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Abstract: This review discusses several computational methods used on different length
and time scales for the simulation of material behavior. First, the importance of physical
modeling and its relation to computer simulation on multiscales is discussed. Then,
computational methods used on different scales are shortly reviewed, before we focus on
the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some
key issues including several MD optimization techniques. Thereafter, computational
examples for the capabilities of numerical simulations in materials research are discussed.
We focus on recent results of shock wave simulations of a solid which are based on two
different modeling approaches and we discuss their respective assets and drawbacks with
a view to their application on multiscales. Then, the prospects of computer simulations
on the molecular length scale using coarse-grained MD methods are covered by means of
examples pertaining to complex topological polymer structures including star-polymers,
biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This
review ends by highlighting new emerging interdisciplinary applications of computational
methods in the field of medical engineering where the application of concepts of polymer
physics and of shock waves to biological systems holds a lot of promise for improving
medical applications such as extracorporeal shock wave lithotripsy or tumor treatment.
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1. Introduction

Some of the most fascinating problems in all fields of science involve multiple temporal or spatial
scales. Many processes occurring at a certain scale govern the behavior of the system across several
(usually larger) scales. This notion and practice of multiscale modeling can be traced back to the
beginning of modern science, see e.g., the discussions in [1–3]. In many problems of materials science
this notion arises quite naturally as a structure-property paradigm: The basic microscopic constituents
of materials are atoms, and their interactions at the microscopic level (on the order of nanometers
and femtoseconds) determine the behavior of the material at the macroscopic scale (on the order of
centimeters and milliseconds and beyond), with the latter being the scale of interest for technological
applications. The idea of performing material simulations across several characteristic length and time
scales has therefore obvious appeal as a tool of potentially great effect on technological innovation.

With the increasing availability of very fast computers and concurrent progress in the development and
understanding of efficient algorithms, numerical simulations have become prevalent in virtually any field
of research [4–10]. Fast parallelized computer systems today allow for solving complex, non-linear many
body problems directly, not involving any preceding mathematical approximations which is the normal
case in analytical theory, where all but the very simplest problems of practical interest are too complex
to be solved by pencil and paper. Computer simulations are not only a connecting link between analytic
theory and experiment, allowing to scrutinize theories, but they can also be used as an exploratory
research tool under physical conditions not feasible in real experiments in a laboratory. Computational
methods have thus established a new, interdisciplinary research approach which is often referred to
as “Computational Materials Science” or “Computational Physics”. This approach brings together
elements from diverse fields of study such as physics, mathematics, chemistry, biology, engineering and
even medicine and has the potential to handle multiscale and multi-disciplinary simulations in realistic
situations.

For example, simulations in material physics are focused on the investigation of lattice and defect
dynamics at the atomic scale using MD and Monte Carlo (MC) methods, often using force-fields
(physical potentials) that are derived from solving the non-relativistic Schrödinger equation for a limited
number of atoms [11–13]. In contrast to this, materials-related simulations in the field of mechanical
engineering typically focus on large-scale problems, often resorting to finite element methods (FEM)
where the micro structure is homogenized by using averaging constitutive laws [14–16].

With powerful computational tools at hand, even simulations of practical interest in engineering
sciences for product design and testing have become feasible. Material systems of industrial interest are
highly heterogeneous and are characterized by a variety of defects, interfaces, and other microstructural
features. As an example, Figure 1 displays a Scanning Electron Microscope (SEM) micrograph of the
granular surface structure and the fracture surface of Aluminum Oxide (Al2O3) after planar impact load.
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Inorganic crystalline materials have structural features such as grain boundaries between crystals which
are mm to µm in size (cf. Figure 1a), dislocations, and point defects such as vacancies on the atomic
scale. Hence, these structures have to be studied from a hierarchical perspective [17].

Figure 1. (a) Micrograph section of an etched Al2O3 ceramic surface exhibiting the granular
structure on the microscale. (b) SEM photograph of the fracture surface of Al2O3 after
edge-on impact experiment [18] with striking speed of v ≈ 400m/s. (c,d) Microstructural
details of the Al2O3 surface exhibiting structural hierarchies. Figure by M.O. Steinhauser,
Fraunhofer EMI.

Recently, polycrystalline materials have been synthesized with a distribution of grain sizes less than
1 micron [19–23] (nanocrystalline materials). The small grain size, hence large interface area, gives
rise to desirable properties such as superplasticity (in which large irreversible deformation can occur
without fracture) [24], and improved strength and toughness. Small grain size also implies short diffusion
distances, so that processes which depend on diffusion, such as sintering, are facilitated and can occur
at lower temperatures than would otherwise be possible. Predicting the properties and performance of
such materials under load is central for modern materials research and for product design in industry.
However, due to the complexity of structural hierarchies in condensed matter on different scales, there
is no single computational model or physical theory which can predict and explain all material behavior
in one unified and all-embracing approach. Hence, the explicit micro structure of different important
classes of materials such as metals, ceramics, or materials pertaining to soft matter (glasses or polymers)
has to be incorporated in different models with delimited validity, cf. Figure 2.

For example, in the analysis of fibrous composites where fibers are embedded in a matrix to form
an anisotropic sheet or lamina (which in turn are bonded together to form a laminate), cf. Figure 3,
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Figure 2. Schematic hierarchical view of structural properties of important classes
of materials contrasting typical structural features of inorganic crystalline materials
(engineering materials, green) and the structural features of self-organizing organic
biological materials (blue). At the nanoscale, the basic constituents of all condensed matter
are the atoms bound together in chemical bonds.

the fibers and matrix are regarded as continuous media in the analysis of the single lamina [25,26];
the laminae are then regarded as continuous in the analysis of the laminate. The stacking sequence of
laminae and the orientation of fibers within them governs the anisotropy of the composite. A similar
continuum assumption is often used in the analysis of particulate composites [27] and of foams [28].
Many biopolymers such as collagen show a similar hierarchical structure where the amino acids are
organized in triple-helical fibrous tropocollagen molecules which are about 300 nm long and 1.5nm in
diameter and which in turn are organized in fibrils and fibers on the micrometer scale [29,30]. Most of
the structural materials used by Nature are polymers or composites of polymers. Such materials would
probably not be the first choice of an engineer intending to build very stiff and long-lived mechanical
structures (see Figure 2). The engineer selects materials to fabricate a part according to an exact design.
In contrast, Nature goes the opposite direction and grows both the material and the whole organism,
e.g., a plant or an animal, using the principles of biologically controlled self-assembly. Additionally,
biological structures are able to grow, remodel and adapt to changing environmental conditions during
their whole lifetime, which even allows for self-repair [31].

The typical hierarchical structural features of materials have to be taken into account when developing
mathematical and numerical models which describe their behavior. With this respect, usually one
of two possible strategies is pursued: In a “sequential modeling approach” one attempts to piece
together a hierarchy of computational approaches in which large-scale models use the coarse-grained
representations with information obtained from more detailed, smaller-scale models (“bottom-up” vs.
“top-down” approach). This sequential modeling technique has proven effective in systems in which
the different scales are weakly coupled. The vast majority of multiscale simulations that are actually in
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Figure 3. (a) Light microscopic view of a glass fiber reinforced sheet moulding compound
(SMC) which is used in car industry as light-weight material. (b) CT-microscopic
reconstruction of a section of the laminar glass fiber structure in the material. (c) Scanning
Acoustic microscopic view of a tensile-test SMC specimen exhibiting the glass fiber bundles
within the compound. Figure by M.O. Steinhauser, Fraunhofer EMI.

use is sequential. Examples of such approaches are abundant in literature, including practically all MD
simulations whose underlying potentials are derived from ab initio calculations [32]. The second strategy
pursued in multiscale simulations is the “concurrent” or “parallel approach”. Here, one attempts to link
methods appropriate at each scale together in a combined model, where the different scales of the system
are considered concurrently and often communicate with some type of hand-shaking procedure [33–35].
This approach is necessary for systems, whose behavior at each scale inherently depends strongly on
what happens at the other scales, for example dislocations, grain boundary structure, or dynamic crack
propagation in polycrystalline materials.

This review is organized as follows: In the next section we first discuss the relevance of physical
model building for computer simulation. Then, in Section 3., a survey of typical simulation techniques
for numerical simulation of condensed matter systems on different length and time scales is provided
before we focus in a tutorial-like fashion on the MD method in Section 4. Here, typical numerical
optimization techniques for the search for particle interactions are first reviewed, followed by general
considerations on the efficiency and the run time of algorithms used for MD applications. We then
review recent MD applications in shock wave physics in Section 5. and of polymer physics using
coarse-grained particle models in Section 6. Here, we focus on some aspects of computer simulations of
macromolecules which are of relevance for biopolymers such as DNA, polypeptides, or cell membranes.
Finally, in Section 7., we briefly explore as a promising emerging interdisciplinary research field the
application of concepts of polymer and shock wave physics to biological systems which may contribute
to an improved understanding of medical applications such as non-invasive extracorporeal shock wave
lithotripsy or tumor treatment. Our review ends with concluding remarks in Section 8.
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2. Physical and Numerical Modeling

The span of length scales commonly pertaining to materials science comprises roughly 10 to
12 orders of magnitude and classical physics is sufficient to describe most of the occurring phenomena,
cf. Figure 4. Yet, classical MD or MC methods are only valid down to length scales comparable
to the typical size of atoms (≈ 10−10m) and typically treat atoms as point particles or spheres with
eigenvolume. In principle, the relativistic time-dependent Schrödinger equation describes the properties
of molecular systems with high accuracy, but anything more complex than the equilibrium state of a
few atoms cannot be handled at this ab initio level. Quantum theory as a model for describing materials
behavior is valid also on the macroscopic scale, but the application of the (non-relativistic) Schrödinger
equation to many particle systems of macroscopic size is completely in vain due to the non-tractable
complexity of the involved calculations. Hence, approximations are necessary; the larger the complexity
of a system and the longer the involved time span of the investigated processes are, the more severe the
required approximations are. For example, at some point, the ab initio approach has to be abandoned
completely and replaced by empirical parameterizations of the used model. Therefore, depending on
the kind of question that one asks and depending on the desired accuracy with which specific structural
features of the considered system are resolved, one has the choice between many different models which
often can be usefully employed on a whole span of length and time scales.

Unfortunately, there is no simple “hierarchy” that is connected with a length scale according to which
the great diversity of simulation methods could be sorted out. For example, Monte Carlo lattice methods
can be applied at the femtoscale of Quantumchromodynamics (10−15 m) [36], at the Ångstrøm scale
(10−10 m) of solid state crystal lattices [37], or at the micrometer scale (10−6 m), simulating grain
growth processes of polycrystal solid states [38]. Thus, before getting started with computer simulations,
as always in research, it is important to establish first, which phenomena and properties one is primarily
interested in and which questions one is going to ask.

In many practical cases, the basic question which model shall be used for answering a specific
question is the main problem. The next step for rendering the model accessible to an algorithmic
description, is the discretization of the time variable (for dynamic problems) and of the spatial domain in
which the constitutive equations of the problem are to be solved. Then appropriate algorithms for solving
the equations of the mathematical model have to be chosen and implemented. Before trusting the output
of a newly written computer program and before applying it to new problems, the code should always be
tested to the effect whether it reproduces known analytic or experimental results. This is a necessity as
the correctness and plausibility of the outcome of an algorithm (usually dimensionless numbers) cannot
be predicted by simply looking at the source code. The success of a computer experiment in essence
depends on the creation of a model which is sufficiently detailed such that the crucial physical effects
are reproduced and yet is sufficiently simple (of small complexity) for the simulation still to be feasible.

Once a decision is made, a physical model is expressed as mathematical equations which are solved in
a systematic fashion, i.e., in a way that can be formulated as a finite stochastic or deterministic algorithm
and be implemented as a computer program. The numerical solutions of the governing equations
associated with the physical and mathematical model are then interpreted and provide answers to the
specific real system which was transformed into the model system. A comparison of the answers for
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Figure 4. Schematic comparing the relevant length scales in materials science according
to [3]. In the field of nano- and microtechnology one usually tries to approach the molecular
level from larger scales, miniaturizing technical devices, whereas nature itself always seems
to follow a bottom-up approach, assembling and self-organizing its complex (soft) structures
from the atomic scale to complex cellular organisms. The typical scopes of important
experimental methods using microscopes is displayed as well. The validity of classical
physics is limited to length scales down to approximately the size of atoms which, in classical
numerical schemes, are often treated as point particles or spheres with a certain eigenvolume.

a specific problem obtained by mathematically exploiting a specific model, finally provides some ideas
about its general validity and quality as well as of the derivations and theoretical concepts associated
with it. This principal procedure in physical and numerical modeling is illustrated schematically in the
flowchart of Figure 5.

