in multicolor experiments due to issues associated with signal intensity strength, relatively short 
lifetimes, narrow excitation ranges, and broad emission spectra. These problems exist due to the 
optical properties of organic fluorophores and the growing requirement for more sensitive, complex 
imaging experiments within the visible spectrum. For example, most optical reporters have specific 
absorption ranges that prohibit single-source excitation of multiple dyes. In addition, these 
fluorophores generally have broad emission spectra that create overlapping detection ranges, making 
multiplexed analysis and data interpretation more challenging. To address these limitations, more 
robust reporter species are continually being developed. Development of new reporter species and 
more sensitive instrumentation has lead to continued improvements in biological imaging and analysis. 
One such reporter moiety that has enabled important advancements in imaging and analysis is 
semiconductor nanocrystals, also called quantum dots. Quantum dot nanoparticles display many 
improved optical qualities desirable for biological applications, and are advantageous for both single- 
and multi-color experiments as compared to organic dyes [1,2]. 

Quantum dot nanoparticles generally fall within the 2-10 nanometer size range and possess size-
tunable, i.e. controllable, optical and electrical properties (Table 1). The most commonly used quantum 
dots fall within this size range, but larger nanoparticles have also been fabricated and used for other 
specific applications. The optical properties of quantum dots stem from their composition: a 
semiconductor material core, such as cadmium selenide, lead selenide, or indium arsenide (CdSe, 
PbSe, or InAs), passivated by a coating, or shell, also of semiconductor material (Figure 1) [1-6]. The 
core semiconductor material has a narrow bandgap, defined as the minimum amount of energy 
required to excite an electron from its ground state to the next highest energy level. The core material 
is enclosed within a shell coating, comprised of a different semiconductor material of higher bandgap. 
The higher bandgap energy associated with the shell effectively limits, or confines, the excitation and 
emission solely to the core material. This excitation of the quantum dot core occurs through absorption 
of energy, which causes an electronic transition from the ground state to the first excited state. 
Absorption is followed by the release of energy in the form of a photon when the electron relaxes back 
to the ground state. The core-shell architecture not only confines excitation and emission to the core, 
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but also enhances the photoluminescence quantum yield of the core emission and protects the core 
from photobleaching [1,4,6,10,11]. 

 
Table 1. Core Compositions, Size Ranges, and Emission Wavelength Ranges of  
Quantum Dots. 

Core Composition Size Range (nm) Emission Range, reference 
ZnSe ~4.3-6.0   UV, Visible (Size dependent), [7,8] 

ZnSe:Mn ~2.7~6.3   UV, Visible (Size dependent), [9] 
CdSe ~1.0 up to 25   Visible, [1,3,10-14] 
CdS ~1.0-6.0   UV, Visible (Size dependent), [3,8,15] 
CdTe ~2.0-8.0   Visible, [3,15] 
InP 3.0-4.6   

~2.6-4.6   
UV, Visible, Near IR (Size dependent) 

[1,16] 
InAs 2.8-6.0   IR, [1] 
GaP ~2.0-3.0   UV, Visible (Size dependent), [16] 

GaInP2 ~2.5-6.5   UV, Visible (Size dependent), [16] 
PbSe 3-8 (small), 8-12 (large)  Near/mid-IR (Size dependent), [17-19] 
SnTe 4.5-15   Mid-IR, [20] 

 
Figure 1. (A) Scanning transmission electron micrographs of PbSe quantum dots: low 
resolution (full scale = 320 nm) showing the ordering of an ensemble of nanocrystals. 
Reprinted with permission from [18]. (B) Schematic of a quantum dot conjugate used for in 
vivo imaging. The image shows a cross section where the quantum dot semiconductor core 
is visible, which is coated with a shell material, comprised of a second semiconductor 
material. The core/shell quantum dots are coated for biocompatibility and solubility, 
followed by conjugation to a biological element for recognition or a specific interaction in 
vivo. In this instance, the quantum dot bioconjugate is shown covered with antibodies. For 
illustrative purposes, and not drawn to scale. 
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The increase in photoluminescence quantum yield results from a surface passivation effect of the 
core, where the number of nonradiative recombination sites, such as holes and gap states, are reduced, 
enhancing the charge transfer [4,6,21,22]. Quantum dots have been estimated to be up to 20 times 
brighter and 100 times more stable than traditional fluorescent reporters [2]. The increased stability 
and emission intensities of quantum dots makes them more practical in ultrasensitive detection, long-
term imaging, and rapid-detection applications, such as flow cytometry  [2,23-26].  

Along with an increased quantum yield, the size-tunable nature and narrow emission profiles 
associated with quantum dots are major advantages that stem from their unique core/shell architecture. 
Quantum dot emission profiles contain characteristic peaks at wavelengths across the visible spectrum 
that are independent of excitation wavelength (Figures 2 and 3) [1,3,7,17,19,20]. Although quantum 
dots exhibit these numerous advantageous optical properties, inorganic semiconductor materials are 
toxic to living systems, effectively limiting their use in biological systems. While nanoparticle toxicity 
continues to be an area of much research and debate [27-31], numerous experiments have documented 
modified quantum dots as having limited cytotoxicity, and surface coatings have been developed in an 
effort to minimize toxicity [24-26,30-39]. More detail regarding optical properties and quantum dot 
toxicity will be discussed in later sections of this review. 

 
Figure 2. Comparison of (A) the excitation and (B) the emission profiles between 
rhodamine 6G (red) and CdSe quantum dots (black). The quantum dot emission spectrum 
is nearly symmetric and much narrower in peak width. Its excitation profile is broad and 
continuous. The quantum dots can be efficiently excited at any wavelength shorter than 
~530 nm. By contrast, the organic dye rhodamine 6G has a broad and asymmetric emission 
peak and is excited only in a narrow wavelength range. Reprinted with permission  
from [40]. 
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Quantum dots, despite their many advantages, have additional issues that must be considered prior 
to their widespread adoption, including intermittent on/off behavior, biocompatibility, and a larger 
relative size as compared to standard fluorophores. These limitations will be discussed briefly, but all 
have been managed to some extent and are continually being studied, improved and addressed. First, 
the fluorescence signals of individual quantum dots display intermittent on/off behavior, or “blinking”, 
which can complicate fluorescence measurements or be problematic in ultrasensitive analysis [2,41].  

 
Figure 3. (A) Size- and material-dependent emission spectra of several surfactant-coated 
semiconductor nanocrystals. The blue series represents different sizes of CdSe 
nanocrystals with diameters of 2.1, 2.4, 3.1, 3.6, and 4.6 nm (from left to right). The green 
series is of InP nanocrystals with diameters of 3.0, 3.5, and 4.6 nm. The red series is of 
InAs nanocrystals with diameters of 2.8, 3.6, 4.6, and 6.0 nm. (B, C, D) Size-dependent 
optical properties of cadmium selenide quantum dots dispersed in chloroform, illustrating 
size tunable fluorescence emission. (B) Fluorescence image of four vials of monodisperse 
quantum dots with sizes ranging from 2.2 to 7.3 nm in diameter, obtained with ultraviolet 
lamp illumination at 365 nm. (C) Fluorescence spectra of the same four quantum dot 
samples, excited at 400 nm. Narrow emission bands (23–26 nm full-width at half-
maximum) indicate narrow particle size distributions. (D) Absorption spectra of the same 
four samples. Notice that the onset of absorption is slightly blue-shifted from the emission 
peak for each quantum dot sample, and that the absorption spectra are very broad, so that a 
wide spectrum can be used for excitation. Both the absorption and emission intensities are 
plotted in arbitrary units (AU). Adapted with permission from [1,48]. 

     
 

Issues with blinking have generally been overcome by increasing the shell size and/or decreasing the 
excitation intensity [42,43]. Second, as quantum dots are comprised of inorganic materials, they are 
incompatible with polar solvents, and have limited utility in biological applications without further 
derivatization. Substantial effort has gone into developing methods, such as different coatings or caps, 
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to render quantum dots soluble in aqueous solution [1,2,32,35,44-46]. Finally, since quantum dots are 
an order of magnitude larger than standard organic dyes, quantum dots are less applicable when the 
fluorescent probe’s size must be minimized [26,45]. Quantum dot size is not considered an 
experimental hindrance, but is worth noting, because these nanoparticles fall in the size range of 
macromolecules, such as most proteins and peptides, etc. [35,45-48]. Conjugation and biocompatibility 
are all critical factors for in vivo imaging, and both topics will be discussed in  
later sections. 

Quantum dot properties are controllable and their signal strength is robust, and as such, are 
desirable for a wide range of in vivo studies and labeling applications (Figures 4 and 5), 
immunoassays, optical encoding for multiplexed analyses, cell tracking, and fluorescence resonance 
energy transfer (FRET) [1,2,24-26,32,34-37,41,45-47,49-58]. Even though quantum dots have 
demonstrated their value in numerous applications, their physical characteristics continue to be refined 
to further their utility. Synthetic methods, including conjugation and aqueous solubilization steps, are 
critical to maximizing quantum dot properties for broader use. The next few sections will detail past 
and ongoing efforts to address these issues and expand the opportunities in quantum dot research. 

 
Figure 4. Sensitivity and multicolor capability of QD imaging in live animals. (A,B) 
Sensitivity and spectral comparison between QD-tagged and GFP transfected cancer cells 
(A), and simultaneous in vivo imaging of multicolor QD-encoded microbeads (B). The 
right-hand images in A show QD-tagged cancer cells (orange, upper) and GFP-labeled 
cells (green, lower). Approximately 1,000 of the QD-labeled cells were injected on the 
right flank of a mouse, while the same number of GFP-labeled cells was injected on the 
left flank (circle) of the same animal. Similarly, the right-hand images in B show QD-
encoded microbeads (0.5 μm diameter) emitting green, yellow or red light. Approximately 
1–2 million beads in each color were injected subcutaneously at three adjacent locations 
on a host animal. In both A and B, cell and animal imaging data were acquired with 
tungsten or mercury lamp excitation, a filter set designed for GFP fluorescence and true 
color digital cameras. Transfected cancer cell lines for high level expression of GFP were 
developed by using retroviral vectors, but the exact copy numbers of GFP per cell have not 
been determined quantitatively. Reprinted with permission from [23]. 
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2. Quantum dot synthesis 
 

Although semiconductor nanoparticle syntheses were reported in the 1980’s, the first protocol 
producing quantum dot samples that were highly monodisperse, regular in core structure, size-tunable, 
and with surface capping was reported by Bawendi and coworkers in 1993 [3,59,60]. Numerous 
modifications have since been made to these seminal procedures, improving or changing the properties 
of quantum dots to better suit specific experimental needs. These alterations to standard synthesis 
parameters have produced quantum dots with varying composition, size (emission wavelength), shape, 
and shell, among others. Despite the many synthetic permutations and their modifications, quantum 
dot synthesis for biological applications has four basic steps: core synthesis, shell growth, aqueous 
solubilization, and biomolecular conjugation. 

 
Figure 5. Applications of quantum dots as multimodal contrast agents in bio-imaging. 
Reprinted with permission from [61]. 

 
 

2.1. Core synthesis 
 

Quantum dot cores are composed of semiconductors of group II-VI (CdSe, CdS, CdTe), group IV-
VI (PbS, PbSe, PbTe, SnTe), and group III-V (InP), or any other combination with extremely narrow 
bandgaps, the most common being CdSe [1,3,4,7,13,15-20]. In a general synthetic method, 
organometallic liquid precursors are injected into hot (290°-350°C) coordinating solvents, such as 
trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP). Coordinating solvents stabilize the bulk 
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semiconductors and prevent aggregation as the quantum dots grow [3,11]. After the desired growth 
time is reached in relation to size and optical properties, aliquots are removed from the reaction 
mixture, cooled, and purified. Purification steps, such as precipitation in anhydrous methanol or 
butanol, are performed and can serve as size exclusion steps to ensure uniformity [3,7,13]. The 
uniformity and average nanocrystal size can be affected by temperature differences of less than 1°C 
[13]. If suitable conditions for injection temperature and growth time are maintained during synthesis, 
separate size-selection steps are not necessary to achieve a narrow size distribution [13,18]. 
Nanoparticles synthesized in this manner result in the semiconductor core surrounded by TOPO, in a 
nonpolar solvent such as chloroform. 