2.1. Computer Simulations as a Research Tool

Computer simulation is adding a new dimension to scientific investigation and has been established
as an investigative research tool which is as important as the traditional approaches of experiment
and theory. The experimentalist is concerned with obtaining factual information concerning physical
states and dynamic processes. The theorist, challenged by the need to explain measured physical
phenomena, invents idealized models which are subsequently translated in a mathematical formulation.
As is common in theory, most mathematical analysis of the basic laws of nature as we know them, is too



Int. J. Mol. Sci. 2009, 10 5142

Figure 5. Physical, mathematical and numerical modeling scheme illustrated as flow
chart. Starting from the experimental evidence one constructs physical theories for which
a mathematical formulation usually leads to differential equations, integral equations, or
master (rate) equations for the dynamic (i.e., time dependent) development of certain state
variables within the system’s abstract state space. Analytic solutions of these equations are
very rarely possible, except when introducing simplifications usually involving symmetries.
Thus, efficient algorithms for the treated problem have to be found and implemented
as a computer program. Execution of the code yields approximate numerical solutions
to the mathematical model which describes the dynamics of the physical “real” system.
Comparison of the obtained numerical results with experimental data allows for a validation
of the used model and subsequent iterative improvement of the model and of theory.

complex to be done in full generality and thus one is compelled to make certain model simplifications
in order to make predictions. Hence, a comparison between a theoretical prediction and an experimental
interpretation is frequently questioned because of the simplifying approximations with which the
theoretical solution was obtained or because of the uncertainty of the experimental interpretation. For
example, even the relatively “simple” laws of Newtonian mechanics become analytically unsolvable, as
soon as there are more than two interacting bodies involved [39,40]. Most of materials science however
deals with many (N ∼ 1023) particles, atoms, molecules or abstract constituents of a system.

Computer simulations, or computer experiments, are much less impaired by many degrees of freedom,
lack of symmetries, or non-linearity of equations than analytical approaches. As a result, computer
simulations establish their greatest value for those systems where the gap between theoretical prediction
and laboratory measurements is large.

The principal design of practically all computer simulation programs for scientific purposes is
displayed in Figure 6: Usually, during a pre-processing phase some administrative tasks are done (system
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setup, defining initial system structure, reading in simulation parameters, initializing internal variables,
etc.) before the actual simulation run is started.

Figure 6. Principal design of a computer simulation. Usually, some pre-processing as
preparation for the main simulation is done with a pre-processor. This piece of computer
code might be integrated in the main source code or – in particular in commercial codes –
is written as an extra piece of code, compiled and run separately from the main simulation
code. During pre-processing, many administration tasks can be done which are not related
to the actual simulation run. In large-scale simulations, data are stored during execution
for later analysis. This analysis and visualization is done during post-processing. The
advantage of separating pre- and post-processing from the actual simulation code is that the
code design remains clearly arranged and the important issue of optimization for speed only
has to be done for the relevant pieces of the main simulation code. However, in large-scale
simulations, involving billions of particles, even the task of data analysis can become a major
problem that needs optimization and fast parallelized algorithms [41].

Analyzing data “on-the-fly” during the simulation phase is usually too expensive; therefore, data
snapshots of the system are stored during certain preset time intervals which can later be analyzed
and visualized during the post-processing phase. Very often, the pre- and post-processing code is
separated from the main simulation code and since the mid 1990s, Graphical User Interfaces (GUIs)
are commonly used for these tasks. In UNIX environments, TCL/TK is a classical script language used
to program GUIs. Since the mid 1990s, a C++ based graphical library—Qt—is available for Open Source
developments under the GNU General Public Licence.

The starting point for a computer simulation is the invention of an idealized adequate model of the
considered physical process. This model is written in the language of mathematics and determined by
physical laws, state variables, initial and boundary conditions. The question as to when a model is
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“adequate” to a physical problem is not easy to answer. There are sometimes many concurrent modeling
strategies and it is a difficult question which aspects are essential and which ones are actually unimportant
or peripheral.

3. Simulation Methods for Different Length and Time Scales

The first scientific simulation methods ever developed and implemented on working electronic
computers were MC and MD methods, fully rooted in classical physics [42–49]. Many problems of
classical MD techniques lie in the restriction to small (atomistic and microscopic) length and time scales.
In atomistic MD simulations of hard matter, i.e., crystalline systems which are mostly governed by their
available energy states, the upper limit on today’s hardware is typically a cube with an edge length
of a few hundred nanometers simulated for a few nanoseconds. With coarse-grained models, where
the individual MD particles represent complete clusters of atoms, molecules or other constituents of
the system, this limit can be extended to microseconds or even seconds. In this respect, soft matter
systems such as polymers, which are very long macromolecules, constitute a very interesting class of
materials due to their intrinsic universal scaling features [50,51] which are a consequence of their fractal
properties [52]. Macroscopic physical properties of materials can be distinguished in:

• static equilibrium properties, e.g., the radial distribution function of a liquid, the potential energy
of a system averaged over many timesteps, the static structure function of a complex molecule, or
the binding energy of an enzyme attached to a biological lipid membrane.

• dynamic or non-equilibrium properties, such as diffusion processes in biomembranes, the viscosity
of a liquid, or the dynamics of the propagation of cracks and defects in crystalline materials.

Many different properties of materials are determined by structural hierarchies and processes on
multiscales. An efficient modeling of the system under investigation therefore requires special simulation
techniques which are adopted to the respective problems. Table 1 provides a general overview of
different simulation techniques used on various length scales in materials science along with some typical
applications. This division is primarily based on a spatial, rather than a physical classification.

3.1. Electronic/Atomistic Scale

The sub-atomic electronic structure of a material yields information on molecular geometry, magnetic
properties, (NMR, IR, or UV) spectroscopic data, quantum mechanical ground and excited states and on
the chemistry of materials. Modeling materials on this scale needs to take into account the degrees of
freedom of the electrons explicitly. Some basic simulation methods, so called ab initio methods were
developed which solve the Schrödinger equation approximately, usually based on the Born-Oppenheimer
approximation. With ab initio methods, the only information that has to be provided are the number of
atoms and the positions of the atoms within the system. In contrast to this, semi-empirical or empirical
approaches require a model of the interactions between the atoms to be supplied. The idea of “inventing”
and designing new materials on demand just by entering the into a computer the elements one wants to
use and the specific properties one wants to optimize is an ideal which is currently still far from reach,
even with ab initio methods [95–97].
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Table 1. Customary classification of length scales. Displayed are also typical scopes of
different simulation methods and some typical applications pertaining to the respective scale.

Scale (m) Typical Simulation Methods Typical Applications

Electronic/Atomistic
∼ 10−12 − 10−9 Self-Consistent Hartree-Fock (SC-HF) [53,54] crystal ground states,
∼ 10−12 − 10−9 Self-Consistent DFT [12,55,56] NMR, IR, UV spectra,
∼ 10−12 − 10−9 Car-Parinello (ab initio) Molecular Dynamics [13] molecular geometry,
∼ 10−12 − 10−9 Tight-Binding [57] electronic properties,
∼ 10−12 − 10−9 Quantum Monte Carlo (QMC) [58–60] chemical reactions
Atomistic/Microscopic
∼ 10−9 − 10−6 Molecular Dynamics [45,46] equations of state,
∼ 10−9 − 10−6 Monte Carlo using classical force fields [42,44] Ising model, DNA
∼ 10−9 − 10−6 Hybrid MD/MC [61–63] polymers, rheology,
∼ 10−9 − 10−6 Embedded Atom Method [64–66] transport properties,
∼ 10−9 − 10−6 Particle in Cell [67,68] phase equilibrium,
Microscopic/Mesoscopic
∼ 10−8 − 10−1 MD and MC using complex fluids,

effective force fields [51] soft matter,
∼ 10−9 − 10−3 Dissipative Particle Dynamics [69] granular matter,
∼ 10−9 − 10−3 Phase Field Models [70] fracture mechanics,
∼ 10−9 − 10−3 Cellular Automata [71] grain growth,
∼ 10−9 − 10−4 Mean Field Theory phase transformations,
∼ 10−6 − 102 Finite Element Methods including polycrystal elasticity,

microstructural features [72–75] polycrystal plasticity,
∼ 10−6 − 102 Smooth Particle Hydrodynamics [76,77] diffusion,
∼ 10−9 − 10−4 Lattice-Boltzmann [78] interface motion,
∼ 10−9 − 10−4 Dislocation Dynamics [79–82] dislocations,
∼ 10−6 − 100 Discrete Element Method [83] grain boundaries
Mesoscopic/Macroscopic
∼ 10−3 − 102 Hydrodynamics [84] macroscopic flow,
∼ 10−3 − 102 Computational Fluid Dynamics [85–87] macroscopic elasticity,
∼ 10−6 − 102 Finite Element Methods [88–90] macroscopic plasticity,
∼ 10−6 − 102 Smooth Particle Hydrodynamics [8,91,92] fracture mechanics,
∼ 10−6 − 102 Finite Difference Methods [93,94] aging of materials,
∼ 10−6 − 100 Cluster & Percolation Models fatigue and wear
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The Born-Oppenheimer Approximation

Quantum mechanical computer simulation methods based on Density Functional Theory
(DFT) [12,55,56] were developed which calculate the ground state energy of many particle systems.
Other ab initio methods combine DFT with classical MD in a way that the degrees of freedom of
the electrons can be treated explicitly in contrast to using classical “effective potentials” between
atoms which neglect the electronic movements. The basic idea of ab initio MD methods is to
approximately solve the electronic Schrödinger equation in each timestep, thereby determining the
potential hypersurface for the actual nuclear coordinates, i.e., the effective potential energy of the nuclei.
The approximate solution is obtained either by solving the Hartree-Fock [53] or the Kohn-Sham [12]
equations. Then one computes the forces on the nuclei and moves them according to Newton’s equation
of motion which yields these forces. This simulation strategy forms the basis of the Car-Parinello
method [13,98]. Due to the large difference in mass between electrons and the atom cores (mc/me ≫
103), the electrons are able to follow almost instantaneously the only slowly occurring change in the
core positions. Thus, the electrons are assumed to always be in the ground state associated to the actual
position of the nuclei. This is the reason why the degrees of freedom of the atom cores and the electrons
can be separated (Born-Oppenheimer Approximation) [99].

In quantum mechanics, the Schrödinger equation replaces Newton’s equations of motion. However,
the Schrödinger equation is so complex that it only can be solved analytically for very few simple
cases; the direct numerical solution using computers is also limited to very simple systems and very
few numbers of atoms because of the high-dimensional phase space in which the Schrödinger equation
is formulated. The time dependent quantum mechanical state function Ψ of a system consisting of N
nuclei and K electrons can be written as

Ψ = Ψ(R⃗1, ..., R⃗N , r⃗1, ..., r⃗K , t) (1)

where R⃗i and r⃗i denote positions of the ith nucleus and the ith electron, respectively. The variable t

denotes the time. Using the abbreviations R⃗ and r⃗ for (R⃗1, ..., R⃗N) and (r⃗1, ..., r⃗N), respectively, one
can write the probability density to find the system under consideration at time t in the volume element
dV1, ..., dVN+K of configuration space centered at the point (R⃗, r⃗) as:

Ψ⋆(R⃗, r⃗, t)Ψ(R⃗, r⃗, t)dV1 · · · dVN+K (2)

The movement of the nuclei during the adaptation of the electron movement is negligibly small in the
sense of classical dynamics, thus one sets

Ψ(R⃗, r⃗, t) ≈ ΨBO(R⃗, r⃗, t) =
∞∑
n=0

χn(R⃗, t)ϕn(R⃗, r⃗) (3)

i.e., one separates the full wave function Ψ(R⃗, r⃗, t) into a simple product form, where χn is the nuclear
wave function, and where the electronic wave function ϕn(R⃗, r⃗) does not depend on time anymore but
only on the nuclear coordinates R⃗. Using a Taylor expansion of the stationary Schrödinger equation
and several approximations that rely on the difference in masses between electrons and nuclei, see for
example Chapter 8 in [100], the stationary Schrödinger equation can be separated into two equations,
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the electronic Schrödinger equation and an equation for the nuclei. The first equation describes how the
electrons behave when the position of the nuclei is fixed. Its solution leads to an effective potential that
appears in the equation for the nuclei and describes the effect of the electrons on the interaction between
the nuclei. Thus, the cores move within an energy landscape of the surrounding, fast moving electrons.
After restriction to the ground state ϕ0 and further approximations (neglecting all coupling terms) [101],
one obtains a classical-mechanical model for the core movements determined by the force [101]

F⃗i(t) = Mi
¨⃗
Ri(t) = −∇R⃗i

min
ϕ0

{∫
ϕ0

⋆(R⃗(t), r⃗)He(R⃗(t), r⃗)ϕ0(R⃗(t), r⃗)d3r

}
(4)

Only considering the ground state ϕ0 associated with the ground state energy E0 the electronic Hamilton
operator He fulfills the eigenvalue equation

He(R⃗(t), r⃗)ϕ0(R⃗(t), r⃗) = E0(R⃗(t))ϕ0(R⃗(t), r⃗) (5)

The forces F⃗i(t) = Mi
¨⃗
Ri(t) act on the nuclei and their positions can be calculated according to the laws

of classical mechanics.