The central synthesis methodology to provide protocols that allow quantum dots with customizable 
properties is now relatively straightforward and reproducible. Through the many modifiable 
parameters involved with synthesis (precursors, solvents, reagent concentrations, temperature, growth 
time, etc.), quantum dots of varying core compositions and sizes can be produced, resulting in specific 
synthetic methods that correlate directly to the desired optical properties (Table 1). Common 
experimental variations include the alteration of the core composition by the use of different metallic 
precursors, or additional reagents in the solvent mixture, such as hexadecylamine (HDA), which 
improves monodispersity and eliminates size exclusion steps [3,7,9,12,15-20]. Ultimately, to fabricate 
quantum dots of varying particle size (and varying emission wavelengths) in a single reaction, one-pot 
synthesis can be carried out in non-coordinating solvents, with aliquots quenched at time points 
throughout the reaction. Each quenched aliquot results in a specific diameter of nanoparticle with 
relatively uniform distribution [8,14].  
 
2.2. Shell growth and surface modification 

 
The semiconductor core material must be protected from degradation and oxidation to maintain and 

optimize quantum dot performance. Both shell growth and surface modification enhance stability and 
increase photoluminescence of the core [1,3-6,11,22]. As mentioned previously, shell growth provides 
protection by coating or capping the core with a thin layer of a second semiconductor material with a 
higher band gap. The semiconductor shells are also inorganic in nature, commonly employing 
compounds such as zinc sulfide or zinc selenide (ZnS, ZnSe). Surface protection can also be achieved 
through modification of the core, which is carried out in organic solvents, such as alkylamines, but 
including a semiconductor shell layer is most common protection method [3,11]. 

Semiconductor shells are grown epitaxially by addition of shell precursors drop-wise into a crude 
nanocrystal mixture at a temperature below that of core synthesis [4,22,60]. The reduced temperature 
facilitates shell growth by capping the pre-existing nanoparticle cores instead of initiating a separate 
nucleation of shell precursors. Shell thickness is controlled by varying the growth temperature and the 
concentration and rate at which reagents are added [6,22]. If the shell growth temperature is too close 
to that of the core synthesis temperature, core seeds will continue to grow and negatively effect 
(broaden) the size distribution. Conversely, if the shell growth proceeds at lower temperatures, the 
crystallinity of the shell is decreased, leading to imperfect passivation of the core surface, among other 
problems [6,22,60]. The concentration of shell precursors and their rate of addition are crucial to 
promote heterogeneous growth. Shell formation and thickness is measured in a series of discrete 
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monolayers, which for ZnS shells are ~3.0-3.5 Å thick, but again vary based on the shell composition 
and its growth method. The number of shell monolayers is controllable, but generally does not exceed 
more than five [4,6,11,22,44,60]. Even when strict precautions are taken, some shell precursor 
elements may nucleate separately and size selection steps are often required to ensure the quality of the 
final product. The overall process of epitaxial shell growth results in the formation of core/shell 
nanocrystals surrounded by the coordinating solvent such as TOPO, used during growth, dispersed in a 
nonpolar solvent. 

In contrast to shell growth, direct surface modifications of the core using organic solvents occur 
through surface exchange reactions. For example, surface exchange can be performed by mixing crude 
TOPO-coated nanocrystals with an organic solvent, such as an alkylamine [3,11]. The alkylamine acts 
as a competing capping group and displaces the TOPO from the core surface. This exchange reaction 
can take place in a single step, or can be done as a series of steps. With the single step process, the 
extent of coverage is determined by the length of exposure to the capping group and is measured at the 
conclusion of the process. The benefit of the multiple step method is more reliable control over the 
extent of coating. When coating in a stepwise manner, optical measurements taken at each step in the 
process can measure the positive effect on quantum yield. Core modification by surface exchange 
reactions is generally reversible, and because of the nature of the capping material, this type of 
organically-capped quantum dot cores cannot be employed in biological applications [11]. 

The most common cap for CdSe nanocrystals is a ZnS shell. The ZnS shell does not incorporate 
into the core or alter the core structure, but has been shown to increase the quantum yield of the CdSe 
core by 50-66% [4,6,11,52]. Slightly smaller increases have been observed with organic alkylamine 
caps, demonstrating an increase in the core quantum yield by up to 50% [3,11]. Both shells and caps 
also provide important protection, contributing to the stability of the core against degradation and 
photobleaching. Finally, the addition of a shell or cap material can also provide terminal functional 
sites to provide for further derivatization, such as aqueous solubilization or bioconjugation.  
 
2.3. Aqueous solubilization 

 
The inorganic core-shell semiconductor nanoparticles, once prepared, are soluble in nonpolar 

solvents only. To have utility in biological applications, nanoparticles must be soluble in aqueous 
solutions and require surface modifications to achieve biocompatibility. Two general approaches have 
been used to achieve aqueous solubility: surface ligand exchange and amphiphilic polymer coatings. 

 
2.3.1. Surface ligand exchange 

 
Two different surface ligand exchange approaches can be used for solubilization. The first method 

involves exchanging the coordinating ligands (e.g. TOPO) on the quantum dot shell surface. The 
exchange process is similar to surface exchange reactions of the core described previously, and 
optimally results in the addition of a heterobifunctional ligand. A bifunctional ligand employs a 
hydrophobic end to displace the TOPO from the quantum dot, while a hydrophilic end extends out into 
solution, aiding in solubility. Thiol groups are a common functionality employed to link to the shell 
surface, but this functional group can detach from the quantum dot surface in a reversible fashion 
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[1,62-64]. Successful thiol group attachment has been achieved using mercapto-compounds, cysteine 
residues, or chemically reduced proteins [44,47,51,65,66]. In each of these cases, a carboxyl group or 
protein residues served as the hydrophilic tail, extending out into solution and allowing the quantum 
dots to be soluble in an aqueous environment (Figure 6). 

The second surface exchange method involves silane derivatives, used to displace the coordinating 
ligand on the quantum dot surface, and eventually resulting a layer of silica around the quantum dot 
(Figure 7) [1,62]. The reaction conditions, in particular reaction time, contribute to the thickness of the 
silica shell. Silica shell growth around a core/shell quantum dot involves mixing the quantum dots with 
a compound at basic pH over several days while continually heating, cooling, and washing the 
solution. Silica shell growth requires multiple purification steps. Compared with the synthesis of 
mercaptoacetic acid-capped quantum dots, encapsulating quantum dots with a silica shell is more 
complicated, but the difficult nature of synthesis is countered by its advantages. This latter approach is 
advantageous because quantum dots coated with silica are more stable due to the high degree of cross-
linking between the silane molecules. This extensive cross-linking ensures solubility even if some thiol 
groups are lost [62]. An additional advantage of using silica shell coatings is that the procedures do not 
change if a different type of siloxane is used. Ultimately, using either surface ligand exchange 
approach for solubilization leaves quantum dots susceptible to aggregation and precipitation in 
biological buffers, and may require additional efforts to reduce or minimize aggregation 
[2,26,38,39,45,62]. 

 
Figure 6. Schematic illustration of CdSe/ZnSe nanocrystals possible solubilization 
methods and stabilization procedure. Reprinted with permission from [52]. 
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2.3.2. Amphiphilic polymer coatings 
 
Alternately, core/shell semiconductor quantum dots can be coated with an amphiphilic polymer, 

such as octylamine-modified polyacrylic acid [32,34,35,46]. This approach utilizes the nonpolar 
quantum dot shell for interaction with the hydrophobic portion of the polymer, allowing the 
hydrophilic portion of the polymer to increase solubility. Growing an amphiphilic polymer shell 
around quantum dots is similar to coating with silica, but instead of forming the shell by displacing the 
TOPO molecules left on the surface during synthesis, the amphiphilic polymer takes advantage of the 
hydrophobic nature of the coordinating ligands. The interactions associated with this type of 
solubilization are similar to those in micelle formation.  

 
Figure 7. Sketch of the silanization method. The TOPO-capped CdSeZnS core/shell 
particles are dissolved in pure MPS, drawn in its hydrolyzed form for convenience in the 
figure. After basification, the MPS replaces the TOPO molecules on the surface. The 
methoxysilane groups (Si-OCH3) hydrolyze into silanol groups (Si-OH), and form a 
primary polymerization layer. Heat strengthens the silanol-silanol bridges by converting 
them into siloxane bonds and releasing water molecules. Then, fresh silane precursors 
containing a functional group (F = -SH, -NH2;   -PO-(O-)CH3) are incorporated into the 
shell and may tailor the nanocrystal surface functionality. In a last step (not shown) the 
remaining hydroxyl groups are converted in methyl groups; this last step blocks further 
silica growth. Reprinted with permission from [62]. 
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2.4. Conjugation 
 
For biological applications, quantum dots must be linked to biomolecules without altering the 

biological activity of the conjugated form. A number of successful conjugation methods have been 
developed, including covalent and non-covalent attachment methodologies. Specific conjugation 
methodologies include direct adsorption on the quantum dot surface, the use of inert polymer coatings, 
or biotin-streptavidin linkages. 

Covalent attachment of biomolecules to quantum dots is achieved through direct linkage to the 
quantum dot surface coating or via small molecule cross-linkers. During synthesis, silica, silane 
derivatives, or other coatings can include functional groups capable of direct conjugation 
[1,23,26,32,62]. Such cross-linking strategies exploit the functional groups present on both the 
quantum dot surface and the biomolecule. For example, carbodiimide compounds are commonly used 
to link amino-functionality with carboxyl-groups. Covalent attachment is a simple, effective way of 
linking biomolecules to quantum dots and contributes minimally to the overall bioconjugate size. 
Another common conjugation scheme employs the biotin-streptavidin linkage, which requires 
coupling of the quantum dot to streptavidin. Quantum dot-streptavidin conjugates are useful because a 
wide range of proteins and other biomolecules can be biotinylated. These conjugates have applications 
in staining and labeling [1], live tracking, and drug screening [35,41,53]. 

Simple electrostatic interactions have been employed for non-covalent biomolecular attachment 
since most water solubilization methods result in carboxylic acid coatings, which are negatively 
charged under biological conditions [1]. For example, quantum dots capped with dihydrolipoic acid 
(DHLA) can be bound electrostatically to positively charged proteins and used in imaging experiments 
[25] or detection assays [54]. While electrostatic interactions are less stable than covalent attachment, 
quantum dot-bioconjugates formed in this fashion can be used for many of the same applications 
[25,44,54,65]. Direct adsorption of a biomolecule to a quantum dot surface is another non-covalent 
attachment method [45,47,51]. Chemically modified peptides and other biomolecules have been shown 
to adsorb spontaneously on the surface of water-soluble CdSe/ZnS quantum dots. For example, 
quantum dots coated with adsorbed peptides have been used for in vivo imaging to locate cells with 
specific surface proteins [51] or different types of vasculature in tumors or organs [45].  

For the majority of applications, quantum dots act only as nonfunctional probes and have minimal 
impact on the experiment, the binding event, or the surroundings. Nonspecific attachment to 
unintended molecules and aggregation of quantum dot-conjugates is possible, and if so, could 
negatively impact the results of an experiment. Coating quantum dots with an inert hydrophilic 
polymer, such as polyethylene glycol (PEG), minimizes or eliminates these problems [45,46]. The 
conjugation method should not interfere with the optical properties of the quantum dots or the activity 
of the biomolecule. However, work continues to be done to characterize linking designs and offer 
improvements [67]. 
 
3. Properties 
 

A major reason quantum dots have found such utility in the life sciences is their unique properties, 
which can be optimized to meet the specific needs of a wide range of experiments. As discussed in the 
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introductory sections, the relevant advantageous properties include controllable emission wavelengths, 
sharp emission profiles, robust signal strength, and the use of a single excitation source. The optical 
properties can be influenced by varying different aspects of the quantum dots, all of which can be 
controlled, including core size, core composition, shell composition, and surface coating. While all the 
aforementioned qualities influence quantum dot emissions, the core size and composition have the 
most influence over the range of the emission spectra (Table 1; Figure 3). Varying either the size of the 
quantum dot core or its composition can result in a customizable emission profile with a specific 
maximum anywhere across the electromagnetic spectrum, starting in the ultraviolet (UV) region and 
including the near-infrared (near-IR) region [3,7,17,19,20]. Altering the shell composition and/or 
surface coating affects the stability of the core and results in increased photoluminescence, but does 
not significantly affect the emission range. Emission spectra for semiconductor nanoparticles are 
distinctive, containing narrow and symmetric peaks independent of the excitation energy, as long as 
the excitation energy is greater than that of the band gap energy [1,4]. This characteristic means 
quantum dots of varying sizes and compositions can be excited with a single source. However, the 
relative intensities of different quantum dot emission profiles will vary with excitation wavelength 
independently of one another (Figure 3D), based on their quantum efficiency at that wavelength. 
Finally, because quantum dot emission peaks are substantially narrower than those of organic dyes, 
more quantum dot emissions are resolvable within the visible spectrum than possible with standard 
fluorophores [1,2,68]. 

 
4. Aqueous solubilization 
 

For applications in biological systems, an additional hydrophilic coating must be included after 
quantum dot core/shell synthesis to render quantum dots soluble in aqueous environments. While only 
two general mechanisms are used for quantum dot solubilization, surface ligand exchange and coating 
with an amphiphilic polymer, a wide range of molecules are available to serve as surface coatings to 
solubilize quantum dots, including thiolate ligands, silica, and various polymers. 

 
4.1. Thiolate ligands 
  

Thiolate ligands have proven especially useful in solubilizing quantum dots with a ZnS shell 
because the sulfur from the ligand binds to the zinc of the shell coating with high affinity. When a 
thiolate ligand contains a second hydrophilic functional group, such as a carboxylic acid or amine, the 
ligand sulfur binds to the quantum dot shell and the hydrophilic group extends into solution for 
increased solubility. Quantum dots coated with thiolated ligands employ a surface exchange reaction 
between the new thiolated ligand and the coordinating ligand remaining on the surface from particle 
synthesis [1,2]. Ligands of varying lengths can be employed to reduce or eliminate passive adsorption 
of proteins and other biomolecules. The optical properties of quantum dots with thiolated coatings are 
comparable to the original core/shell nanoparticle, with high quantum yields, narrow emission spectra, 
and increased photostability [2,25,44,45,47,50,65]. An example of this method applied to overcome 
early solubilization issues was the research of Nie and coworkers, who used mercaptoacetic acid as a 
biocompatible coating for sensitive cellular labeling and detection [2]. Since then, a wide number of 
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other carboxylic acid-thiolate ligands have been used, including mercaptopropionic acid (MPA) and 
DHLA [25,29,44,65]. 

An alternate method for quantum dot solubilization employs modification with a coating of cysteine 
residues [66]. Quantum dots coated with a layer DL-cysteine residues were available for use in cellular 
and fixed-tissue imaging applications [52,66]. Similarly, cysteine-rich, amphiphilic peptides have also 
been used as water-soluble coatings for quantum dots (Figure 8) [51]. The amphiphilic peptides used 
for biocompatibility contained a hydrophilic domain for aqueous solubilization and a cysteine-rich 
‘linker domain’ to bind to the quantum dot surface. When cysteine residues in the linker domain were 
replaced with alanine residues, the resulting particles were water-insoluble, which demonstrated that 
the thiol group of cysteine is necessary for solubilization. Most all of these coating methods offer 
terminal functional groups that provide the possibility of further conjugation, and cysteine-quantum 
dot conjugates were successfully linked to biotin and used to label avidin-conjugated cell-surface 
proteins on live cells [51]. 

While sulfur and zinc bind with high affinity, the bond holding most thiolate ligands to the quantum 
dot surface is dynamic, meaning quantum dots solubilized using thiolate ligands will have a some 
degree of shelf life and can be susceptible to aggregation in biological solutions [62-64]. Therefore, 
additional steps are necessary to reduce aggregation and increase stability. Incorporating inert 
polymers in the surface coating along with the thiolated ligand has proven useful to both increase 
stability and decrease aggregation. Examples of polymers increasing quantum dot stability and shelf 
life include PEG, which has decreased aggregation by replacing some ligands on the quantum dot 
surface [45], and poly(allylamine), which has increased the stability of DL-cysteine-coated quantum 
dots for fixed-cell imaging [52]. 
 

Figure 8.  Schematic representation of the surface coating chemistry of CdSe/ZnS 
nanocrystals with phytochelatin-related R-peptides. The peptide C-terminal adhesive 
domain binds to the ZnS shell of CdSe/ZnS nanocrystals after exchange with the TOPO 
surfactant. A polar and negatively charged hydrophilic linker domain in the peptide 
sequence provides aqueous buffer solubility to the nanocrystals. TMAOH: 
Tetramethylammonium hydroxide; Cha: 3-cyclohexylalanine. Reprinted with permission 
from [51]. 

 
 

 
 
 



Int. J. Mol. Sci. 2009, 10             
 

456

4.2. Silica  
 

The Alivisatos group published seminal work that showed quantum dots could be encapsulated in a 
silica shell for water solubility [1]. The same group later elaborated on these methods to demonstrate 
functionalization and applicability in live cell imaging [26,62]. Modified siloxanes with varying 
functional groups are available for conjugation, which allows tailored coatings and encapsulation 
protocols, while providing an added layer of protection. This added layer both protects the quantum 
dot against degradation and photobleaching, while also decreasing the toxicity to the surrounding 
environment by preventing or minimizing the release of core materials. Quantum dots coated with 
polymerized silica shells have greater stability prior to conjugation, because the extensive polymer 
network provides additional stability [1,62].  
 
4.3. Polymers 
  

Other polymeric materials have been employed in solubilization techniques, taking advantage of the 
various chemical compositions and charges available. As mentioned previously, amphiphilic polymers 
are a common choice, because they simultaneously exploit the hydrophobic nature of the quantum dot 
surface for binding and the aqueous environment for solubility [35,46]. The difference between 
coating quantum dots with a siloxane polymer and an amphiphilic polymer is the method of 
encapsulation: silica coatings displace the hydrophobic coordinating ligand on the quantum dot 
surface, while amphiphilic polymers utilize it for binding. As with other methods of solubilization, the 
optical properties of the original quantum dots are not adversely affected by an added polymer layer. 
While the additional polymerized layer increases the stability in buffer solutions, any increase in size 
has the potential to hinder biological activity [32,35]. 

Polymers are useful functional coatings because they can be modified to contain such groups as 
thiols or amines to aid in further conjugation. For example, an amine-modified polymer, such as 
octylamine-modified polyacrylic acid, can be used to conjugate quantum dots to biomolecules with a 
carboxyl group using standard cross-linking molecules [35]. The polymer coating charge can be 
altered by varying the functional groups contained in the polymer, which can be useful for specific 
applications such as entry to the intracellular space [30,39]. Finally, polymer compositions are critical 
to optimize solubility and limit other undesirable characteristics of the quantum dots, such as 
aggregation and toxicity (Figure 9) [32,39].  

A specific type of amphiphilic polymer, PEG-incorporated phospholipid micelles, has been used to 
encapsulate quantum dots for in vivo cell-lineage tracking [32]. The quantum dot-micelles remained in 
Xenopus embryos until the tadpole stage, were resistant to photobleaching, and showed no signs of 
cellular toxicity. During cell division, the original labeled cells retained some quantum dots, while 
some were passed to daughter cells. In this manner, cell lineage could be traced by measuring the 
fluorescence intensity within individual cells without fear of photobleaching affects compromising the 
study. In hybridization experiments, quantum dots encapsulated with micelles and then coated with 
single-stranded DNA did not interrupt the hybridization to complementary DNA. Quantum dot-
micelles were found to be stable in buffer solutions containing salt and showed no obvious signs of 
aggregation [32].  
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Figure 9. Schematic diagram showing direct exchange reactions between the monovalent 
capping ligand octadecylamine and the multivalent copolymer ligands. Reprinted with 
permission from [39]. 

 
 
5. Cytotoxicity 
  

When determining biocompatibility of quantum dots, solubility is not the only consideration; 
biocompatibility also requires limited toxicity to biological systems, such as interruption to the cell’s 
normal activities. The quality and specific degree of quantum dot toxicity has been extensively 
explored. For example, toxicity has been directly related to oxidation of the nanoparticle core/shell 
material, leading to the release of free cadmium.  The nature of the surface coatings obviously plays an 
important part of this process, and this aspect, among others, will be discussed in relation to 
cytotoxicity.  
 
5.1. Oxidation and cadmium release  
 

Because quantum dot cores are made with elements that are inherently toxic to cells and living 
systems, concerns exist over their potential toxicity for in vivo applications. Cadmium ions have been 
shown to bind to thiol groups on critical molecules in the mitochondria and cause enough stress and 
damage to cause significant cell death [27,69]. Cadmium is the most widely used material for quantum 
dot cores, so its release into the cell would be a logical mechanism of toxicity. Derfus et al. used 
hepatic cells to monitor toxic effects of quantum dots, as the liver is the primary site for acute damage 
from cadmium and a major accumulation site for nanoparticles [27]. Results indicated that oxidation of 
the nanoparticle surface, either induced by exposure to air before solubilization or catalyzed by UV 
light, caused oxidation of selenium and/or sulfur, exposing free cadmium [3,6,13,70]. Exposure to air 
before solubilization or moderate to prolonged exposure to UV light after incubation increased the 
amount of cadmium in the cells enough to cause observable cell death. Further efforts demonstrated 
that cells labeled with quantum dots synthesized under stable, inert conditions showed no toxic effects. 
In addition to air and UV exposure, quantum dot surface oxidation can occur in oxidative solutions, 
such as hydrogen peroxide, which is relevant because such environments are possible in vivo. In a 
separate report using CdSe/ZnS core/shell nanoparticles solubilized with mercaptoacetic acid, 
Kirchner et al. showed that Cd2+ was released into cells at toxic levels over time (48 hours), under 
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standard synthesis and imaging conditions [29]. By examining the effects of the free core materials in 
solution, cadmium was determined as the primary cause of cytotoxicity, but its levels could be reduced 
or eliminated by adding additional surface coatings [27,29]. 
 
5.2. Surface coatings 
  

Prevention of core material oxidation is essential to reducing toxicity and increasing 
biocompatibility of quantum dots. Coatings used to increase the quantum yield of the core, or for 
solubility and conjugation, have been shown to reduce cytotoxicity of quantum dots. The fundamental 
notion is that additional layers act as a physical barrier to the core, preventing access, with different 
surface coatings having varying levels of passivation.  