Car-Parinello MD

In the mid 1980s a revolution occurred in the field of atomistic computer simulation with the
introduction of “Car-Parinello” (CP) techniques [13]. The basic idea of this technique is based on
calculating the interactions on the particles during the simulation run directly from the electronic
structure instead of using previously parameterized potentials (“force fields”, a term that is more common
in the context of biological systems). Furthermore, multi-body contributions and polarization effects
are included automatically. Successful realizations of this idea combine MD with density functional
theory for electrons in the Kohn-Sham formulation [12,56]. The first ab initio simulation using this
method was published in 1993 [102] considering water, more than twenty years after the groundbreaking
work by Rahman and Stillinger [103]. In contrast to the latter work however, the essential empirical
input parameter of the simulation is only the volume of the periodic simulation cell, with which the
then simulated 32 oxygen and 64 hydrogen atoms yield the experimentally known density of 1kg/l.
Everything else follows from theory. The CP method introduces a fictitious dynamic movement of the
electronic degrees of freedom in terms of pseudo-Newtonian equations of motion in the form

µiΨ̈i(t) = HeΨi +
∑
j

ΛijΨi (6)

with fictitious masses µi of the orbitals {Ψi}. When He is diagonalized in each timestep (HeΨi =

ϵiΨi with ϵi = Λij) the classical forces acting on the nuclei can be calculated and integrated according
to the Newtonian equations of motion for the degrees of freedom of the nuclei:

Mi
¨⃗
Ri(t) = −∇⟨Ψ|He|Ψ⟩ (7)

where the total wave function Ψ is given as Slater-determinant of the occupied orbitals {Ψi}. Thus,
CP generates a classical dynamics of the nuclei in phase space while the dynamics of the electrons is
purely fictitious (only the solution of the time dependent Schrödinger equation generates the correct
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electronic motion). The self-consistent solution of the electronic problem is avoided and substituted in
each MD timestep by a dynamic propagation of the orbitals, which are considered as classical fields
with constraints. We note that the CP method in the limit of zero orbital masses µi yields the Born
Oppenheimer result, so it is a controlled approximation for Born Oppenheimer dynamics.

There are many well-known software packages used in materials science and quantum chemistry that
are available to academic and industrial users directly and free of cost (e.g., ACESII, AMPAC, CPMD,
GAMESS, QUANTUM ESPRESSO, SIESTA) or through commercial vendors (e.g., VASP, CASTEP,
GAUSSIAN, Molpro). Many of these codes are based on Density Functional Theory (DFT) but some
also implement Hartree-Fock based models and were developed by different scientific teams during the
past 20 years. The results of quantum mechanical calculations are often used in the design of classical
molecular force fields, providing a connection to the next scale.

3.2. Atomistic/Microscopic Scale

Simulations performed at the atomistic or microscopic scale of molecules are much more diverse
than those typical of quantum chemistry and a wide range of properties from thermodynamics to bulk
transport properties of solids and fluids can be calculated. As a result of this diversity, researchers
in a broad array of disciplines (e.g., physics, chemistry, chemical engineering, molecular biology,
biochemistry or even geochemistry) contribute to the development and enhancement of methods on this
length scale with typical associated time scales ranging roughly from 10−12 s to 10−6 s for the longest
runs on the largest supercomputers.

Figure 7. Design schematic of the particle-based multiscale simulation package “MD-Cube”
at EMI. A kernel takes care of administrative tasks. Force modules can be added via defined
interfaces as well as modules for the demands of different physical applications.
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For computer simulations using semi-empirical or classical force fields, there are several academic
software packages freely available (e.g., CHARMM, DL POLY, GROMACS, NAMD, IMD, XMD) or
through commercial licenses (e.g., GROMOS). Systems considered on the microscopic scale are still
mainly determined in their behavior by their energy, albeit the motion of the electrons can be neglected.
Thus, individual atoms or clusters of atoms can be described with methods based on classical interaction
potentials. The two oldest used methods are classical MD and MC. Additional interaction potentials
for modeling covalent bonds, Coulomb interactions, torsion and bending in molecules are only effective
interactions on this scale, as the quantum mechanical electronic contributions are neglected. Due to
its simplicity and numerical efficiency, the Lennard-Jones potential is an often used generic model
potential. For example, at the Ernst-Mach-Institute (EMI) in Freiburg, an efficient implementation of
a code (“MD-Cube”) providing modules for multiscale simulations is realized, cf. Figure 7, where new
multi-physics modules can be added to the software tool using well-defined interfaces, and a kernel takes
care of many administration tasks of the simulation.

3.3. Microscopic/Mesoscopic Scale

Many real material systems have structures much larger than can be studied based on the
atomistic/microscopic scale. For example, the properties of block-copolymer materials are strongly
influenced by the molecular segregation into mesoscale domains with typical time scales raging from
10−8 s to 10−4 s. This is the typical domain of soft matter and biological systems, e.g., polymers,
amphiphiles or colloidal systems. It is the scale on which self-organization of matter in biological
systems, e.g., cells or membranes, occurs. These systems are driven by an interplay between their energy
and entropy, as there are many configurations and packing densities available to these systems.

In solid states, dislocation dynamics, crystallizations and phase transformations typically occur on this
scale and in polycrystalline systems nucleation and grain growth play a fundamental role. Particle-based
methods on this length and time scale include many variations of MD and MC methods using effective
interaction potentials or coarse-grained methods such as Dissipative Particle Dynamics (DPD) [69] or
the Discrete Element Method (DEM) [83]. With these methods the individual particles do not represent
“elementary” particles, i.e., atoms, but complete clusters of atoms or molecules that are treated as
classical particles. Such coarse-grained models are used when one needs to study the behavior of
a system containing very many molecules for a long time. For example, colloidal suspensions are
dispersions of mesoscopic solid particles. These particles themselves consist of millions or billions
of atoms. Furthermore, the number of solvent molecules per colloid is comparable or even larger.
Clearly, a MD simulation that follows the behavior of several thousand colloids over an experimentally
relevant time interval (milliseconds to seconds) would be prohibitively expensive. The DPD method
lumps together the forces due to individual solvent molecules to yield an effective friction and a
fluctuating force between moving fluid elements. While this approach does not provide a correct
atomistic description of the molecular motion, it has the advantage that it does reproduce the correct
hydrodynamic behavior on long length and time scales. However, at present, there exists no rigorous
demonstration that this is true for an arbitrary DPD fluid, albeit all existing numerical studies suggest
that, in the limit where the integration time step τ̂ → 0, the large-scale behavior of the DPD fluid
is described by the Navier-Stokes equation. The kinetic theory for the transport properties of DPD
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fluids [104] supports this conclusion. One interesting limit of the DPD model is the “dissipative ideal
gas”, i.e., a DPD fluid without the conservative forces. The static properties of this fluid are those of
an ideal gas. However, its transport behavior is that of a viscous fluid. The advantage of DPD over
conventional (atomistic) MD is that it involves a coarse-grained model. This makes the technique useful
when studying the mesoscopic properties of complex fluids. However, if one is only interested in static
properties, one can use the standard MD or MC techniques on a model with the same conservative forces,
but without dissipation. The coarse-grained “bead-spring model” of macromolecular chains connects
the particles by flexible, entropic springs and is widely used in polymer physics on this scale. The
Lattice-Boltzmann Method [78] is a simulation technique which solves the Navier-Stokes equation of
fluid flow on a lattice, and which considers a typical volume element of a fluid to be composed of
a collection of particles that are represented by a particle velocity distribution function for each fluid
component at each grid point, i.e., it is a hybrid particle/mesh method. Cellular Automata are discrete –
that is lattice-based – dynamical systems that are typically used as sampling schemes for nucleation and
crystallization simulations in engineering applications. Phase Field models, e.g., of Ginzburg-Landau
type, are used to calculate diffusion and phase transitions on this scale. The mesoscopic scale is also the
regime where methods, based on continuum theory are used. For engineering applications, mesh-based
methods, e.g., FEM are used almost exclusively for the calculation of fluid flows, solid mechanics
and coupled fluid/solid systems. These methods are also used for classical fracture mechanics, albeit
particle based methods in recent years have been proved to be as viable as mesh-based methods in
this respect, see e.g., [33,105–107]. A modern continuum method, which is based on the conservation
equations of continuum theory but avoids many mesh distortion problems of FEM approaches, is the
method of Smooth Particle Hydrodynamics (SPH) [8,76]. The idea of SPH is somewhat contrary to the
concepts of conventional discretization methods, which discretize a continuum system into a discrete
algebraic system. SPH is a particle-based mesh-free approach which is attractive in many applications
especially in hydrodynamic simulations in which the density is field variable in the system equations.
The computational frames in SPH are neither grid cells as in finite difference methods, nor mesh elements
as in the FEM methods, but the moving particles in space. The basic idea is to replace the equations of
fluid dynamics by equations for particles. In effect, one replaces the continuum equations by a set of
particle equations that approximate the continuum and, at the same time, provide a rigorous model of the
underlying, and more fundamental, molecular system. There is no need for any predefined connectivity
between these particles. All one needs is an initial particle distribution. SPH approximates the particles
in the current domain by introducing kernel functions which can serve as an interpolation field [108].
If one wishes to interpret the physical meaning of the kernel function as the probability of a particle’s
position, one is dealing with a probabilistic method, otherwise, it is just a smoothing technique carried
out in the continuum. Thus, the essence of the method is to choose a smoothing function W (r⃗, h) with
particle position r⃗ and smoothing length h, the influence domain of a particle, and to use it to localize
the strong form of a partial differential equation through a convoluted integration.

3.4. Mesoscopic/Macroscopic Scale

When averaging over many degrees of freedom one finally arrives at the phenomenological
macroscopic scale. Here, continuum models are used which describe the (visco-)elastic behavior of
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solids and the properties of fluids based on the Navier-Stokes Equation. Mostly, mesh-based methods
such as FEM, and other procedures of computational fluid dynamics for the solution of partial differential
equations are used, which are typically closely connected to applications in engineering sciences. The
FEM method is generally attributed to A. Hrennikov [109] and R. Courant [14]. The development of
the FEM method has been restricted to engineering application for a long time until in the 1970s this
method was standardized as a theory by mathematicians apt for the treatment of of partial differential
equations in the formulation as variation problems. The salient feature of FEM is the discretization of the
continuum into discrete elements. The individual elements are connected together by a topological map
which is called a mesh. The finite element interpolation functions are then build upon the mesh, which
ensures the compatibility of the interpolation. However, this procedure is not always advantageous,
because the numerical compatibility condition is not the same as the physical compatibility condition of
a continuum. For instance, in a Lagrangian type of computations, one may experience mesh distortion,
which can either end the computation altogether or result in drastic deterioration of accuracy. In
addition, FEM often requires a very fine mesh in problems with high gradients or a distinct local
character, which can be computationally expensive. For this reason, adaptive remeshing procedures
have become a necessity in FEM. Other numerical applications that are not linked to a specific kind
of discretization such as hydrocodes or wave propagation codes which decouple the stress tensor in a
deviatoric and hydrostatic component, are typically used for the simulation of crash and impact situations
of materials [76,77,110–112]. All codes on this level of resolution are usually based on a solution of
the continuum conservation equations of energy, mass and momentum and use explicit formulations of
equations of state as well as of material response to external loading, so-called constitutive equations. In
technical applications, one usually aims at a direct connection to macroscopically measured parameters
without introducing any microscopic or molecular quantities.

4. The Key Ingredients of Molecular Dynamics Simulations

In this section we focus in a tutorial-like fashion on some key issues of MD simulations including
common optimization techniques, often found scattered in specialized conference proceedings or other
publications and we include a short discussion of the efficiency of the algorithms typically used in MD
applications.

One timestep in a MD simulation is typically of the order of femtoseconds (∼ 10−15 s). With several
million timesteps that are usually simulated in a MD run, the largest available length- and timescales
for atomic systems are typically limited to the order of a few hundred nanometers simulated for a
few hundred nanoseconds [113,114]. With larger computer systems, one will be able to simulate even
larger systems; however, the available time scale does not necessarily grow with the number of available
processors, as the time domain cannot be decomposed distributed over many CPUs as it is done when
decomposing the spatial domain.