A common surface shell coating for CdSe core-quantum dots is ZnS, and as mentioned, the 
additional semiconductor layer increases the material’s photoluminescence [4,6]. Additionally, the 
semiconductor shell aids in reducing the cytotoxicity of the core material, as the concentration where 
cell death was first observed was approximately nine times higher for CdSe/ZnS (core/shell) quantum 
dots than with CdSe core quantum dots alone [29]. The ZnS shell protects the core from oxidation and 
other environmental factors that contribute to cadmium release. The shell materials are also prone to 
oxidation, but to a lesser extent than the core materials [27], because zinc and sulfur bind with high 
affinity and form a polymer-like structure around the core [4,6]. Oxidation due to air exposure before 
solubilization was nearly eliminated when quantum dots contained a ZnS shell, as shell oxidation was 
observed only with prolonged exposure to UV light [27]. When the sulfur was oxidized, the ZnS shell-
network was disrupted, leaving the core materials exposed, resulting in similar oxidation as seen when 
the ZnS shell does not fully cover the core [6,27]. Without the disruption of the shell, the environment 
has no interaction with the cadmium of the core, and it therefore can not be toxic to the system. 
Ultimately, oxidation of the shell material leads to increased toxicity due to resultant oxidation of the 
core and release of cadmium. 

Charged surface coatings have been used both for solubility and conjugation to quantum dots, but 
can also have the added benefit of reducing toxicity. Ligands with terminal carboxylic acid, hydroxyl, 
or amine groups (such as 11-mercaptoundecanoic acid, thioglycerol, and amine-PEG, respectively), 
have been used for solubilization because they bear a negative charge at biological pH. These quantum 
dot conjugates have all been the focus of studies regarding cytotoxicity. Terminal carboxylate coatings 
have proven to be the least effective at preventing core oxidation, cell death, and inflammatory 
responses [27,28,38], and quantum dots with hydroxyl-terminated ligands demonstrated only slightly 
better toxicity effects [28]. As these surface ligands are often thiolated for conjugation with the zinc 
shell, in acidic or oxidative conditions, the interaction between zinc and sulfur can be broken and the 
surface ligand released [1].  

While the disruption of this interaction could conceivably be used for applications like delivery of 
molecules into cells, the disruption of the coating is problematic for two reasons. First, some ligands 
themselves have proven toxic in a number of biological systems [28,29]. Second, the absence of a 
surface ligand leaves the core/shell exposed and can lead to oxidation and/or decreased solubility. In 
cytotoxicity studies monitoring the inflammatory response in skin cells, PEG-amine-coated quantum 
dots caused little to no release of pro-inflammatory cytokines and insignificant cell death [38]. In 
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particular, the quantum dots with amine-terminal ligands showed less cytotoxicity than other ligands. 
This decreased cytotoxicity could also be contributed to the added protection of the PEG layer and not 
the amine ligand, as PEG-modified silica has proven exceptionally stable and almost completely 
eliminated any cytotoxicity [27,29,31,38]. PEG-quantum dots demonstrated extremely low levels of 
toxicity, even at high concentrations (up to 30 µM), but also diminished uptake by cells as compared to 
other surface coatings [29]. Amphiphilic polymers and larger biomolecules, such as bovine serum 
albumin (BSA), have been used to coat quantum dots, providing a physical barrier to the core similarly 
to silica shells [27,29]; the physical barrier provided by larger polymers and biomolecules shields the 
environment from the toxic elements of the core and is only effective when the coating remains 
undisturbed. Coatings of this type had a tendency to accumulate on the cell surface, possibly 
contributing towards cell death, which further illustrates that cadmium release is not the only cause of 
concern when dealing with quantum dots [29]. Regardless of the coating is used, quantum dot 
cytotoxicity decreases with increasing numbers of surface layers, and coating must remain intact to 
provide sufficient protection. For biological applications, simply adding more layers to quantum dots 
to eliminate cytotoxicity is not an infallible strategy, because the surface coatings must be tailored to 
meet the specific needs of the experiment, and eventually, size can become an issue. 
 
5.3. Genotoxicity and cell activity disruption 
  

Cell death caused by cadmium ion release is not the only type of toxicity exhibited by 
nanoparticles. Quantum dots can also damage DNA and disrupt normal cell activity caused by factors 
such as the surface coatings themselves. Zhang et al. made phenotype and whole genome 
measurements of human fibroblast cells exposed to PEG-silica-coated quantum dots, as they were 
proven to be the least toxic and most stable. The fibroblast cells were monitored for other activity 
interruptions based on exposure to nanomolar quantum dot concentrations [31]. Minimal statistically 
relevant effects were observed in the cell cycle as significant alteration in expression levels (defined as 
more than 2-fold expression levels) occurred in only ~50 genes total, or about 0.2% of all genes 
studied. These results demonstrated that PEG-silica coated quantum dots did not induce a strong 
response correlating to heavy metal-related toxicity or strong anti-inflammatory response. Other 
separate studies concerning surface coatings and cytotoxicity probing the activity of different cells 
confirmed this work and showed no interruption or disruption in activity or function [27-29].  
However, in a separate study by Hoshino and coworkers, DNA damage was observed based on 
interactions with quantum dots coated with carboxylic acids [28], so while the field of cytotoxicity 
continues to develop, much research in the area is currently ongoing and will be of much future 
interest. Because of the limited information on quantum dot cytotoxicity and the continued ongoing 
research, broad generalizations regarding quantum dot cytotoxicity should be forestalled, until 
conflicting reports on surface coating protection and degradation, core oxidation, cell activity 
disruption, and toxicity are reconciled and additional conclusive studies have been performed  
and validated.  
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6. Applications 
 

Quantum dots have properties that provide advantages beneficial for a number of different life 
science applications as compared to the standard reporters current employed. The improved brightness 
and photostability exhibited by quantum dots are justification for their increased use in imaging and 
labeling experiments. The ability to render quantum dots biocompatible and non-toxic extends their 
applicability to in vivo vasculature imaging and tracking. The robustness of their signal strength also 
affords utility in targeting and detection applications. Their simple, routine fabrication protocols and 
uniform spectral profiles are now allowing quantum dots to realize their full potential, as quantum dot 
applications are branching out into high throughput, multiplexed analyses and quantitative analysis of 
biomolecules in vivo. These applications will be discussed in detail in the following section. 

  
6.1. In vivo Targeting and Imaging 
 

In vivo applications are especially problematic for any reporter species due to the need to optimize 
the numerous parameters associated with imaging animals, tissue, or live cells. Such applications 
require many of the most advantageous optical properties exhibited by quantum dots, but also 
necessitate biocompatibility, low toxicity, proper attachment of biomolecules, and navigation of the 
cascade of events involved in the immune response. The following seminal works address each of 
these issues to demonstrate the full capabilities of quantum dots. 

 
6.1.1. Targeting 

 
The work by Schroder et al. demonstrated that quantum dots can target specific receptors in vivo 

[71]. Quantum dots were conjugated to folate, a critical nutrient necessary for rapid growth and cell 
division, to perform assays targeting the folate-specific receptor. TOPO-coated quantum dots (CdSe) 
were prepared in phospholipid micelles and assessed in animal studies. The folate-quantum dot 
conjugates were specifically detected at the folate receptors in mouse lymphoma cells after incubation 
for two hours. An increase in fluorescence intensity over non-specific quantum dots in the same cell 
line was observed, demonstrating that folate was the main factor in bio-recognition and was highly 
specific in its targeting. As folate is critical for cell growth, the folate receptor will have higher 
expression levels in cancer cells than in normal cells. The determination of the extent of folate receptor 
expression could then be a possible diagnostic tool, as any significant intensity increase as compared to 
normal expression levels is an indication of over-expression, and may be important to  
cancer diagnosis.  

Antibody-quantum dot conjugates were also used to optimize circulation times and provide 
specificity for in vivo applications [72]. Noteworthy research by Jayagopal et al. used these conjugates 
for standard microscopy determinations, flow cytometry assays, and in vivo imaging. The quantum dot 
conjugates targeted cell adhesion molecules related to retinal vasculature in rats in a multiplexed 
fashion using a single excitation source. The researchers employed a PEG crosslinking scheme to link 
the antibodies and were able to discriminate between different cell adhesion molecules by conjugating 
specific monoclonal antibodies to quantum dots. This work demonstrated noninvasive, in vivo imaging 



Int. J. Mol. Sci. 2009, 10             
 

461

of the retinal vasculature, while providing the spatial resolution down to the level of single cells. The 
fluorescence intensities increased within 30 minutes, whereas non-specifically labeled quantum dots 
and the control showed no fluorescence localization in the vasculature.  
 
6.1.2. Imaging 

 
A specific advantage of quantum dots for in vivo applications is their photostability; quantum dots 

allow images to be recorded over a longer period of time than available with the use of fluorescent 
dyes or proteins due to their resistance to photobleaching. Maysinger et al. visualized CdSe and CdTe 
quantum dots detectable at one hour-, one day-, three days-, and seven days post intracortical injection 
using in vivo imaging techniques [73]. Mice were injected subcutaneously and scanned for 
fluorescence, in particular in the brain, where peak fluorescence was observable at three days post 
injection and persisted for seven days. Sub-cellular resolution was achieved and allowed the 
identification of the location of the conjugates. This work had numerous important features. The 
researchers demonstrated internalization of their quantum dot conjugates, with varied rate and efficacy 
of internalization for different cell-types.  Neuronal internalization is especially challenging, and in 
vivo imaging in neural cells has important relevance to quantum dot toxicity, as this approach would 
allow the investigation of the neuronal immune response in real time.  This approach was novel not 
only in the in vivo imaging aspects but the animal model was transgenic, and was monitored for an 
astrocyte-responsive luciferase reporter in addition to the injection of quantum dot conjugates. The 
activation of the astrocyte response was observable as an increase in bioluminescence in response to 
foreign nanoparticles in mice.  

The work of Jiang et al. demonstrated the ability of quantum dots with near-IR region emission 
wavelengths for in vivo analysis of deep tissue or non-invasive applications. The application of near-IR 
reporters minimized the absorption and scattering of light by native tissues, and allowed the 
researchers to employ longer wavelengths for a diagnostic emission window, generally between 650 – 
900 nanometers [74]. By conjugating transferrin to a quantum dot with an emission at 750 nanometers, 
in vivo observations were performed on mouse heart and femur up to 0.8 millimeters deep beneath the 
skin. Quantum dot conjugates emitting in the near-IR allowed for greater visualization depth, yielding 
an increase of up to 800 microns from what was performed previously. 

Zimmer et al. have also employed near-IR emitting quantum dots due to their ability to act as a 
reporter at a wavelength minimally absorbed by biological species [75].  Building off of their previous 
work, the authors synthesized a series of InAs/ZnSe core/shell quantum dots with a smaller 
hydrodynamic diameter (less than 10 nanometers) than previously reported. The small core size, along 
with variation to the shell thickness and composition offered a range of size tunable emission 
wavelengths, between 750-920 nanometers. The conjugation of DHLA to the quantum dots allowed 
for the observations within the interstitial fluid in rats, where the quantum dot conjugates exited the 
blood vessels (Figures 10 and 11). This visualization of the extravasation sites is important, and has 
potential to interrogate the delivery mechanism of quantum dots to tumor cells. No extravasation was 
observed in quantum dots without the DHLA coating.  
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Figure 10. Sequential lymph nodes (1 and 2) and the lymphatic channel between them 
were imaged (C, D) in a rat by white light and NIR fluorescence five minutes after 
injection of the quantum dots (A, B). Reprinted with permission from [75]. 

 

Figure 11. No fluorescence was seen in the interstitial fluid surrounding the incision in the 
rat model with DHLA-coated (InAs) ZnSe quantum dots (A, B). With DHLA-PEG, 
however, fluorescence was observed from extravasated quantum dots (C, D). Reprinted 
with permission from [75]. 
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6.1.3. Vasculature imaging 
 

Tumor growth requires a supply of nutrients from the blood stream. Angiogenesis is the process by 
which new vasculature establishes a blood supply to a growing tumor. Receptors, such as integrin, are 
highly expressed in tumor cells during angiogenesis, and diagnostics targeting such receptors can lend 
insight into the type and extent of diseases, including cancer. The work by Cai et. al. detailed the use 
of a tri-peptide-quantum dot conjugate which specifically binds to integrin [76]. The conjugation of 
arginine-glycine-aspartic acid to a quantum dot with emission at 705 nanometers yielded a diagnostic 
tool specific for the integrin receptor that emits in the near-IR region. In vitro analysis was performed 
on human glioblastoma and human breast cancer cells, showing specificity for integrin-positive cells 
only. In addition, binding was inhibited by the presence of an integrin antagonist. These results 
illustrated that assays were possible with the potential to help differentiate cancer based on integrin 
expression levels. Injections of both the conjugates and non specific controls through the tail vein of 
mice also demonstrated the specificity, with a maximum fluorescence at six hours post-injection. This 
work showed successful in vivo tumor imaging by quantum dots, including the extensive vasculature 
network, and provides an important window into the importance of quantum dots for  
imaging applications.  

The work of Smith et al. demonstrated how quantum dots allow for the non-invasive visualization 
of blood vessel development over time [77]. The conjugation of biotinylated fibrinogen to quantum 
dots showed specificity towards the membrane of blood vessels during angiogenesis. The conjugates 
had robust biocompatibility, staying in circulation for days without noticeable toxicity. In addition, 
residence times could be influenced through alterations of the surface chemistry functionalities. Like 
work cited previous, the authors employed quantum dots with longer emission wavelengths to avoid 
native autofluorescence and increase their depth of field. Overall, as directly compared to the standard 
fluorophore FITC, these quantum dot conjugates imaged vasculature at a comparable intensity level at 
substantially lower concentrations, almost three orders of magnitude less concentrated.  

 
6.1.4. Tracking 

 
The work of Tada et al. magnificently elucidated the delivery mechanism of quantum dots into 

human breast cancer cells [78]. The authors employ a cell line that over-expressed the Human 
Epidermal growth factor Receptor 2 (HER2) on its cell membrane, which is a protein associated with 
higher aggressiveness in breast cancers. The conjugation of anti-HER2 monoclonal antibodies to 
quantum dots allowed for the visualization of the nanoparticles in blood vessels serving tumor cells in 
mice. The quantum dots helped determine the velocity and directionality, among other criteria, for the 
circulation in the blood vessel, extravasation, binding to HER2 on the cell membrane, and movement 
into the perinuclear region, etc. (Figure 12). This seminal work allowed the tracking of movements that 
were random in orientation and speed, exhibited stop and go behavior, and diffused by Brownian 
motion. This work represents some of the most sophisticated efforts to track biomolecules and 
understand sub-cellular movements, and will serve as a landmark study in drug delivery.  
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Figure 12. Schematic illustration of the quantum dot complex, the quantum dot complex 
entered into the circulation, extravasated into the interstitial space from the vascular space, 
bound to the tumor cells through the interstitial region, and having reached the perinuclear 
region after traveling on the intracellular rail protein. All processes exhibit a characteristic 
‘‘stop-and-go’’ movement. Reprinted with permission from [78]. 

 
 
The intradermal injection of CdSe/CdS, PEG-coated quantum dots into the right dorsal flank of 

mice by Gopee et al. was performed to monitor the biodistribution by inductively-coupled plasma 
mass spectrometry (ICP-MS) [79]. The sensitivity of ICP-MS is an enormous asset to identifying trace 
levels, possibly undetectable by optical methods. ICP-MS was used to quantify the presence of 
quantum dots in various organs and tissues, such as the liver, spleen, and kidney, among others 
(Figures 13 and 14). The results showed that the majority of the quantum dot dosage remained at the 
injection site, but within minutes of injection, traces could be visualized moving from the injection 
site, presumably via the lymphatic system. The presence of the quantum dots was determined based on 
cadmium content and verified via fluorescence microscopy, where possible. The PEG coating served 
as an uncharged, biocompatible surface and allowed the determination of non-specific accumulation of 
the nanoparticles into the organs involved with the immune response in mice. 

The work of Kobayashi et al. was an exquisite study of the lymphatic flow by multiplexed analysis 
using five different quantum dots [80].  This research is the first application of in vivo imaging that 
employs five different reporter quantum dots. Quantum dots of similar hydrodynamic diameter were 
injected intracutaneously into five different regions to simultaneously visualize lymphatic flow from 
the neck and upper trunk of mice. The conjugation of carboxyl groups to quantum dots produced in 
vivo fluorescence images to study the individual and composite drainage patterns towards primary 
lymph nodes (Figure 15). Such seminal work will aid in the non-invasive prediction of metastasis 
routes for cancer and has broad implications for predicting cancer metastasis into the lymph nodes. 
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Figure 13. The percent of the initial dose of cadmium that remained at the site of injection 
of the CdSe quantum dot. The skin that contained the site of injection was removed, 
completely digested using HNO3, and the total cadmium was detected using ICP-MS 
(mean ± SE). Values indicated by an asterisk (*) were significantly different (p _ 0.05) 
than the value at 0 h, while values indicated with the cross (†) were not significantly 
different from each other (p > 0.05). Reprinted with permission from [79]. 

 
Figure 14. Distribution of cadmium in organs following intradermal injection of CdSe 
quantum dot. The data are expressed as mean ± SE for: liver (solid circles); regional lymph 
nodes (open circles); and kidney (open diamonds). Values indicated by an asterisk (*) were 
significantly different (p < 0.05) than the value in the same organ at 0 h. Reprinted with 
permission from [79]. 
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Figure 15. Anatomy of the lymphatic system in the upper body of the mouse and a 
schematic of five-color spectral fluorescence imaging, with a graph of the emission spectra 
of each of the five carboxyl quantum dots used (Qdot 565, blue; Qdot 605, green; Qdot 
655, yellow; Qdot 705, magenta; Qdot 800, red). The colored lymph nodes are the draining 
lymph nodes visualized in this study. Reprinted with permission from [81]. 

 
 
This review previously described assays using quantum dots to visualize the vasculature associated 

with cancers, as they have obvious importance to the vitality of the tumor. Taking the reverse 
approach, Ballou et al. mapped sentinel lymph nodes in mice, using carboxyl- and methoxyl- quantum 
dot injections into tumors themselves (Figure 16) [81]. This unique approach allowed the monitoring 
of the in vivo fluorescence as the quantum dot conjugates moved away from the tumor. Carboxyl-PEG 
quantum dots were visualized in numerous lymph nodes, whereas methoxyl-PEG quantum dots were 
only tracked in lymph nodes close to the tumor site. Injecting a mixture of carboxyl and methoxyl 
quantum dots showed similar migration patterns to the individual injections based on mapping sentinel 
lymph nodes. Interestingly, both the terminal functional group had little to no effect on the extent of 
drainage from the tumor into the surrounding lymph nodes and quantum dot size seemed to have little 
influence on migration patterns.  
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Figure 16. Quantum dot surfaces, measured in 0.01 M sodium borate buffer, pH 8.5. The 
hydrodynamic diameters are expected to be roughly similar to those of the 655 nm 
quantum dots. Reprinted with permission from [80]. 

 
 
6.1.5. Circulation/Distribution 
  

A hybrid quantum dot that provided both fluorescence imaging and magnetic resonance imaging 
was developed [82]. Bakalova et al. surrounded quantum dots with paramagnetic particles in a silica 
sphere to generate a single contrast agent exhibiting both functionalities. The quantum dots provided 
fluorescent imaging information; the contrast particle provided magnetic resonance imaging (MRI) 
information. The two techniques were used to simultaneously trace the spheres in blood circulation, 
providing fluorescent distribution information as well as MRI anatomical reference. Intravenous 
injection of the spheres did not affect heart rate, blood pressure, or morphology of the blood vessels. 
Neither the properties of the quantum dots nor the paramagnetic substances were affected by the 
presence of the other species within the particle. The quantum yield of these hybrid particles was 
similar to that of the quantum dot particle alone in the silica sphere, and the magnetic properties were 
unaffected by the presence of the neighboring quantum dots. These hybrid species exhibited low 
toxicity, and were readily delivered into cultured lung cancer and HeLa cells which were examined by 
both microscopy and flow cytometry. The two-particle silica spheres could have applications for use in 
tracing brain vasculature and visualizing neuron, astrocyte, and blood vessel structures.  

A number of factors go into the in vivo metabolic clearance of quantum dots in mice, including the 
particle size, coating and coat uniformity, etc. The work of Chen et al. employed CdSeS silica-
hydroxyl shell particles with a ~21 nanometer diameter for a tracking and clearance study [83]. The 
research used ICP-MS to detect cadmium in urine, feces, and other organs in mice to determine the 
clearance mechanisms of quantum dots in vivo. The majority of cadmium was cleared via the urine and 
feces, at 33.3% and 23.8% respectively. The cadmium concentration peaked in urine 24 – 36 hours 
post injection and feces 6 – 12 hours post injection. At twelve hours post injection, the cadmium 
concentration peaked in the liver at 288.1 nanograms per gram of tissue (ng/g tissue), spleen at 158.6 
ng/g tissue, lung at 91.0 ng/g tissue, and kidney at 408.7 ng/g tissue. Cadmium remained in the kidney 
at 120 hours post injection in measurable proportions. In general, excretions of quantum dots that 
remained unbound were found in the urine, while quantum dots that bound to proteins were found in 
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the feces with bile. Quantum dots that aggregated into larger particles remained in the liver tissue and 
were difficult to excrete. Continued research that includes different size nanoparticles and different 
coatings will be extremely important for discussions on long range quantum dot toxicity as well as 
clearance mechanisms and rates. 

Robe et al. employed a negatively-charged carboxyl group coating of quantum dots with a hydro-
dynamic diameter of 16 nanometers to monitor localization and clearance in mice [84]. The negative 
charge facilitated rapid uptake by the lymph vessels and retention in the lymph nodes. Twenty-four 
hours post injection, chemical extraction of the axillary lymph nodes, liver, lungs, spleen and kidneys 
was performed, but only produced detectable fluorescence in the axillary lymph node extraction. 
Fluorescence spectra of the urine and feces did not produce any visualization of quantum dots and 
suggested no clearance of the quantum dots in this manner occurred within 24 hours post injection. 
Fluorescence spectra indicate a majority of the dosage remained at the subcutaneous injection site into 
the paw of mice and as little as 2-3% of the dosage migrated into the axillary lymph nodes as soon as 
five minutes post injection. While seemingly contradictory to the above work by Chen et al., the 
experimental differences, such as the use of negatively charged nanoparticles or ICP-MS 
instrumentation, are enough to warrant more work for both studies, and both works contribute 
substantially to the science of quantum dots for in vivo imaging.   

Lui et al. also demonstrated the hydrodynamic size and surface coating of the nanoparticle affected 
endocytosis and clearance [85]. The authors employed CdSe/ZnCdS quantum dots with a DL-cysteine 
coating that yielded a six nanometer hydrodynamic diameter nanoparticle. The use of a cysteine 
coating had an effective neutral charge, which contributed to the lack of aggregation or protein binding 
in serum. This lack of affinity ensured that these quantum dots could be used without concern of 
unintended or random interactions. This work also showed that intravenous nanoparticle injection into 
rats mainly accumulated in the bladder for up to four hours post injection (Figure 17). The authors 
suspect that the substantially smaller nanoparticle hydrodynamic diameter was below the upper limit 
for clearance by the renal system. This work highlights another in vivo application as cell labels and 
furthered the understanding bio-distribution and pharmacokinetics. Overall, the research by Robe et 
al., Chen et al., and Lui et al. are interesting in their assorted approaches, the different permutations of 
quantum dots employed for their studies, and the varied results they obtained. If anything, these works 
demonstrate that this field of quantum dot distribution, tracking, and clearance is an area of much 
research and will be vigorously studies in the future. 