The largest hitherto reported atomistic simulation run was performed with more than 1.9 × 1010

particles [113], opening the route to investigations of physical structure-property phenomena on the
micrometer scale, which overlaps with typical computational methods based on continuum theory.
Figure 8 exhibits the necessary computer hardware necessary in modern computational science along
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Figure 8. (a) The ENIAC (Electronic Numerical Integrator And Computer), one of the
first electronic computers that started to operate in 1946. (The very first working electronic
computer was the Z3 developed by Konrad Zuse in the 1930s in Germany). The ENIAC
weight 30 tons used more than 18.000 vacuum tubes that can be seen in the picture and had a
basic clock speed of 105 cycles per second. It was programmed by plugging cables and wires
and setting switches using a huge plugboard that was distributed over the entire machine. US
Army Photo. (b) Illustration of the available system size (edge length of a simulated cube
of classical particles or atoms) and the necessary computer hardware for modern large-scale
MD.

with a photograph of the first electronic computer, the ENIAC, developed at the Los Alamos Laboratories
and which started to operate in 1946.

Molecular Dynamics (MD) simulations are carried out in an attempt to analyze the properties of
a N -particle system, i.e., an assembly of atoms, molecules, or particles, in terms of their molecular
structural properties. Macroscopic properties always arise as ensemble averages over a representative
statistical ensemble (either equilibrium or non-equilibrium) of molecular systems. For molecular
modeling, this has two important consequences:

• The knowledge of one single structure, even if it is the structure of the global energy minimum, is
not sufficient. It is always necessary to generate a representative ensemble at a given temperature,
in order to compute macroscopic properties.

• The atomic details of structure and motion obtained in molecular simulations, is often not
relevant for macroscopic properties. This opens the route for simplifications in the description
of interactions and averaging over irrelevant details. Statistical mechanics provides the theoretical
framework for such simplifications.

For the generation of a representative equilibrium ensemble two methods are available: MC and MD
simulations. While MC methods are much simpler than MD as they do not require the calculation of
molecular forces, they do not yield significantly better statistics than MD in a given amount of computing
time. For the generation of non-equilibrium ensembles and for the analysis of dynamics events, only MD
is the appropriate and more universal technique. The model assumptions on the physical behavior of a
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many particle system investigated in MD simulations is put into the interaction potentials Φ, respectively
the force fields −∇Φ. MD simulations in their simplest form consist in the step-by-step numerical
solution of the classical Newtonian equations of motion, which for N particles of mass mi and position
vectors r⃗i may be written as

F⃗i = mi
d2

dt2
r⃗i = −∇iΦ(r⃗i − r⃗N). (8)

4.1. Limitations of MD

After an initial equilibration phase, the system will usually reach an equilibrium state. By averaging
over an equilibrium trajectory (coordinates over a function of time) many macroscopic properties can be
extracted from the output. Common approximations (and therefore limitations) of MD simulations are:

• Artificial boundary conditions

The system size that can be simulated with MD is very small compared to real molecular systems.
Hence, a system of particles will have many unwanted artificial boundaries (surfaces). In order to
avoid real boundaries one introduces periodic boundary conditions (see Section 4.3.) which can
introduce artificial spatial correlations in too small systems. Therefore, one should always check
the influence of system size on results.

• Cut off of long-range interactions

Usually, all non-bonded interactions are cut-off at a certain distance in order to keep the cost of
force computation (and the search effort for interacting particles) as small as possible. Due to
the minimum image convention (see Section 4.4.) the cutoff range may not exceed half the box
size. While this is large enough for most systems in practice, problems are only to be expected
with systems containing charged particles. Here, simulations can go wrong badly and, e.g., lead
to an accumulation of the charged particles in one corner of the box. Here, one has to use special
algorithms such as the particle-mesh Ewald method [115,116].

• The simulations are classical

Using Newton’s equations of motion implies the use of classical mechanics for the description
of the atomic motion. All those material properties connected with the fast electronic degrees of
freedom are not correctly described. For example, atomic oscillations (e.g., covalent C-C-bond
oscillations in polyethylene molecules, or hydrogen-bonded motion in biopolymers such as DNA,
proteins or biomembranes) are typically of the order 1014 Hz. The specific heat is another example
which is not correctly described in a classical model as here, at room temperature, all degrees of
freedom are excited, whereas quantum mechanically, the high-frequency bonding oscillations are
not excited, thus leading to a smaller (correct) value of the specific heat than in the classical picture.
A general solution to this problem is to treat the bond distances and bond angles as constraints in
the equations of motion. Thus, the highest frequencies in the molecular motion are removed and
one can use a much higher timestep in the integration [117].

• The electrons are in the ground state
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Using conservative force fields in MD implies that the potential is a function of the atomic positions
only. No electronic motions are considered, thus the electrons remain in their ground state and are
considered to follow the core movements instantaneously. This means that electronically excited
states, electronic transfer processes and chemical reactions cannot be treated.

• Approximative force fields

Force fields are not really an integral part of the simulation method but are determined from
experiments or from a parameterization using ab initio methods. Also, most often, force
fields are pair-additive (except for the long-range Coulomb force) and hence cannot incorporate
polarizabilities of molecules. However, such force fields exist and there is continuous effort to
generate such kind of force fields [118,119]. In most practical applications however, e.g., for
biomacromolecules in aqueous solution, pair potentials are quite accurate mostly because of error
cancellation. This does not always work, for example ab initio predictions of small proteins still
yields mixed results and when the proteins fail to fold, it is often unclear whether the failure
is due to a deficiency in the underlying force fields or simply a lack of sufficient simulation
time [120,121].

• Force fields are pair additive

All non-bonded forces result from the sum of non-bonded pair interactions. Non pair-additive
interactions such as the polarizability of molecules and atoms, are represented by averaged
effective pair potentials. Hence, the pair interactions are not valid for situations that differ
considerably from the test systems on which the models were parameterized. The omission of
polarizability in the potential implies that the electrons do not provide a dielectric constant with
the consequence that the long-range electrostatic interaction between charges is not reduced (as it
should be) and thus overestimated in simulations.

Classics in MD that helped to develop the method are for example Alder and Wainwright [45,47]
(1958, 1961), Rahman [103] (1964), Verlet [122,123] (1967, 1968), Weeks, Chandler and
Andersen [124] (1979), Rahman and Stillinger [125] (1971), Parinello and Rahman [98,126] (1981,
1982), van Gunsteren and Berendsen [117] (1982), Hoover [127] (1986) and Allen and Tildesley [7]
(1991).

4.2. Molecular Interactions

All macroscopic properties of materials, be it in the solid, fluid or gaseous state, are determined by
the intermolecular forces acting between the constituents of matter. Important sources of measuring
and understanding intermolecular forces are scattering experiments, IR- or Raman spectroscopy,
thermophysical data (virial coefficients, specific heats) or NMR data. In general, one cannot measure
intermolecular forces directly just with one type of experiment but it is rather an interplay between
the physical models used for the interpretation of data and the derivation of a functional form of the
sought-after intermolecular potential. The analytical form of the potential which is derived from theory
is then consistently adjusted to the experimental findings [128,129].
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Classical MD simulations are used in Polymer Physics to investigate the structure (e.g., form
factors, pair correlation functions), the dynamics (e.g., transport coefficients, correlations) and the
thermodynamics (e.g., phase diagrams and ensemble averages of observables of interest) of polymer
molecules and complexes which are described as N -particle systems. In polymers the atoms are
covalently bound in a fixed topological arrangement; thus one distinguishes non-bonded interactions
acting between all atoms of a system and bonded interactions which are only effective between atoms in
each particular polymer chain or complex macromolecule.

Non-bonded Interactions

Various physical properties are determined by different regions of the potential hypersurface of
interacting particles. Thus, for a complete determination of potential curves, widespread experiments are
necessary. For a N−body system the total energy Φnb, i.e., the potential hypersurface of the non-bonded
interactions can be written as [7]

Φnb(r⃗) =
N∑
i

ϕ1(r⃗i) +
N∑
i

N∑
j>i

ϕ2(r⃗i, r⃗j) +
N∑
i

N∑
j>i

N∑
k>j>i

ϕ3(r⃗i, r⃗j, r⃗k) + · · ·, (9)

where ϕ1, ϕ2, ϕ3, ... are the interaction contributions due to external fields (e.g., the effect of container
walls) and due to pair, triple and higher order interactions of particles. In classical MD one often
simplifies the potential by the hypotheses that all interactions can be described by pairwise additive
potentials. Despite this reduction of complexity, the efficiency of a MD algorithm taking into account
only pair interactions of particles is rather low (of order O(N2)) and several optimization techniques are
needed in order to improve the runtime behavior to O(N).

The simplest general Ansatz for a non-bonded potential for spherically symmetric systems, i.e.,
Φ(r⃗) = Φ(r) with r = |ri − rj| is a potential of the following form:

Φnb(r) = ΦCoulomb(r) +

(
C1

r

)12

+

(
C2

r

)6

. (10)

Parameters C1 and C2 are parameters of the attractive and repulsive interaction and the electrostatic
energy ΦCoulomb(r) between the particles with position vectors r⃗i and r⃗j is given by:

ΦCoulomb(r) =
1

ϵ
k ·

∑
i

∑
j>i

zizje
2

|r⃗i − r⃗j|
(11)

The constant k = 1 is in the cgs-system of units and ϵ is the dielectric constant of the medium, for
example ϵair = 1 for air, ϵprot = 4 for proteins or ϵH20 = 82 for water. The zi denote the charge of
individual monomers in the macromolecule and e is the electric charge of an electron.

The electrostatic interaction originates the dipolar character of water which is the basic requirement
for the existence of life. Water is a dipole because of the higher electronegativity of oxygen which gives
rise to a partial negative charge at the oxygen atom and partial positive charges at the H-atoms in the
H2O-molecule. If the electronegativity of one atom is large enough, it can attract the whole electron
from the bonding partner. This is the case for example with NaCl where the initially electric neutral
Cl atom becomes a Cl−-ion and Na turns into Na+ accordingly. Chemical bonds which emerge from
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Coulomb attraction of ions are called ionic bonds. This type of chemical bond plays an important role
for the formation of structures of biomolecules. For example, charged sidegroups may bind to receptors
within the cell membrane or protein structures are be stabilized when a positively charged, protonated
ammonium group (+NH4) and a negatively charged carboxyl group (COOH−) form an ionic bonding.

The electric dipole moment is defined as p⃗el = |q|d⃗ where q is the total charge of the dipole and d⃗ is
the distance vector between the two charges. The electric field E⃗ of a dipole p⃗el is given by [130]

E⃗(r⃗) =
1

4πϵϵ0

3u⃗r(p⃗el · u⃗r)− p⃗el
|r⃗|3

(12)

where u⃗r is a unit vector pointing from the origin r = 0 into the direction of r⃗. Thus the potential energy
of a dipole in an electric field E⃗ is given by

Ep = p⃗el · E⃗ (13)

Inserting Equation (12) in (13) one yields a characteristic leading 1/r3 term in the potential energy
between two dipoles with moments p⃗1 and p⃗2.

Electric neutral molecules may also interact with each other due to thermal (Brownian) motion which
may induce a mutual dipole moment in the molecules. These induced dipoles create an attractive
interaction which is called Van-der-Waals interaction. The quantity that measures the ability of a neutral
molecule to induce dipoles is the polarizability α which is given by

p⃗el = αϵ0E⃗ (14)

For the potential energy Ep of a dipole which is induced by an electric field E⃗ one obtains by elementary
integration:

Ep = −
∫ E

0

p⃗el · dE⃗ ′ = −1

2
αϵ0|E⃗|

2
(15)

Thus, the characteristic interaction energy of two mutual induced electric dipoles is proportional to 1/r6

and consequently rather weak. The polarizability of water molecules gives rise to another, directed
interaction which is called hydrogen bond. Hydrogen bonds are not only found in fluid and solid water
but also in complex biopolymers and macromolecules, for example in proteins, where hydrogen bonds
are responsible for the genesis of tertiary structures such as α-helices or β-sheets. Despite the directed
nature of the hydrogen bond one often assumes a spherically symmetric analytic form of the type (A ·
r−12 −B · r−6), but also a more precise form taking into account the non-linearity of the hydrogen bond
by angle θ between N -H-O have been proposed [131]:

Φhb =
∑
ij

cos θ(−A · r−6
ij +B · r−12

ij ) + (1− cos θ)(−C · r−6
ij +D · r−12

ij ) (16)

Here, parameters A,B,C,D are constants depending on the considered atom pairs.
With decreasing distance of two dipoles the electronic repulsion of the atomic shells starts to

dominate. The minimum of the non-bonded interaction is reached when the attraction just cancels
repulsion. This distance is called Van-der-Waals radius σ0.
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The probably most commonly used form of the potential of two neutral atoms which are only bound
by Van-der-Waals interactions, is the Lennard-Jones (LJ), or (a-b) potential which has the form [132]

Φa,b(r) = αϵ

[(σ0

r

)a

+
(σ0

r

)b
]
, (17)

where

α =
1

a− b

(
aa

bb

) 1
a�b

, Φmin = ϵ and Φ(σ) = 0. (18)

The most often used LJ-(6-12) potential for the interaction between two particles with a distance
r = |r⃗i − r⃗j| then reads (cf. Equation (10)):

ΦLJ(r) = 4ϵ

[(σ0

r

)12

+
(σ0

r

)6
]
. (19)

Parameter ϵ determines the energy scale and σ0 the length scale. In simulations one uses dimensionless
reduced units which tend to avoid numerical errors when processing very small numbers, arising e.g.,
from physical constants such as the Boltzmann constant kB = 1.38 · 10−23J/K. In these reduced
(simulation) units, one MD timestep is measured in units of τ̂ = (mσ2/ϵ)1/2, where m is the mass
of a particle and ϵ and σ0 are often simply set to σ0 = ϵ = kBT = 1. Applied to real molecules, for
example to Argon with m = 6.63 × 10−23kg, σ0 ≈ 3.4 × 10−10m and ϵ/kB ≈ 120K one obtains a
typical MD timestep τ̂ ≈ 3.1× 10−13s.