 
6.2. Cellular Targeting and Imaging 

 
Quantum dots have utility for a number of types of live cell imaging and detection applications, 

which can be done externally, but could also require the internalization of quantum dots by cells. As 
demonstrated in the previous section, internalization of quantum dots for targeting and imaging 
applications has been achieved using a number of different strategies, including modifications to 
surface coatings for passive uptake and the use of specific molecules for mediated delivery [39, 82, 
86]. These altered surface coatings have been developed to increase the versatility and labeling 
efficiency of quantum dots for live cells, both prokaryotes and eukaryotes [87-90]. The various surface 
coatings enhance aqueous solubility, and provide varying functional groups for conjugation to 
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antibodies, peptides, and other biomolecules, and/or reduced nonspecific binding to the cell surface 
[87,90]. Other improvements to cellular imaging involve variations to the core composition for 
decreased cytotoxicity and increased biocompatibility [91]. The ability to internalize quantum dot 
conjugates, along with the increased multiplexing capabilities, offers a major advancement in time- 
and cost-effectiveness over single-color experiments. Ultimately, these advantages will contribute to 
the detection of various cell proteins or other components of heterogeneous tumor/tissue samples, 
including cell mixtures, and will be critical in fields like medical/cancer diagnostics and pathogenic 
bacteria analysis [92,93]. 

 
Figure 17. (A) Fluorescence images of rats injected with quantum dot-Cys incubated in 
FBS at the indicated pH, 4 hours postinjection (Bl, bladder; Ki, kidneys; Li, liver; RP, 
retroperitoneum; AW, abdominal wall, and Sp, spleen.): color image (left), 565 nm 
fluorescence (middle), merged (right). (B) GFC analysis of QD-Cys incubated in FBS at 
various pH (left) and in urine (right) 4 hours postinjection (fluorescence detection at 565 
nm). MW markers M1 (thyroglobulin, 670 kDa), M2 (ç-globulin, 158 kDa), M3 
(ovalbumin, 44 kDa), and M4 (myoglobin, 17 kDa) are shown by arrows. Reprinted with 
permission from [85]. 

 
 
6.2.1. Labeling/detection 
  

Yezhelyev et al. demonstrated the utility of quantum dots for multiplexed cell labeling and analysis 
by conjugating five different primary antibodies, each labeled with a different color quantum dot, 
against five cancer biomarkers (HER2, EGFR, PR, ER, and mTOR) [92]. Two human breast cancer 
cell lines with varying expression levels of the target proteins were formalin-fixed and paraffin-
embedded then incubated with quantum dot-antibody conjugates for one hour. Each biomarker was 
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located in a different part of the cell (e.g. cytoplasm, membrane, nucleus), and both cell lines were 
effectively labeled with all five quantum dot colors (Figure 18). Further analysis of the cells was 
performed with the essential biomarkers associated with breast cancer detection. The results showed 
that expression levels of the cancer biomarkers could be quantitatively determined simultaneously, 
even at very low levels, by measuring the fluorescence intensity of the quantum dots within the cell. 
Compared to traditional immunohistochemistry assays, quantum dot-immunostaining was more 
accurate and precise at low protein expression levels. In addition, all quantitative results correlated 
well with other currently used clinical methods, such as western blotting and fluorescence in situ 
hybridization. This study showed that labeling cells with quantum dots for multiplexed analysis has 
much potential for use in a clinical setting [92]. 

 
Figure 18.  Schematic illustration of bioconjugated quantum dots for multiplexed in situ 
molecular profiling. (A) Multicolor quantum dot bioconjugates prepared with SMCC 
activated quantum dots and chemically reduced antibodies. (B) Cell staining using 
multicolor quantum dot-bioconjugates. (C) Quantification of tumor biomarker expression 
using wavelength-resolved spectroscopy. Reprinted with permission from [92]. 

 
 

Using flow cytometry, quantum dots have been used to detect pathogenic Escherichia coli O157:H7 
in sample mixtures at very low concentrations [93]. The assay targeted biomolecules on the organism’s 
cell membrane. Mixtures with increasing ratios of red-labeled innocuous E. coli DH5α to (green) 
quantum dot-labeled pathogenic E. coli O157:H7 were analyzed for detection limits. The detection 
limit results were compared to those of fluorescein-labeled pathogenic E. coli at the same 
concentration, with a full order of magnitude improvement in the detection limit for the quantum dot 
experiments. The detection limit improvement was further evidenced as cells labeled with fluorescein 
at ten times the concentration of quantum dots also did not match the results obtained using quantum 
dots. The detection limit for quantum dot-labeled pathogenic E. coli in a background of innocuous E. 
coli was 1% pathogenic cells in 99% innocuous cells, which corresponds to 106 colony forming units 
per milliliter as the lowest concentration where detection was possible (no distinct peak was observed). 
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The data demonstrated quantum dots are more promising fluorophores for flow cytometry than organic 
dyes for detection of very low concentrations of cells in a simple mixture. Expanding the experiment 
by using more complex mixtures would show the complete utility of quantum dots for labeling and 
detection of bacterial cells. 
 
6.2.2. Cellular Imaging  
  

Bawendi and coworkers recently combined an alloyed ZnCdS shell with heterofunctional, 
biocompatible, charge-tunable surface coatings for CdSe core quantum dots for use in live cell labeling 
[87]. The surface coatings consisted of DHLA for coordination to the quantum dot surface, a short 
PEG spacer for increased solubility and stability, and reactive carboxyl or amino functional groups for 
conjugation. This heterofunctional scheme, previously demonstrated by Mattoussi et al. [44,94-96], 
applied these quantum dots to demonstrate the combination of an alloyed shell and improved surface 
coatings for live cell labeling [87]. Quantum dots solubilized with the DHLA/modified-PEG coating 
had quantum yields from ~30-40%, were stable over a pH range of ~5.0-9.5 without affecting 
brightness, and had a relatively small hydrodynamic diameter (9-12 nanometers), which correlated 
well with the previous studies from the Mattoussi group that first developed these original surface 
coatings. The stability over a wide pH range is important for cellular imaging applications because pH 
varies depending on intracellular location. Also, the smaller size of the quantum dots would allow 
them to be used for imaging cellular locations that have size restrictions, such as synapses. Both the 
effective charge and number of reactive functional groups available for conjugation could be 
controlled while also accounting for solubility. For the live cell labeling experiments, COS7 cells were 
transfected with human epidermal growth factor receptor (EGFR) and incubated with biotinylated 
epidermal growth factor (EGF). Specific labeling was achieved with amino-coated quantum dots 
conjugated to streptavidin, and incubated with the EGF-activated cells. The labeling of the EGF was 
specific and took place with high affinity. Quantum dot fluorescence did not occur in control cells 
(those cells not incubated with biotinylated EGF). Further utility of the alloyed shell and surface 
coating combination was demonstrated with a Fluorescence Resonance Energy Transfer (FRET) assay. 
While detailed discussions regarding FRET are beyond the scope of this review, many other good 
reviews exist on the topic [97-100]. Briefly, the FRET assay involved the quantum dots with two 
functional moieties conjugated to its surface: a covalently conjugated organic dye, and a His6-tagged 
streptavidin through metal-affinity coordination. Including cadmium in the quantum dot shell provided 
improved metal-affinity driven assembly of the His6-tagged proteins [101,102]. The streptavidin 
allowed specific labeling of biotinylated EGF on the cell surface, resulting in the quantum dots and the 
organic dye functioning as a FRET pair for visualization. The occurrence of FRET was confirmed by 
observing the labeled cells at the both quantum dot and dye emission wavelengths. Similar quantum 
dots with alloyed shells have been fabricated and have exhibited a higher quantum yield than quantum 
dots with a ZnS shell alone [87,103]. The many advantages of the combination of an alloyed shell and 
the functionalized PEG surface coating for quantum dots, including charge tunability, improved pH 
stability, low nonspecific binding, and controlled attachment processes, make this added concept a 
very useful tool for the future of live cell labeling. 
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Other techniques to render quantum dots biocompatible for cellular imaging experiments employed 
denatured proteins on the quantum dot surface. Chemically denatured BSA (dBSA) was used as 
biocompatible surface coating for CdTe-core quantum dots and provided multiple functional groups 
available for further conjugation [88]. Quantum dots were coated with dBSA and coupled to anti-E. 
coli antibodies to specifically detect pathogenic E. coli O157:H7 in a mixture with Listeria 
monocytogenes. The carboxyl groups of dBSA were available to couple to the antibodies using 
standard carbodiimide-coupling chemistry. Coating quantum dots with dBSA resulted in a slight 
decrease in quantum yield. 

Phospholipid micelles have been used to encapsulate silicon quantum dots and render them 
biocompatible [89]. Silicon-core quantum dots are expected to be less toxic than cadmium-containing 
quantum dots, because of the less toxic core elements. However, silicon quantum dots have found 
limited use in labeling applications, both in vitro and in vivo, because aqueous solubilization proves 
challenging. Micelle coatings are versatile because they can be synthesized to contain a wide range of 
functional groups, in particular amine and carboxyl groups. Micelle-encapsulated silicon quantum dots 
retained their desired optical properties and ranged in size from ~50-120 nanometers. Each micelle 
contained multiple quantum dots but also exhibited aggregation. Despite aggregation, uptake of 
micelle-quantum dots was achieved, the extent of which was dependent on the terminal functional 
groups of the micelle. Live human pancreatic cancer cells were able to internalize amine-functional 
and transferrin-conjugated micelle-quantum dots, but no uptake of PEG-terminal micelle-quantum dots 
was observed. While the mechanism is unclear, the functionalization-dependent uptake is most likely 
due to the overall surface charge of the quantum dot coating [104]. 

For labeling and imaging of cells, any non-specific binding can be problematic. Nonspecific 
binding of quantum dots has been observed and is attributed to electrostatic interactions between 
charged surface ligands and the cell surface [39,62,104,105]. Two independent groups have shown that 
quantum dots with more neutral surface coatings exhibited lower nonspecific binding to live cells 
[87,90]. Nie and coworkers developed a hydroxyl-rich surface coating that exhibited almost no 
nonspecific binding to live cells (Figure 19) [90]. The data indicate a 140-fold decrease in nonspecific 
binding relative to carboxylated quantum dots and up to 20-fold decrease relative to PEG- and peptide-
coated quantum dots. Even at concentrations up to 100 nM, nonspecific binding of quantum dots with 
hydroxyl coatings to cells was not detected. This hydroxyl rich coating also retained the quantum dot 
optical properties, had a smaller size relative to those with PEG or polymer coatings (~13-14 
nanometers), and were more stable in acidic buffers than carboxyl-coated quantum dots 
[39,62,104,105]. In addition, the study done by Bawendi’s group demonstrated a tunable surface 
charge by using a combination of hydroxyl-containing surface ligands and amino or carboxyl surface 
ligands [87]. Specifically, as the amount of hydroxyl surface ligands increased, the surface charge 
decreased concomitant with nonspecific binding to the cell surface. Quantum dots with surface 
coatings containing a combination of 20% amino and 80% hydroxyl ligands demonstrated the same 
levels of nonspecific binding as the hydroxyl coating. 
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Figure 19.  Surface coating chemistry and structure of polymer-encapsulated quantum dots 
(CdSe/CdS/ZnS). Schematic diagram showing conversion of carboxylated quantum dots 
(coated with poly(acrylic acid) octylamine) to hydroxylated and cross-linked quantum dots. 
The small-molecule agent for hydroxylation is 1,3-diamino-2-propanol. Reprinted with 
permission from [90]. 

 
 
As discussed, the metals commonly used to fabricate quantum dots are inherently toxic to living 

cells, so it would be an important advancement to synthesize quantum dots with inert or biocompatible 
materials. Silicon bicarbide (SiC) is chemically inert, stable, biocompatible, and has been used to 
synthesize nanoparticles with cubic symmetry (3C-SiC) [91,106-108]. In a recent synthesis, 3C-SiC 
quantum dots with size distribution of ~0.5-3.5 nanometers and emission wavelengths in the UV-
visible region were produced [91]. This seminal work has provided a new material for the fabrication 
of quantum dots, which did not need an added shell for core protection, and were used directly for live 
cell imaging. Live fibroblast cells incubated with SiC quantum dots internalized the nanoparticles; a 
high concentration of quantum dots was found in and near the nucleus while those quantum dots in the 
cytoplasm were heterogeneously distributed. One week after internalization, no cell death or 
morphological changes were observed, highlighting the nontoxic nature of SiC quantum dots. While 
the optical properties are similar to those of their cadmium-containing counterparts, the major 
advantage of 3C-SiC quantum dots is their nontoxic properties and biocompatible core material. 
 
6.2.3. Cellular uptake 
  

Quantum dots can be introduced into cells through a number of different pathways, including 
transfection, peptide-mediated delivery, or passive uptake (e.g. endocytosis). In a recent study, cellular 
uptake of quantum dots was studied, where the effects of two different uptake and delivery methods 
were compared: peptide-mediated delivery and delivery using a transfection reagent [86]. The peptide 
mediated approach employed the amphiphilic peptide Pep-1 (KETWWETWWTEWSQPKKKRKV-
cystamine), which is part of the cell-penetrating peptide family that has been previously used for 
delivery of biomolecules and quantum dots into cells [24,109]. The transfection approach used 
PolyFect, a transfection reagent that allows for quantum dots to enter the cells through pores created in 
the cell membrane. The two delivery methods were characterized based on the distribution in the 
cytoplasm, and eventual redistribution of quantum dots during cell division, as well as the general 
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effect on cell proliferation, surface marker expression, and cell differentiation. Quantum dots delivered 
by Pep-1 proved better fluorescence markers and were less harmful to cells than quantum dots 
delivered by using the PolyFect reagent, as Pep-1 delivered quantum dots were more evenly 
distributed in the cytoplasm, were passed from mother to daughter cells during division, escaped initial 
lysosome degradation, and did not effect surface marker expression or inhibit  
cell growth. 

While quantum dots can be actively delivered into cells, a number of studies have shown that cells 
will uptake quantum dots through endocytosis based on their surface coatings. Recently, quantum dots 
with a paramagnetic probe incorporated in the amine-modified silica shell were used to image a 
number of different HeLa cell lines [82]. The positive charge of the silica shell allowed for sufficient 
uptake of quantum dots for fluorescence and magnetic resonance imaging applications. The quantum 
dots were determined to have entered the cells through endocytosis and distributed in the cytoplasm 
with a high concentration in the perinuclear region. Identical experiments involving the incubation of 
cells with quantum dots along with an endocytosis inhibitor resulted in blocked entry into cells, which 
supports the mechanism of quantum dot uptake was endocytosis. Quantum dots with modified polymer 
coatings have also demonstrated entry into cells through endocytosis [39]. Polyethylenimine (PEI) 
contains a large network of amine groups and has a positive charge that facilitates endocytosis. While 
PEI-coated quantum dots move easily across the cell membrane, they are lethal to cells. Grafting the 
PEI coating with PEG reduces the harmful effects without affecting uptake, but the extent of grafting 
influences intracellular distribution. Quantum dots with a surface coating containing four PEG grafts 
per PEI were trapped in organelles around the nucleus while those with a surface coating containing 
only two PEG grafts per PEI were released from organelles and distributed in the cytoplasm. These 
experiments demonstrate surface coatings are important for both cellular uptake and intracellular 
distribution, both of which are critical for applications such as drug- and small  
molecule delivery. 
 
6.3. Other Applications 

 
Beside in vivo and cellular imaging, quantum dots can be used for a wide range of other 

applications relevant to the life sciences, such as fixed tissue analysis, spectral encoding of 
microparticles, and even unique applications such as quantitative analysis of ions. While each of these 
topics may be less conventional than in vivo analysis, they demonstrate the versatility of quantum dots 
and each has relevance to biological applications. Analysis of fixed tissue samples is a standard 
technique that is important in cancer diagnostics and morphology studies [92,110]. Encoding 
microparticles with quantum dots effectively increases the multiplexing capabilities of a system, useful 
in high-throughput or multiplexed detection of biomolecules or biomolecular interactions [57,111]. 
Finally, quantum dots have been used for quantitative determination of metal ions in complex samples 
or glucose in clinical serum samples [112,113]. 
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6.3.1. Fixed tissue analysis 
  

Quantum dot conjugates for detection of cancer biomarkers in cultured human breast cancer cells 
was described previously in the applications section [92]. The same researchers also used the same 
quantum dot-antibody conjugates for simultaneous detection and quantitative analysis of cancer 
markers in clinical tissue samples. The brightness and photostability of quantum dots are advantageous 
for this type of analysis because they are much brighter than any background autofluorescence from 
the tissue samples. In addition, the background autofluorescence can be photobleached with prolonged 
exposure to excitation light, while quantum dots remain unaffected. Comparing the results from the 
study to known immunohistochemistry data for three markers, the cancer marker expression levels 
showed little or no deviation from the known data. While the results are promising, the authors suggest 
a number of improvements to the method, including a more compact quantum dot probe for deeper 
tissue penetration, improved conjugation protocols to control the number and orientation of antibodies 
on the quantum dot surface, and the inclusion of standardization markers. 

In a similar study, quantum dots were conjugated to antibodies and used to probe multiple targets 
with differing cellular locations (surface, cytoplasm, and nuclear) in clinical tissue samples [110]. Five 
different quantum dot-antibody conjugates and one organic fluorophore-antibody conjugate (4,6-
diamidino-2-phenylindole, DAPI), were used to simultaneously detect the location of five antigens 
specific to five different cell types to gather information about the immunological microanatomy of 
human lymphoid tissue. This research showed that streptavidin-conjugated quantum dots were more 
effective than direct conjugation of the antibodies to the quantum dot surface. Tissue samples were 
sequentially stained with quantum dot-antibody conjugates and the resulting imaging was analyzed 
using an emission fingerprinting technique [114]. The images could be overlaid or separated into 
constituent quantum dot colors based on channels in the imaging system. By analyzing the individual 
images, location of each antigen and the corresponding cell types could be determined and compared 
to results of other morphology-determining techniques. 
 
6.3.2. Optical encoding 
  

A novel method for mass preparation of quantum dot barcodes was recently developed, enabling a 
vast number of differentiable microspheres, each impregnated with a series of quantum dots that 
provided a unique emission spectra pattern that was employed as barcodes [57]. The system, called 
concentration-controlled flow-focusing (CCFF), contains a pressurized vessel and a nozzle inlet 
system (Figure 20). The pressurized vessel allows real-time control over changes in total volume and 
solution concentrations. The nozzle system controls the flow of reagents to produce identical 
microspheres. The reproducibility of each microsphere is critical to controlling the barcode. Two inlets 
in the nozzle combine the aqueous and the organic phases, comprised of chloroform, quantum dots, 
and a polymer. As the two solutions mix, the polymer solidifies around the quantum dots creating a 
homogeneously dispersed microsphere. The polymer, such as poly(styrene-co-maleic anhydride), also 
provides stability, because after the microsphere shell is formed, the free anhydride functional groups 
are hydrolyzed in water. Because the barcodes are produced in a single step, directly in an aqueous 
solution, and no purification steps are necessary post-synthesis. 
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Figure 20. CCFF barcodes. (A) The CCFF process includes the concentration reactor and 
the production nozzle. An enlargement is shown in the top right with a cross-sectional 
diagram of the flow-focusing nozzle in which a quantum dot fluorophore solution in 
chloroform with 4% dissolved polymer is introduced through the top (yellow). The flow-
focusing fluid (deionized water) is introduced from the right (blue). A close-up view of the 
quantum-dot–polymer solution being focused and “pinched off ” into microscopic droplets 
by the water flow is shown on the bottom right corner. Each small droplet formed is an 
active polymer microbead with homogeneous quantum dot encoding. (B) UV illuminated 
picture of the five stock solutions of quantum dots used to generate a 105-barcode library. 
The number printed on each bottle represents the fluorescence emission wavelength in 
nanometers of the respective quantum dots. Reprinted with permission from [57]. 
 

 
 

Using varying concentrations and ratios of five CdSe/ZnS quantum dots, a library of more than 100 
different barcoded microspheres was produced, each with its own unique spectral “fingerprint” (Figure 
21). Other methods currently used for optical encoding using quantum dots, including the ‘swelling’ 
technique [55] and incorporating quantum dots into a polymer coating have experienced stability 
issues [115]. The described synthesis method solves most stability problems; the quantum dot barcodes 
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are stable over a wide pH range, at high temperatures (up to 95°C), with no appreciable leaking of 
quantum dots from the polymer shell. The barcodes in the multiplexed analysis experiment employed 
no more than three types of quantum dots per microsphere, with the relative quantum dot ratios limited 
to 1x, 2x, and 4x. Six barcoded microspheres were separately conjugated to six different single-
stranded DNA probes for multiplexed detection of DNA targets labeled with an organic dye. The 
barcode microspheres were added to target solutions with the barcodes and hybridization efficiency 
monitored using flow cytometry. The DNA-conjugated quantum dot barcoded microspheres 
specifically detected their complementary target DNA sequences from complex mixtures (Figure 21). 
The experiment exhibited little or no instance of cross-reactivity or nonspecific binding. The same 
procedure was carried out using six antibody-conjugated barcoded microspheres and the corresponding 
dye-labeled antigens to the same results. A limitation of the method is the size of the microspheres, in 
the range of 4-20 micron, as this relatively large size has the potential to be a hindrance in  
biological systems. 

 
Figure 21. Multiplexed protein and DNA assays. Six DNA and six proteomic multiplexed 
assays were performed on the QD-barcoded beads. Triplicates were performed for each 
experiment and computed standard deviation was less than 10% in all cases. Reprinted 
with permission from [57]. 

 
 

Instead of synthesizing quantum dot barcoded spheres, polystyrene microbeads can be coated with 
quantum dots for use as optically encoded fluorescent markers (Figure 22) [111]. Carboxyl-
functionalized polystyrene microbeads were coated with silica encapsulated-CdSe/ZnS water 
solubilized quantum dots and used for antibody-antigen studies. Encapsulating the water-soluble 
quantum dots in silica did not affect their optical properties, but increased their photostability under 
prolonged irradiation. Encapsulating the quantum dots in silica proved critical for rendering the 
microspheres optically active, as functionalized beads prepared with only water-soluble quantum dots 
did not fluoresce. Encapsulating quantum dots in a silica shell nearly eliminated ‘leaking’ of quantum 
dots off the beads, which is a common problem when coating microbeads with quantum dots [116, 
117]. The silica-quantum dot-coated functionalized microspheres were covalently linked to human IgG 
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and were shown to selectively detect fluorescein-labeled anti-human IgG and not interact with other 
non-specific IgG solutions. A number of methods are available to employ microsphere coded with 
quantum dots for biological analysis, and quantum dots are ideal fluorophores for optical encoding 
because of their bright, narrow and controllable optical properties.  

 
Figure 22.  Scanning electron micrograph images of the beads’ surfaces: original 
polystyrene beads (A) and the Si quantum dots coated beads (B) The insets are magnified 
50,000 times, and the images were taken under the same conditions. Reprinted with 
permission from [111]. 