Using an exponential function instead of the repulsive r−12 term, one obtains the Buckingham
potential [133]:

Φ(r) = b exp(−ar)− c

r6
− d

r8
. (20)

This potential however has the disadvantage of using a numerically very expensive exponential function
and it is known to be unrealistic for many substances at small distances r and has to be modified
accordingly.

For reasons of efficiency, a classical MD potential should be short-ranged in order to keep the number
of force calculations between interacting particles at a minimum. Therefore, instead of using the original
form of the potential in Equation (19), which approaches 0 at infinity, it is common to use a modified
form, where the potential is simply cut off at its minimum value r = rmin = 6

√
2 and shifted to positive

values by ϵ such that it is purely repulsive and smooth at r = rcut =
6
√
2:

Φcut
LJ(r) =

 4 ϵ

{(σ0

r

)12

−
(σ0

r

)6
}
+ ϵ r ≤ 21/6σ0,

0 otherwise.
(21)

Another extension of the potential in Equation (21) is proposed in [51] where a smooth attractive part
is introduced again, in order to allow for including different solvent qualities of the solvent surrounding
the polymer:

Φcos(r) =

[
1

2
· cos(αr2 + β) + γ

]
ϵ. (22)
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This additional term adds an attractive part to the potential of Equation (21) and at the same time – by
appropriately choosing parameters α, β and γ – keeps the potential cutoff at rcut smooth. The parameters
α, β and γ are determined analytically such that the potential tail of Φcos has zero derivative at r = 21/6

and at r = rcut, while it is zero at r = rcut and has value γ at r = 21/6, where γ is the depth of the
attractive part. Further details can be found in [51]. When setting rcut = 1.5 one sets γ = −1 and
obtains α and β as solutions of the linear set of equations

21/3α+ β = π, (23)

2.25α+ β = 2π (24)

The total unbounded potential can then be written as:

ΦTotal(r, λ) =


Φcut

LJ(r)− λϵ 0 < r < 21/6 σ0,

λΦcos(r) 21/6 σ0 ≤ r < rcut,

∞ otherwise,
(25)

where λ is a new parameter of the potential which determines the depth of the attractive part. Instead
of varying the solvent quality in the simulation by changing temperature T directly (and having to
equilibrate the particle velocities accordingly), one can achieve a phase transition in polymer behavior by
changing λ accordingly, cf. Figure 9. Using coarse-grained models in the context of lipids and proteins,

Figure 9. Graph of the total unbounded potential of Equation (25) which allows for modeling
the effects of different solvent qualities.

where each amino acid of the protein is represented by two coarse-grained beads, it has become possible
to simulate lipoprotein assemblies and protein-lipid complexes for several microseconds [134].
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The assumption of a short ranged interaction is usually fulfilled very well for all (uncharged)
polymeric fluids. However, as soon as charged systems are involved this assumption breaks down and
the calculation of the Coulomb force requires special numerical treatment due to its infinite range.

Bonded Interactions

Using the notion of intermolecular potentials acting between the particles of a system one cannot
only model fluids made of simple spherically symmetric particles but also more complex molecules with
internal degrees of freedom (due to their specific monomer connectivity). If one intends to incorporate
all aspects of the chemical bond in complex molecules one has to treat the system with quantum
chemical methods, cf. Section 3.1. Usually, one considers the inner degrees of freedom of polymers
and biomacromolecules by using generic potentials that describe bond lengths li, bond angles θ and
torsion angles ϕ. When neglecting the fast electronic degrees of freedom, often bond angles and bond
lengths can be assumed to be constants. In this case, the potential includes lengths l0 and angles θ0, ϕ0

at equilibrium about which the molecules are allowed to oscillate, and restoring forces which ensure
that the system attains these equilibrium values on average. Hence the bonded interactions Φbonded for
polymeric macromolecular systems with internal degrees of freedom can be treated by using some or all
parts of the following potential term:

Φbonded(r, θ, ϕ) =
κ

2

∑
i

(| r⃗i − r⃗i−1 − l0 |)2 +
kθ
2

∑
k

(θk − θ0)
2 +

β

2

∑
m

(ϕm − ϕ0)
2. (26)

Here, the summation indices sum up the number of bonds i at positions r⃗i, the number of bond angles
k between consecutive monomers along a macromolecular chain and the number of torsion angles m

along the polymer chain. A typical value of κ = 5000 ensures that the fluctuations of bond angles are
very small (below 1%). The terms l0, θ0 and ϕ0 are the equilibrium distance, bond angle and torsion
angle, respectively.

In particular in polymer physics, very often a Finitely Extensible Non-linear Elastic (FENE) potential
is used which, in contrast to a harmonic potential, restricts the maximum bond length of a polymer bond
to a prefixed value R0 [51]:

ΦFENE(r) =

{
−1

2
κR2

0 ln(1− r2

R2
0
) r < R0,

∞ otherwise.
(27)

The FENE potential can be used instead of the first term on the right hand side of the bonded potential in
Equation (26). Figure 10 illustrates the different parameters which are used in the description of bonded
interactions in Equation (26). Further details on the use of potentials in macromolecular biology and
polymer physics may be found in [3,135–137].

4.3. Periodic Boundary Conditions

In a MD simulation only a very small number of particles can be considered. To avoid the (usually)
undesired artificial effects of surface particles which are not surrounded by neighboring particles in
all directions and thus are exerted to non-isotropic forces, one introduces periodic boundary conditions.
Using this technique, one measures the “bulk” properties of the system, due to particles which are located
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Figure 10. Illustration of the potential parameters used for modeling bonded interactions.

far away from surfaces. As a rule, one uses a cubic simulation box were the particles are located. This
cubic box is periodically repeated in all directions. If, during a simulation run, a particle leaves the
central simulation box, then one of its image particles enters the central box from the opposite direction.
Each of the image particles in the neighboring boxes moves in exactly the same way, cf. Figure 11 for a
two dimensional visualization.

Figure 11. Two-dimensional schematic of periodic boundary conditions. The particle
trajectories in the central simulation box are copied in every direction.

The cubic box is used almost exclusively in simulations with periodic boundaries, mainly due
to its simplicity, however also spherical boundary conditions have been investigated were the
three-dimensional surface of the sphere induces a non-Euclidean metric. The use of periodic boundary
conditions allows for a simulation of bulk properties of systems with a relatively small number of
particles.

4.4. Minimum Image Convention

The question whether the measured properties with a small, periodically extended system are to be
regarded as representative for the modeled system depends on the specific observable that is investigated
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and on the range of the intermolecular potential. For a LJ potential with cut-off as in Equation (21) no
particle can interact with one of its images and thus be exposed to the artificial periodic box structure
which is imposed upon the system. For long range forces, also interaction of far away particles have to
be included, thus for such systems the periodic box structure is superimposed although they are actually
isotropic. Therefore, one only takes into account those contributions to the energy of each one of the
particles which is contributed by a particles that lies within a cut-off radius that is at the most 1/2LB

with box length LB. This procedure is called minimum image convention. Using the minimum image
convention, each particle interacts with at the most (N − 1) particles. Particularly for ionic systems
a cut-off has to be chosen such that the electro-neutrality is not violated. Otherwise, particles would
start interacting with their periodic images which would render all calculations of forces and energies
erroneous.

4.5. Force Calculation

The most crucial part of a MD simulation is the force calculation. At least 95% of a MD code is spent
with the force calculation routine which uses a search algorithm that determines interacting particle
pairs. Therefore this is the task of a MD program which has to be optimized first and foremost. We
will review a few techniques that have become standard in MD simulations which enhance the speed
of force calculations considerably and speed up the algorithm from O(N2) run time to O(N) run time.
Starting from the original LJ potential between two particles i and j with distance r = |r⃗i − r⃗j| of
Equation (17), one obtains the potential function for N interacting particles as the following double sum
over all particles:

Φ(r⃗1, ..., r⃗N) =
N∑
i=1

N∑
j=i+1

ΦLJ(r) = 4ϵ
N∑
i=1

N∑
j=i+1

(σ0

r

)6

×
((σ0

r

)6

− 1

)
. (28)

The corresponding force F⃗i exerted on particle i by particle j is given by the gradient with respect to r⃗i

as:

F⃗i = −∇r⃗i
ΦLJ(r⃗1, ..., r⃗N) = −24× ϵ

N∑
j=1,j ̸=i

1

r2
×

(σ0

r

)6

×
(
1− 2×

(σ0

r

)6
)
r⃗ij, (29)

where r⃗ij = (r⃗i − r⃗j) is the direction vector between particles i and j at positions r⃗i and r⃗j , and r =

|r⃗i − r⃗j|. Hence, in general, the force F⃗i on particle i is the sum over all forces F⃗ij := −∇r⃗i
Φ between

particle i and all other particles j:

F⃗i =
N∑

i=1,j ̸=i

F⃗ij (30)

The least favorable method of looking for interacting pairs of particles and for calculating the double
sum in Equations (28) and (29) is the “brute force” method that simply involves taking a double loop
over all particles in the (usually) cubic simulation box, thus calculating 1

2
N(N − 1) interactions with a

N2 efficiency. This algorithm becomes extremely inefficient for systems of more than a few thousand
particles, cf. Figure 12a.
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Linked-Cell Algorithm

In general, in molecular systems, the potential as well as the corresponding force decays very fast
with the distance r between the particles. Thus, for reasons of efficiency, in molecular simulations one
often uses the modified LJ potential of Equation (21) which introduces a cutoff rcut for the potential. The
idea here is to neglect all contributions in the sums in Equations (28) and (29) that are smaller than the
threshold rcut which characterizes the range of the interaction. Thus, in this case the force F⃗i on particle
i is approximated by

F⃗i ≈ −24× ϵ

N∑
j=1,j ̸=i
0<r�rcut

1

r2
×

(σ0

r

)6

×
(
1− 2×

(σ0

r

)6
)
r⃗ij (31)

Contributions to the force on particle i that stem from particles j with r ≤ rcut are neglected. This
introduces a small error in the computation of the forces and the total energy of the system, but it
reduces the overall computational effort from O(N2) to O(N). For systems with short-ranged or rapidly
decaying potentials, a very efficient algorithm for the search of potentially interacting particles, i.e.,
those particles that are within the cutoff distance rcut of a particle i, has been developed [4]. In MD
this algorithm can be implemented most efficiently by geometrically dividing the volume of the (usually
cubic) simulation box into small cubic cells whose sizes are slightly larger than the interaction range rcut
of particles, cf. Figure 12b. The particles are then sorted into these cells using the linked-cell algorithm
(LCA). The LCA owes its name to the way in which the particle data are arranged in computer memory,
namely as linked list for each cell. For the calculation of the interactions it is then sufficient to calculate
the distances between particles in neighboring cells only, since cells which are further than one cell apart
are by construction beyond the interaction range. Thus, the number of distance calculations is restricted
to those particle pairs of neighboring cells only which means that the sums in Equation (30) are now split
into partial sums corresponding to the decomposition of the simulation domain into cells. For the force
F⃗i on particle i in cell number n one obtains a sum of the form

F⃗i =
∑
cellm

m2Ω(n)

∑
j2fall particles in cell mg

j ̸=i

F⃗ij (32)

where Ω(n) denotes cell n itself together with all cells that are direct neighbors of cell n. The linked-cell
algorithm is a simple loop over all cells of the simulation box. For each cell there is a linked list which
contains a root pointer that points to the first particle in the respective cell which then points to the next
particle within this particular cell, until the last particle is reached which points to zero, indicating that
all particles in this cell have been considered. Then the algorithm switches to the root pointer of the next
cell and the procedure is repeated until all interacting cells have been considered, cf. Figure 12.