 
 

6.3.3. Quantitative determination 
  

In a truly unique application, quantum dots have been used in sensing applications for quantitative 
determination of ions due to certain species possessing the unique ability to quench quantum dot 
fluorescence. Recently, Zhang et al. used L-cysteine coated CdSe/CdS quantum dots for copper(II) 
determination in various vegetable samples [112].  Other quantum dot core/shell and solubilization 
ligand combinations have previously been used for copper(II) determination, but with only limited 
quantitative applicability [40,118,119]. The L-cysteine coating was applied to the core/shell 
nanoparticles by ligand exchange, and provided an increased robustness; the quantum dots were 
soluble over a pH range of 2-10 and stable in aqueous solution for up to five days if kept in the dark. 
The presence of free cysteine increased the stability of the system, but the quantum dot fluorescence 
intensity decreased, resulting in a decreased dynamic range of detectable copper ion concentrations. 
The sensitivity of quantum dot fluorescence to Cu2+ ions was shown by exposing quantum dots to a 
number of ions and measuring the fluorescence of the mixture. A large number of metal and halogen 
ions at a concentrations at or below ~2 µM were probed, including Fe3+, Mn2-, Ni2+, Cd2+, and Co2+ 
ions, among others, none of which influenced quantum dot emissions. In contrast, quantum dot 
emission was quenched by almost 9% when exposed to 10 nM Cu2+ ions. The sensitivity of quantum 
dots for copper determination was measured in the presence of these other ions in solution. In 10 nM 
Cu2+ solutions, the lowest concentration of any ion to affect fluorescence was between 2 µM and 50 
µM (a minimum 200 times greater than the copper concentration), and the dynamic range of detectable 
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Cu2+ was 10-200 nM with a detection limit was 3 nM. The relationship between the amount of Cu2+ in 
solution and the decrease in quantum dot fluorescence was linear, and allowed simple determination of 
the amount of copper(II) in vegetable samples. Analysis of five vegetables samples with the L-
cysteine-coated quantum dot sensors generated results that correlated well with the results obtained 
from inductively coupled plasma-optical emission spectroscopy. The unique ability of certain ions to 
quench quantum dot fluorescence lends itself well for the application of quantum dots as nanosensors 
for quantitative determination of ions. Compared to other methods, coated quantum dots with L-
cysteine exhibited a wider dynamic range and a lower detection limit [40,118,119].  

As the previous section demonstrated quantum dot emissions can be quenched, a logical 
expectation would be that quantum dots could also participate in FRET assays. In such cases, quantum 
dots conjugated to species such as biomolecules and other nanoparticles would function as FRET-
based nanosensors. A recent study employed a novel assembly of nanoparticles and biomolecules for 
sensitive, selective quantitative determination of glucose in serum [113]. The assay was based on the 
binding interactions of concanavalin A (ConA), a lectin that binds certain sugars with high affinity. 
The sensing scheme involved ConA-conjugated quantum dots and gold nanoparticles conjugated to β-
cyclodextrins (β-CDs). In glucose-free solution, ConA bound to the β-CDs, and the fluorescence of the 
quantum dot was quenched due to the proximity of the gold nanoparticle. The full FRET scheme had 
the quantum dot act as the FRET donor and the gold nanoparticle as the FRET acceptor. Glucose 
competitively binds to the active sites on ConA, which inhibits or displaces the β-CDs-gold 
nanoparticle conjugate. The release of the gold nanoparticle conjugate “turns off” the FRET quenching 
and restores the quantum dot emission. Experiments were performed to correlate the fluorescence and 
concentration of glucose, and the detection limit for glucose was determined to be 50 nM. In addition, 
the results of glucose determination were not affected by a number of coexisting biological molecules 
or other ions at relevant concentrations. The sensitivity and selectivity demonstrated by the enabled its 
application for glucose detection in human serum samples. In human serum samples, the amount of 
glucose was determined using the quantum dot-ConA-β-CDs-gold nanoparticle system, and the results 
compared well with a common certified method. The combined selectivity, sensitivity, and FRET 
efficiency allowed for quantitative determination of glucose levels in clinical samples and the small 
size of the sensor system has the potential for use in direct determination of glucose levels in single 
cells or bacterial cultures. 
 
7. Other Nanoparticles 
  

Other nanoparticles, not comprised of semiconductor materials, have also been applied to some of 
same applications as quantum dots. While this section will not specifically detail work performed with 
quantum dots, in vivo applications involving nanoparticles is moving in a new direction, in large part, 
due to the successes associated with quantum dots. This next section will briefly highlight seminal 
work involving other nanoparticles, including gold nanoparticles, fluorescent dye-doped silica 
nanoparticles, Raman-active dye-embedded nanoparticles, and nanoworms [120-124]. Much like 
quantum dots, these nanoparticles have been conjugated to antibodies, DNA, or other biomolecules for 
use as in vivo imaging probes. These various reporter species, similar to quantum dots, are proving to 
be advantageous with general applications such as immunoassays, multiplexed analyses, and 
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ultrasensitive detection schemes [31,125-127]. Although not quantum dots by definition, these novel 
reporter moieties have comparable attributes and are being put forth towards novel applications, some 
of which will be briefly discussed below.   
 
7.1. Fluorescence measurements: gold and silica nanoparticles 
  

Like quantum dots, gold nanoparticles and fluorescent-dye doped silica nanoparticles can be 
employed for optical measurements and exhibit size-tunable properties [120,128,129]. The utility of 
gold nanoparticles conjugated to DNA is especially pronounced, as these conjugates exhibit improved 
characteristics as compared to the free biological species, such as increased stability at elevated 
temperatures [128], enhanced binding properties [121,130], and sharper melting transitions [131]. 
Increased nanoparticle-conjugate stability is critical for performing DNA hybridization and 
denaturization experiments. While the nature of the biomolecule bestows the recognition specificity, 
the increased stability and sharp melting transition that have been demonstrated with gold 
nanoparticle-oligonucleotide conjugates provides enhanced selectivity. When probe and target 
sequences are conjugated to separate gold nanoparticles and hybridized, the sharp transition in melting 
temperature stems from the fact that an extended network of hybridized nanoparticle-oligonucleotides 
conjugates is created [131]. The network acts collectively, and remains uninterrupted if a single 
hybridization pair dissociates; a specific, higher temperature is required to completely denature the 
entire network, leading to a sharper melting transition. These conjugates have exhibited sharper 
melting transitions, which allow for distinction between sequences with as few as a single base pair 
mismatch [121,130,131]. Gold nanoparticle bioconjugates have been used in ultrasensitive in vivo 
DNA, protein, and abnormal cell detection [121,123].  

Unlike gold nanoparticles, silica particles themselves are not optically active without modification. 
However, silica nanoparticles have been ‘doped’ with different dyes to render them applicable in 
biological imaging [120,124]. Fluorescent dyes can be incorporated into the silica during synthesis or 
can be attached to the particle surface after synthesis, imparting them with luminescent properties. The 
resulting dye-doped silica nanoparticles are more photostable than the free dye [126], which makes 
them useful for in vivo applications, such as imaging and targeting [120,124]. 
 
7.2. Raman scattering measurements: dye-embedded nanoparticles 
  

Raman spectroscopy has been utilized as an alternative to fluorescence analysis of nanoparticles. 
The many advantages of Raman spectroscopy can be significant, including the ability to excite the 
reporters at any wavelength, limited photobleaching, and the wide variety of Raman tags that exist 
[132]. With Raman reporters each having a unique, fingerprint-like spectrum, potentially hundreds of 
different Raman tags are available [133]. In addition, surface-enhanced Raman scattering has an 
enormous signal enhancement factor, determined to be 1014-1015 fold [134-137]. While the 
enhancement mechanism is unclear, the effect is well documented, and as such, Raman reporters have 
the potential to be much more sensitive than typical fluorescent reporters [31,127].  

To render typical core/shell nanoparticles Raman-active, two major strategies have been developed: 
attachment of the reporter to the nanoparticle shell and embedding the reporter within the shell [125]. 



Int. J. Mol. Sci. 2009, 10             
 

481

Embedding the Raman reporter internally has shown to be preferable because the reporter is protected 
from the environment [132], and does not contribute to toxicity. The most common Raman reporters 
embedded in nanoparticle shells are Raman-active organic dyes, and a number of methods have been 
employed to embed them in nanoparticles for use in biological applications [31,125,127], Dye-
embedded nanoparticles are designed much like quantum dots, with a metallic core for optical 
enhancement (e.g. gold) and a shell for protection and conjugation (e.g. silica). Conjugating a peptide 
or oligonucleotide to the silica shell renders the nanoparticle useful in a number of life science 
applications, including in vivo imaging.  
 
7.3. Magnetic resonance measurements: nanoworms 

 
Figure 23. Internalization of nanoworms and nanospheres conjugated with peptides into 
cells. A conceptual scheme illustrating the increased multivalent interactions expected 
between receptors on a cell surface and targeting ligands on a nanoworm compared with a 
nanosphere. Adapted with permission from [122]. 

 
 

Magnetic resonance imaging (MRI) has also employed nanoparticles for in vivo imaging. More 
specifically, a different type of nanoparticle, termed nanoworm, has recently been developed for in 
vivo tumor targeting and imaging [122]. Nanoworms, as their name suggests have longer dimensions, 
but also a different composition than quantum dots. This work by Sailor et al. employ elongated, 
dextran-coated particles composed of a linear aggregate of 5-10 iron oxide cores and a total length 
between ~50-80 nm. The elongated nanoworm structure allowed a larger number of interactions 
between peptides conjugated to the nanoworm and cell-surface receptors to take place relative to 
nanospheres of similar composition (Figure 23). For example, nanoworms were compared to other 
nanoparticles in bloodstream circulation experiments, which is a crucial aspect of effective in vivo 
imaging [138,139]. The elongated structure of nanoworms did not affect the amount of time in the 
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bloodstream compared to traditional circular nanoparticles. While circulation times were similar, the 
distribution of the nanoparticles differed; the ratio of nanoworms in the kidney relative to the liver was 
lower than nanosphere particles, but the ratio of particles in the spleen to the liver was higher for 
nanoworms [122]. This concept is essentially structure-function based, with more peptides capable of 
interacting with cell surface-receptors, without sacrificing residence time in the bloodstream. This 
facet of enhanced interaction would focus the efficiency of peptide-modified nanoworms towards 
tumors [122]. Also, the extended length provided an increased magnetic relativity, resulting in a higher 
magnetic resonance contrast. The higher magnetic contrast allowed for a wider range of concentrations 
to be used in a single experiment. In terms of in vivo imaging, passive accumulation of nanoworms in 
tumors has demonstrated increases relative to nanospheres, and once nanoworms enter tumors, they 
exhibit a high residence time and do not readily re-enter the bloodstream [122]. The confinement of 
nanoworms in tumors and the larger relative number of peptide-receptor interactions will allow more 
effective and sensitive imaging of tumor tissue using magnetic resonance imaging. 

 
8. Summary 
 

Quantum dots are now becoming commonplace for in vivo imaging. While their use is still behind 
that of traditional or conventional reporters, their frequency of use is dramatically increasing. This 
dramatic increase is in part, due to the numerous advantageous properties exhibited by quantum dots, 
including a robust signal strength, increased ability to multiplex, resistance to photobleaching, and the 
customizable nature of their fabrication and conjugation protocols. As research, such as the seminal 
work outlined in this review continue, the revelation as to what quantum dots can do for applications 
such as in vivo imaging and analysis, as well as the diversity with which quantum dots can be applied, 
will open new avenues of research and continue the development of methods, instrumentation, and 
diagnostics that will truly revolutionize the life sciences. 
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