Assuming the average particle density in the simulation box as ⟨ρ⟩ then the number of particles in
each one of the subcells is ⟨ρ⟩ r3cut. The total number of subcells is N/ ⟨ρ⟩ r3cut and the total number of
neighbor cells of each subcell is 26 in a cubic lattice in three dimensions (3D). Due to Newton’s third
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law only half of the neighbors actually need to be considered. Hence, the order to which the linked-cell
algorithm reduces the search effort is given by:

26

2

(
⟨ρ⟩ r2cut

) N

⟨ρ⟩ r3cut
= 13(⟨ρ⟩ r3cut)

2N (33)

For this method to function, the size of the simulation box has to be at least 3rcut, cf. Figure 12. For
simulations of dense melts with many particles, this requirement is usually met. Consequently, by this
method, the search-loop effort is reduced to O(N), but with a pre-factor that still can be very large,
depending on the density of particles ⟨ρ⟩ and the interaction range rcut.

Linked-Cell Algorithm With Neighbor-Lists

If one compares the interaction sphere around one particular particle to the volume that is actually
scanned around it by this algorithm, one finds that only a fraction 4π

81
≈ 1

6
of the particles really

interact, cf. Figure 12c for a 2D picture. To avoid these wasted calculations one should approximate the
interaction sphere more closely. One way to do it would be to make the cells smaller and simultaneously
increase the number of neighbor cells (next nearest, etc.) which one has to scan. This method has the
severe drawback of increasing the loop iterations dramatically, while most of the cells will be empty.
Thus, in a naive implementation the cost of the loop overhead will eventually overwhelm the benefit
of the saved distance calculations. However, there is a different method available: Along with the cell
subdivision a neighbor list of potentially interacting particle pairs is constructed. Here, only particles
within the inner sphere of radius rcut surrounding a specific particle i actually interact with each this
particle, cf. Figure 12c. In order to speed up the search algorithm for identifying interacting particles,
the volume between the outer sphere of radius (rcut + rskin) and the smaller one is additionally covered
by the neighbor list for particle i. Thus, this list contains not only actually interacting particles at some
specific point in time, but it also contains all particles that might enter the interaction range of the inner
sphere within the next few timesteps. This greatly speeds up the simulation, because the list of potentially
interacting particles will be valid for several timesteps, in the order of 5–15, before it has to be rebuilt.
The interval, at which list-reconstruction has to be done, depends upon rcut, the particle density ρ and the

skin radius rskin. Once a particle has moved a distance larger than d2 =
(rskin

2

)2

, the update is due. The
accumulated distance that each particle moved can be readily monitored during the distance calculation.
Tests of this method with the bonded potential of Equation (25) and the FENE potential of Equation (27)
for flexible macromolecules with rcut = 1.5σ and ρ = 0.85σ show that a radius of rskin ≈ 0.35σ to 0.40σ

is the optimal choice [3,51]. The length di of the cells in each direction is given by Li/modulo(Li/r
max
cut )

with Li being the box size in each direction and rmax
cut being the largest cutoff of all potentials that are

used. The cells are numbered, beginning with the one in the lower left corner of the simulation box
where the origin of the coordinate system is located. Each time when an update of the neighbor list is
due, the particles are periodically back-folded into the simulation box and then sorted into the different
cells according to their coordinates. Subsequently, only the distances of particles of neighbor cells are
calculated, with each cell having 26 neighbors in three dimensions. Again, due to Newton’s third axiom
only half of them have to be considered.
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Figure 12. MD Optimization schemes for the search of potentially interacting particles. (a)
The least efficient all particle “brute force” approach with run time O(N2) (b) The linked-cell
algorithm which reduces the search effort to O(N). (c) The linked-cell algorithm combined
with neighbor lists which further reduces the search effort by using a list of potentially
interacting neighbor particles which can be used for several timesteps before it has to be
updated. In this 2D representation, the radius of the larger circle is rcut + rskin and the inner
circle, which contains actually interacting particles, has radius rcut.

Ghostparticles

In a MD simulation one can only investigate the properties of a relatively small number of particles
compared to a real system. Therefore one introduces the periodic boundary conditions as described
in Section 4.3. The periodic boundary conditions are realized by performing distance calculations
taking into account the minimum image convention according to which the real distance between any
two particles is given by the shortest distance of any of their images. Once a particle has crossed the
boundaries it is periodically back-folded into the simulation box of volume V = Lx × Ly × Lz.. This
periodic wrap-around is done in the innermost loop of the force calculation and therefore is extremely
expensive in terms of simulation time.

Consequently, another method of gaining speed in a MD simulation is to remove any mentioning of
periodic boundaries in the force calculations. This can be done by using the concept of ghost particles,
see e.g., [3].

The idea with ghost particles is the following: All particles that are in cells which are on the surface
of the simulation box are being duplicated right away into the extra ghost cells surrounding the whole
box. These ghost particles are now used for distance calculations instead of the original coordinates. As
a result, the periodic back-folding only has to be done for a relatively small number of surface particles
in the outermost cells, but not anymore for the many particles in the innermost force loop.

As a result of Newton’s third axiom, one actually needs to consider only half of the ghost cells
surrounding the original box. The schematic in Figure 13 displays how the individual ghost layers in
each direction are set up: The number of adjacent neighbor cells now depends upon the location of the
considered cell. In a cube there are 18 different cases and again due to Newton’ s third axiom only
half of them need to be considered. The sub-routine that contains the search algorithm which examines
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Figure 13. Schematic of the sequential construction of different ghost cell layers. An
individual cell of the simulation box can be identified by the three integers (ix, iy, iz). The
original box in this example has nx = nz = 5 and ny = 4 cells in each direction, i.e.,
there is no need for the simulation box to have cubic shape. (a) In a first step, all particles
of cells with indices (ix = 1; iy = 1, ..., ny; iz = 1, ..., nz) are copied into the first layer
of ghostparticles. The second layer of ghostparticles then contains all particles pertaining
to cells (ix = 1, ..., nx; iy = 1; iz = 1, ..., nz) including the ghostparticles of the ghostcells
from the first ghostlayer. Finally, the third layer of ghostcells is constructed by copying the
particles of the cells with (ix = 1, ..., nx; iy = 1, ..., ny; iz = 1) as indicated in the figure.

adjacent cells has to make provision for all 9 different cases. The number of adjacent cells for these
different cases is fixed and can be written in a static array.

The additional advantage of using ghost cells lies in the fact, that the effort of setting up the cells and
the effort of book-keeping decreases with system size, as the share of cells in the outermost layers of
the simulation box decrease. For example, in a system with N = 103 particles, on average ≈ 73% of
all particles are ghosts, whereas this number has decreased to an average value of ≈ 13% for a system
with the same density, but N = 2 × 105. Using this technique for larger system can result in a overall
speed-up of up to a factor of 2.

4.6. Efficiency of the MD Method

The computing time of an algorithm is measured by the number of elementary steps (ES) that this
algorithm needs until it stops, i.e., until the problem is solved. Examples of elementary steps are:

• Testing an if -condition,

• Assigning a value, i.e., changing the contents of a memory,

• Executing one of the elementary operations (+,−,×, DIV,MOD),

• Initializing a loop variable.
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As an example. we consider the following piece of pseudocode which gets as input an array a[1, ..., n]

and sorts this array according to the size of its elements.

1. START

2. for i := 1 TO N - 1 DO

3. for j := 1 TO N DO

4. if a[i] > a[j] then h = a[i]; a[i] = a[j]; a[j] = h

5. END

The kernel of the two loops in this algorithm consists of one if -condition (1 ES) and – if the condition
is true – three assignments (3 ES) which switch a[i] with a[j]. Each i- and j-loop counts 1 ES. Thus, one
can directly calculate the number of ES:

N−1∑
k=1

(
1 +

N∑
l=k+1

(1 + 4)

)
= (N − 1) +

N−1∑
k=1

N∑
l=k+1

5 (34)

= (N − 1) + 5× N × (N − 1)

2
(35)

= 2.5×N2 − 1.5× (N − 1) . (36)

Assuming that one ES on an average computer takes 10−9 seconds, one can sort arrays containing 2×105

elements within one second. Often however, one is only interested in how the run time of an algorithm
depends on the number of input elements N , only considering the leading term in the computation time.
In the example above one would speak of a “quadratic”, or “order N2” runtime and write symbolically
O(N2). The meaning of this symbolic O-notation is the following:

A function g(N) is of order f(N), i.e., g(N) = O[f(N)] if there are constants c and N0 such that for
all N ≥ N0: g(N) ≤ c × f(N). For example, the function 3N2 + 4N is of order N2, or in symbolic
notation: 3N2 +4N = O(N2), as one can choose c = 3. Then 3N2 +4N ≤ 3N2 for all N > 5. Thus,
the previous relation is true for e.g., N0 = 6.

In Table 2 we review five different algorithms A1-A5 with corresponding run times
N,N2, N3, 2N , N !, where N is the considered system size, e.g., the number of atoms, particles, nodes
or finite elements in some simulation program. We again assume that one elementary step takes 10−9

seconds on a real computer.
The division of algorithms according to their run time in Table 2 allows for classifying algorithms

into efficient and inefficient ones. It is obvious that exponential run times (algorithms A4 and A5) are
not acceptable for all practical purposes. For these algorithms, even with very small system sizes N one
reaches run times which are larger than the estimated age of the universe (1010 years). Algorithm A5

could, for example, be a solution of the traveling salesman problem. If the first point out of N has been
visited, there are (N − 1) choices for the second one. This finally results in an exponential run time of at
the least N ! steps. A runtime 2N as in A4 is typical for problems where the solution space of the problem
consists of a subset of a given set of N objects; There are 2N possible subsets of this basis set. The
“efficient” algorithms A1, A2, A3 with run times of at the most N3 are the most commonly used ones in
computational materials science.
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Table 2. Overview of typical run times of algorithms occurring in materials science
applications. Depicted are the number of ES and the corresponding real times for the
different algorithms under the assumption that one ES takes 10−9 seconds.

Algorithm run time N = 10 N = 20 N = 50 N = 100

10 ES 10 ES 10 ES 10 ES
A1 N 10−8 s 2× 10−8 s 5× 10−8 s 10−7 s

100 ES 400 ES 2.5× 103 ES 105 ES
A2 N2 10−7 s 4× 10−7 s 2.5× 10−6 s 10−5 s

1000 ES 8× 103 ES 105 ES 106 ES
A3 N3 10−6 s 8× 10−6 s 10−4 s 0.001 s

1024 ES 105 ES 1015 ES 1030 ES
A4 2N 10−6 s 10−3 s 13 days ∼ 1013 years

∼ 106 ES ∼ 1018 ES ∼ 1064ES 10158 ES
A5 N ! 3× 10−3 s 77 years 1048 years ∼ 10141 years

Table 3. Speedup of the runtime of different algorithms assuming a hardware speedup factor
of 10 and 100. The runtime of efficient polynomially bounded (class P) algorithms will be
shifted by a factor while exponential (class NP) algorithms are only improved by an additive
constant.

Algorithm run time efficiency CPU speedup factor 10 CPU speedup factor 100

A1 N E1 10×N1 100×N1

A2 N2 E2

√
10×N2 = 3.16×N2

√
100×N2 = 10×N2

A3 N3 E3
3
√
10×N3 = 2.15×N3

3
√
100×N3 = 4.64×N3

A4 2N E4 log2(10×N4) = N4 + 3.3 log2(100×N4) = N4 + 6.6

A5 N ! E5 ≈ N5 + 1 ≈ N5 + 2

Table 3 shows why algorithms A1, A2 and A3 are considered to be efficient: Assuming that the
available computer systems—due to a technology jump—will be 10 or 100 times faster than today,
then the efficiency of algorithms A1, A2 and A3 will be shifted by a factor, whereas for the exponential
algorithms A4, A5 the efficiency will be shifted only by an additive constant.

Algorithms A1, A2 and A3 have polynomial run times. An algorithm is said to be efficient if its
runtime—which depends on some input N—has a polynomial upper bound. For example, the runtime
function 2N4(log2N)4+3

√
N has a polynomial upper bound (for large N ), e.g., N5. In O-notation this

is expressed as O(Nk) with k being the degree of the polynomial. Algorithms A4 and A5 on the other
hand have no polynomial upper limit. Thus, they are called inefficient. In computer science, the class
of problems that can be solved with efficient algorithms (i.e., algorithms that are polynomially bounded)
are denoted with the letter P, cf. Figure 14a. As the set of polynomials is closed under addition,
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multiplication and composition, P is a very robust class of problems: Combining several polynomial
algorithms results into an algorithm which again exhibits a polynomial runtime.

Figure 14. (a) Venn diagram of the class P (efficiently solvable problems), class
NP (non-deterministic polynomial, i.e., inefficiently solvable problems), and undecidable
problems (orange box) for which no algorithms are known. Today, it is generally assumed
that all problems in P are contained in the class NP, cf. Figure 14. So far, no proof that
decides whether P = NP or P ̸= NP is known. (b) An inefficient algorithm (dashed
line) can – for some small values N up to an input number N0 – be more efficient than a
polynomially bounded algorithm (solid line). (c) A real algorithm (dotted line) will always
have a run time behavior somewhat in between the worst-case (dashed line) and best-case
(solid line) run time.

Due to the robustness of the definition of the class P of efficient algorithms, an inefficient algorithm
can have a shorter runtime than its efficient counterpart, up to a certain system size N0. For example, an
algorithm with a runtime 1000×N1000 falls into the class P whereas an algorithm with a runtime 1.1N is
exponential and thus inefficient. However, the exponential algorithm only exhibits longer runtime than
the efficient one for system sizes up to N ∼ 123, 000, cf. Figure 14b.

In the example of the sort algorithm above, the “worst-case” run time is considered assuming that the
if -condition within the loop of the algorithm is true and thus, three elementary steps are always executed.
In the “best-case”—e.g., if the array has been sorted – this if -condition is not true and there are only
(N − 1) + N(N − 1) = N2 − 1 ES. For a randomly shuffled array one can show that the expectation
value for the number of elementary steps is

∑N
k=2(1/k) ≈ lnN [138]. Thus, with a randomly sorted

array the total number of ES in this example is roughly N2 + 3N lnN . Hence, the actual runtime of an
algorithm lies somewhere between the worst-case and the average-case runtime behavior, cf. Figure 14c.

In particle based simulations with assumed pairwise additive interactions the total force on the
particles (or atoms) in a system depends on the current position of two particles only. If this assumption
breaks down and has to abandoned in a simulation model, contributions of more complex non-additive
interactions to the total potential have to be considered. For example, a suitable form of three-body
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interactions was introduced for the first time by Axilrod and Teller [139]. Such a potential depends on
the position of at least three different particles. Solving the Schrödinger equation in ab initio simulations
also leads to a N3 or even higher polynomial dependency of the run time. This is the main reason why
ab initio methods are restricted to very small system sizes.

Solving the classical Newtonian equations of motion with a “brute-force” strategy (cf. Figure 12a)
leads to a O(N2) run time as 1/2 × N × (N − 1) particle distances have to be calculated. This is also
generally true in finite element codes where special care has to be taken when elements start to penetrate
each other. Usually one uses so-called contact-algorithms which use a simple spring model between
penetrating elements. The spring forces try to separate the penetrating elements again and the core of
the contact algorithm is a lookup-table of element knots which is used to decide whether two elements
penetrate each other or not. This algorithm in its plain form has an efficiency of O(N2). As an O(N2)

efficiency of an algorithm still restricts the system size to very small systems of a few thousand particles
one uses several methods to speed-up the efficiency of algorithms in computer simulations. Usually,
this is done by using sorted search tables which can then be processed linearly (and thus reaching an
efficiency of ∼ O(N logN). Hence, when it comes to the efficiency of algorithms in materials science,
one will always try to minimize the effort to O(N).

Amdahl’s Law

In principle, one can achieve a further speedup in the execution of a MD program by parallelizing it.
Here, the upper limit of a possible optimization is given by Amdahl’s law [140]: Let T1 the execution
time for a sequential program. If a fraction f of this program can be parallelized using M processors,
then the theoretical execution time is determined by the sum of the time Ts = (1− f)T1 which is needed
for the serial part and the time Tp = (f ·T1)/M needed for the parallelized program part. The maximum
speedup S(f,M) of a parallelized code is thus given by:

S(f,M) =
T1

Ts + Tp

=
T1

(f · T1/M + (f/M) · T1

=
1

1− f + f/M
(37)

which is called Amdahl’s law. Analyzing this equation for different pairs of values (f,M) shows that the
actual speedup of a parallelized program is always smaller than the theoretical value as the parallelization
itself is expensive. Also, for fixed f , the speedup does not grow linearly with M but approaches a limiting
value. This is particularly important for massive-parallel program implementations with thousands of
processors.

5. Application: Simulating the Effect of Shock Waves in Polycrystalline Solid States

In this section we review recent numerical applications in the field of shock wave physics based
on the numerical methods that have been introduced and discussed in the previous sections. We
start our discussion with a succinct introduction into shock wave physics and then focus on modeling
polycrystalline solids such as high-performance ceramics. Results of simulating shock wave propagation
in such materials using both, FEM, and a concurrent multiscale particle-based model are presented.

Nowadays, shock wave processes and their numerical simulation cover a spectrum that ranges from
gas-dynamics of super-sonic objects, over air-blast-waves originating from detonations including their
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interaction with deformable structures, to the effects of shocks in structures, e.g., induced by projectiles
or meteorites. Shock waves in soft matter have increasingly attracted interest in the field of medical
treatment of inflammations or of nephroliths.

The specific characteristics distinguishing shock waves from ordinary acoustic waves are the
extremely short rise times (in the range of nanoseconds, in contrast to microseconds with acoustic waves)
and their dissipative nature. Reason for the formation of a shock wave is either the super-sonic motion
of an object and the related wave-superposition or the pressure-dependency of sound speed which again
leads to wave superposition and steepening of the wave front. An example of the tremendous effect
shock waves may have in solids is exhibited in Figure 15. Here, a solid aluminum block was impacted
by a 10mm diameter aluminum projectile at an impact velocity of 7km/s. In the vicinity of the impact
location the high pressure amplitudes lead to the formation of crater lips under hydrodynamic pressure
conditions. As a result, no phase transition of the material occurs, but rather only the high-pressure
shock waves are responsible for the lip formation. As the initiated shock travels further into the material,
it is reflected at the free surfaces shaping release waves. At locations where several release waves are
super-imposed, a tensile pressure state is established which can lead to instantaneous failure, called
spallation.

Until the early 1940s, investigations of shock wave formation and propagation were restricted
almost completely to gaseous media. Nevertheless, the achievements in gas dynamics set the basis
for fundamental work on shock waves in solids. During the course of his studies on finite-amplitude
waves in solids, Riemann [141] invented the method of characteristics which became the tool of choice
for the investigation of wave propagation, until almost a century later von Neumann and Richtmyer [142]
introduced the idea of artificial viscosity (AV) which refers to the transformation of kinetic energy into
heat through the narrow shock transition zone. Although AV was introduced for numerical reasons, it
is an elective addition in hydrocodes used to modify a physical process so that it can be more easily
computed. If the AV is too small, velocity oscillations about the correct mean value are observed to
develop behind a shock. The proper formulation and magnitude needed for an AV has undergone many
refinements over the years and culminated in the method pioneered by Godunov in 1959 [143], in which
a local elementary wave solution is used to capture the existence and propagation characteristics of shock
and rarefaction waves.

Rankine [144] and Hugoniot [145,146] set the basics for the thermodynamics of shock waves.
Treating a one-dimensional shock wave as a distortion moving at a shock velocity vS one can relate the
conditions ahead and behind the shock to each other via the conservation equations for mass, momentum
and energy. With the thermodynamic conditions described by the mass density ρ, the pressure p and the
specific internal energy e, and using index 0 for the initial and 1 for the shocked state, respectively, the
Rankine-Hugoniot equations describe the jump conditions to be:

ρ0 vS = ρ1 ( vS − v1) , (38)

ρ0 vS v1 = p1 − p0, (39)

p1 v1 = ( e1 − e0) ρ0 vS +
1

2
ρ0 vS v21, (40)
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Figure 15. Spallation failure in a semi-infinite aluminium target after impact by a 10mm

aluminum sphere at 7km/s. (a) Target after impact experiment cut into half. (b) Hydrocode
simulation of the impact and related shock propagation leading to the formation of spallation
planes.

where the material ahead of the shock is assumed to be at rest. A fourth equation is needed to find
a solution for the Riemann problem described by Equations (38-40). If known, the material specific
Equation of State (EOS) p(ρ, e) can be utilized for that purpose. On the other hand, a relation between
any other pair of the involved variables can be employed to identify the EOS. The latter method has
become the classic approach for deriving high pressure EOS’s for solid materials. It involves an
experiment, e.g., the flyer-plate test, where a planar shock in an arbitrary material is investigated to
measure its shock velocity vS along with the particle velocity v1. Thus, the measured relation between
shock velocity and particle velocity

vS = vS (v1) (41)

allows for a derivation of the governing EOS and represents an application of the Riemann problem in
solid state physics, originally formulated in the field of gas dynamics. For most crystalline materials,
specifically for metals, relation (41) is linear. Porosity of materials however, leads to significant
non-linearities in the shock-particle velocity relation. Experimental investigations of highly porous
and inhomogeneous materials face specific complexity concerning a precise representative velocity
measurement. Therefore, meso-mechanical simulation of the shock propagation in composite materials
on the basis of known component EOS data have become a useful characterization tool (see for example
[92]).

So far, the outlined approach describes one specific curve in (p, ρ, e)-space. Performing a shock
experiment leads to the so called principal Hugoniot curve representing all possible thermodynamic
states available to a material when loaded by shock waves of various amplitudes. In order to find a
mathematical description of high pressure states in its vicinity, the Hugoniot curve is utilized as reference
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curve. A typical EOS formulation of that kind is for example modeled by an equation of Mie-Grüneisen
type.

p(V, e) = pref (V )
Γ(V )

V
[e− eref (V )] , (42)

where pref is given by the Hugoniot curve and the Grüneisen coefficient is Γ = V ∂p
∂e

��
V

.
The predictive capability of numerical simulation of shock processes such as high- and hypervelocity

impact scenarios strongly depends on the quality of the employed EOS. A wide spectrum of materials
has been characterized experimentally in terms of their high-pressure EOS over the last decades. Shock
compression experiments [147,148] as well as, more recently, isentropic compression tests [149] are
well established for the identification of reference curves.

A fundamental requirement for the shock wave initiation and its stable propagation is the convexity of
the related EOS. Bethe [150] formulated the following two conditions for the existence of shock waves:

∂2 p

∂ V 2

����
S

> 0, (43)

Γ = V
∂ p

∂ e

����
V

> −2, (44)

along with the criterion for stable propagation:

∂ p

∂ V

����
e

< 0. (45)

5.1. Modeling Polycrystalline Solids Using Power Diagrams

Understanding the micro-structural features of polycrystalline materials such as high-performance
ceramics (HPCs) or metals is a prerequisite for the design of new materials with desired superior
properties, such as high toughness or strength. Thus, for enhancing simulation models used for the
prediction of material properties on multiscales, there exists a simultaneous need for characterization
and ever more realistic representations of micro structures. On the length scale of a few microns to a few
hundred microns, many materials exhibit a polyhedral granular structure which is known to crucially
influence their macroscopic mechanical properties. Today, one is compelled to search for the optimal
micro structure for a specific application by intricate and expensive experimental “trial-and-error”
studies. In order to overcome this situation by numerical simulations, a detailed and realistic modeling
of the available experimental structures is a basic requirement. With numerical investigations taking
explicitly into account the micro structural details, one can expect to achieve a considerably enhanced
understanding of the structure-property relationships of such materials [151,152]. With ceramics, the
specific shape and size of these polycrystalline grain structures is formed during a sintering process
where atomic diffusion on the nanometer scale plays a dominant role. Usually, the sintering process
results in a dense micro structure with grain sizes of up to several hundred micrometers. Using a
nano-sized fine-grained granulate as a green body along with an adequate process control it is possible to
minimize both, the porosity (< 0.05% in volume), as well as the generated average grain size (< 1 µm).
It is known that both leads to a dramatic increase in hardness which outperforms most metal alloys
at considerably lower weight. Producing very small grain sizes in the making of HPCs below 100nm



Int. J. Mol. Sci. 2009, 10 5173

results again in decreasing hardness [153]. Hence, there is no simple connection between grain size and
(macroscopic) hardness of a polycrystalline material.

Figure 16. (a) Micrograph of a HPC (Al2O3) exhibiting the micro structure with an average
grain size of 0.7 µm. (b) 2D FEM simulation of a primitive model of this micro structure
with a shock impulse traveling through the material from left to right. The plane of the
micrograph has been sectioned into 601× 442 equal-spaced squares which are used as finite
elements. The nodes of the upper and lower edge have been assigned v⃗ = 0 as boundary
condition, whereas the leftmost element nodes of the sample are given an initial speed of
vx = 500m/s. The color code exhibits the pressure profile.

The micro structure of densely sintered ceramics can be considered in very good approximation as a
tessellation of R2 with convex polyhedra, i.e., as a polyhedral cell complex, cf. Figure 16a. A direct,
primitive discretization of the micro-photograph into equal-spaced squares in a 2D mesh can be used
for a direct simulation of material properties, cf. Figure 16b. However, with this modeling approach,
the grain boundaries on the micrometer scale have to be modeled explicitly with very small elements of
finite thickness. Thus, the influence of the area of the interface is unrealistically overestimated in light
of the known fact that grain boundaries, which constitute an area of local disorder, often exhibit only a
thickness of a few layers of atoms [154]. Moreover, a photomicrograph is just one 2D sample of the real
micro structure in 3D, hence the value of its explicit rendering is very questionable. Finally, with this
approach there is no 3D information available at all. While experimentally measured micro structures
in 3D are generally not available for ceramic materials, only recently first reports about measured micro
structures of steel have been published [155,156]. Nevertheless, these experiments are expensive and
their resolution as well as the number of measured grains still seem to be poor [156].

A different way of generating micro structures, is based on classical Voronoi diagrams in
d-dimensional Euclidean space Ed and their duals—the Delaunay triangulations—which both constitute
important models in stochastic geometry and have been used in various scientific fields for describing
space-filling, mosaic-like structures resulting from growth processes. Voronoi diagrams are geometric
structures that deal with proximity of a set of points (or more general objects). Often one wants to
know details about proximity: Who is closest to whom? who is furthest and so on. The origin of this
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concept dates back to the 17th century. In his book on the principles of philosophy [157], R. Descartes
claims that the solar system consists of vortices. His illustrations show a decomposition of space into
convex regions, each consisting of matter revolving round one of the fixed stars. Even though Descartes
has not explicitly defined the extension of these regions, the underlying idea seems to be the following:
Let a space T and a set S of sites p in T be given, together with the notion of the influence a site p

exerts on a point x of T. Then the region of p consists of all points x for which the influence of p is
the strongest, over all t ∈ T. This concept has independently emerged, and proven useful, in various
fields of science. Different names particular to the respective field have been used, such as medial axis
transform in biology or physiology, Wiegner-Seitz zones in chemistry and physics, domains of action
in crystallography, and Thiessen polygons in meteorology. The mathematicians Dirichlet (1850) [158],
and Voronoi (1908) [159] were the first to formally introduce this concept. They used it for the study
of quadratic forms; here the sites are integer lattice points, and influence is measured by the Euclidean
distance. The resulting structure has been called Dirichlet tesselation or Voronoi diagram, cf. Figure 17a,
which has become its standard name today. Voronoi was the first to consider the dual of this structure,
where any two point sites are connected whose regions have a boundary in common, cf. Figure 17b.
Later, Delauney [160] obtained the same by defining that two point sites are connected if (and only if)
they lie on a circle whose interior contains no point of T. After him, the dual of the Voronoi diagram has
been denoted Delaunay tesselation or Delaunay triangulation.

Figure 17. (a) Voronoi diagram of N=20 sites. For a finite set of generator points T ⊂ Td

the Voronoi diagram maps each p ∈ T onto its Voronoi region R(p) consisting of all x ∈ Td

that are closer to p than to any other point in T. (b) Delaunay triangulation for the sites
in (a).

Voronoi tessellations in R2 have been used in many fields of materials science, e. g. for the
description of biological tissues or polymer foams [161]. Ghosh et al. [162] utilized Voronoi cells to
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obtain stereologic information for the different morphologies of grains in ceramics and Espinoza et
al. [163] used random Voronoi tessellations for the study of wave propagation models that describe
various mechanisms of dynamic material failure at the micro scale. However, these models have major
drawbacks such as limitations to two dimensions and a generic nature of the structures as they are
usually not validated with actual experimental data. Besides its applications in other fields of science,
the Voronoi diagram and its dual can be used for solving numerous, and surprisingly different, geometric
problems. Moreover, these structures are very appealing, and a lot of research has been devoted to their
study (about one in every 16 papers in computational geometry), ever since Shamos and Hoey [164]
introduced them to this field. The reader interested in a complete overview over the existing literature
should consult the book by Okabe et al. [165] who list more than 600 papers, and the survey by
Aurenhammer [166].

Figure 18. 5 different Al2O3 micrographs (a) and their corresponding grain statistics
with respect to the grains’ perimeter (b). The right picture at the bottom of (a) and (b)
exhibits a corresponding 2D virtual cut through the 3D PD, i.e., a Voronoi diagram, and its
corresponding histogram. Clearly, the histograms both show no Gaussian distribution as was
claimed, e.g., by Zhang et al. [167].

In a recent approach to micro structural modeling of polycrystalline solids it was suggested to
use power diagrams (PDs) along with a new optimization scheme for the generation of realistic
3D structures [169]. PDs are a well studied generalization of Voronoi diagrams for arbitrary
dimensions [165] and have some major advantages over Voronoi diagrams as outlined in [168]. The
suggested optimization is based on the statistical characterization of the grains in terms of the distribution
of the grain areas A and the grain perimeters P obtained from cross-section micro-photographs, cf.
Figure 18. An important result obtained using this method is that neither the experimental area nor the
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Figure 19. Optimization scheme as suggested in [168]. (a) 2D experimental
photomicrograph (top) and an SEM picture of the 3D crystalline surface structure of Al2O3

(bottom). (b) 2D virtual slice of a power diagram (top) and the corresponding 3D surface
structure obtained from this model. (c) Comparison between 2D experimental data of (a)
and the 3D model of (b).

perimeter distribution obey a Gaussian statistics which is contrary to what was claimed e.g., by Zhang et
al. [167,168].

The optimization scheme for the generation of realistic polycrystalline 3D structures is based on
comparing all polyhedral cells (typically at least 10.000) inside a cube of a given PD in 3D with the
2D experimental data. This comparison is performed for each coordinate axis by generating a set of
parallel, equidistant 2D slices (typically 500 slices for each of the three coordinate directions) through
the cube and perpendicular to the respective axis, see Figure 19. For each 2D slice the grain sizes A are
calculated and combined into one histogram. The same is done for the perimeter P . Then, the calculated
histograms are compared with the experimental histograms Ai

exp and Pi
exp by calculating the first k

central moments of the area and perimeter distributions Ai and Pi, respectively. A figure of merit m of
conformity is defined according to which the PDs are optimized [168]:

m =
k∑

i=1

(
Pi − Pi

exp

Pi
exp

)2

+

(
Ai − Aexp

i

Ai
exp

)2

. (46)

The figure of merit m in Equation (46) is first calculated from the initial PD generated by a Poisson
distribution of generator points. Using a reverse Monte-Carlo scheme, one generator point is chosen at
random, its position modified and m is checked again. If m has decreased, the MC move is accepted,
otherwise it is rejected. The modification of generator points is continued until m has reached a given
threshold, typically 10−1. If m = 0 is reached, the first k central moments of the experimental
distributions agree completely with the model. In Figure 20 we present the resulting histogram of
an optimized PD for Al2O3 and show the time development of the figure of merit m for this sample,
following the proposed optimization scheme described above.

Having an efficient means to generate realistic polycrystalline structures, they can be meshed and be
used for a numerical FEM analysis, cf. Figure 22. For simulations of macroscopic material behavior,
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Figure 20. (a) Area (top) and perimeter (bottom) distribution of one of the Al2O3

micrographs of Figure 18 before (black) and after (red) optimization. The bar graphs show
the respective histograms of experimental data. (b) Time development of the figure of merit
m during the optimization for the structure of (a). After 358000 and 512000 optimization
steps, the maximum step size of the reverse MC algorithm (changing the position of a
generator point) was increased, which shows a direct influence on the speed of optimization.
After 1.5 million steps the deviation between the model and experiment has dropped below
1.3×10−4. The inset shows the corresponding time development of m of the perimeter (red)
and (area) distribution of the third central moment.

techniques based on a continuum approximation, such as FEM or SPH are almost exclusively used.
Figure 21 shows a 3D tile of a meshed PD. In a continuum approach the considered grain structure of
the material is typically subdivided into smaller (finite) elements, e.g., triangles (in 2D) or tetrahedra in
3D. Tetrahedral elements at the surface can either be cut, thus obtaining a smooth surface, or they can
represent (a more realistic) surface coarseness. Also displayed is an enlarged section of the 3D tetrahedral
mesh at the surface of the virtual specimen. Upon failure, the elements are separated according to some
predefined failure modes, often including a heuristic Weibull distribution [170,171] which is artificially
imposed upon the system.

Figure 22 illustrates the disadvantages and the multiscale problem associated with FEM simulations
in which micro structural details are included. On the left, a high-speed camera snapshot of an edge-on
impact experiment 11.7 µs after impact is shown, where a macroscopic steel sphere impacts the edge of
an Aluminum Oxinitride (AlON) ceramic tile of dimension (10 × 10 × 0.2) cm. The enlargements in
the middle and on the right show the small size of the region that is actually accessible to FEM analysis
in a concurrent multiscale simulation approach. With FEM only a very small part of a macroscopic
system can actually be simulated due to the necessary large number of elements. This is why in
FEM simulations of polycrystalline materials, in order to be able to simulate a sufficient number of
grains, often only two dimensions are considered in the first place. For most codes, an element number
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Figure 21. 3D structures of a meshed PD. In (a) the granular surface structure, its mesh
and a detailed augmented section of the mesh at the surface are displayed. (b) A different
realization of a 3D structure displaying the possibility of either leaving a (more realistic)
rough surface micro structure, or smoothing the surface and thus obtaining a model body
with even surface [168].

exceeding a few dozen millions is the upper limit which is still feasible in FEM simulations on the
largest super computer systems. More severe, the constitutive equations for the material description
which are needed in a phenomenological description, are derived from experiments with idealized load
conditions. This often leads to many fit parameters in models, which diminishes their physical value.
In addition, FEM generally has many computational problems (numerical instabilities) when it comes
to very large element distortions in the vicinity of the impact region where the stresses, strain rates, and
deformations are very large. The time scale of a multiscale FEM simulation does not a priori fit to the
timescale of the experiment; thus, parameter adaptations of the included damage model are necessary
(but are often unphysical). Also, the contact algorithms implemented in common engineering codes
such as “pamcrash” or “lsdyna3D” which ensure that elements cannot penetrate each other in impact
situations, where high strain rates occur, are often unphysical, very inefficient, and thus not well suited
for parallelized applications.

The multiscale problem associated with FEM simulations described in Figure 22 is further worsened
by the fact that the results of FEM analyses of highly dynamic processes are often strongly influenced
by mesh resolution and mesh quality [173,174], which, from a physical point of view, is not acceptable,
since the physical properties of a system should be invariant to the arbitrarily chosen spatial resolution of
the problem. This common feature of FEM and related methods (such as SPH) is illustrated in Figure 23,
where the same geometry is simulated as in Figure 22, illustrating the strong dependence of FEM and
SPH on mesh resolution.
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Figure 22. Illustration of the multiscale problem. With concurrent FEM methods which
include micro structural details, only a very small part of a real system can actually be
simulated due to the necessary large number of elements. Figure taken from [172].

Figure 23. Snapshots of simulations of the edge-on impact system of Figure 22 using a
primitive discretization of the geometry of the system in terms of hexahedral elements. (a)
FEM with mesh resolution of 0.5mm. (b) FEM with mesh resolution of 1.0mm. (c) SPH
with mesh resolution of 0.5mm. All computational results are obtained using a commercial
code (Autodyn-3D) and are different in terms of the damage pattern of the cracks propagating
through the material 3µs after impact.

5.2. A Particle Model for Simulating Shock Wave Failure in Solids

Investigations of materials which involve multiple structure levels, such as nano- and polycrystalline
solids, require large ensembles of atoms to accurately reflect the structures on the atomic and microscopic
levels. For systems of reasonable size, atomistic simulations are still limited to following the dynamics
of the considered systems only on time scales of nanoseconds. Such scales are much shorter than what
is needed to follow many dynamic phenomena that are of experimental interest [80,175].

Whether a material under load displays a ductile, metal-like behavior or ultimately breaks irreversibly,
depends on the atomic crystal structure and on the propagation of defects in the material. Broken atomic
bonds (cracks) and dislocations are the two major defects determining mechanical properties on the
atomic scale. Molecular dynamics investigations of this type using generic models of the solid state
have lead to a basic understanding of the processes that govern failure and crack behavior, such as
the instability of crack propagation [24,176–181], the dynamics of dislocations [33,80,182,183], the
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Figure 24. (a) Schematic of a crystal placed under shock loading. Initially it will compress
uniaxially and then relax plastically through defects on the nanoscale, a process known as the
one-dimensional to three-dimensional transition. The material may also undergo a structural
transformation, represented here as a cubic to hexagonal change. The transformation occurs
over a characteristic time scale. The new phase may be polycrystalline solid or melt.
Once pressure is released, the microvoids that formed may grow, leading to macroscopic
damage that causes the solid to fail. (b) This micrograph shows the voids that occur when a
polycrystalline aluminium alloy is shocked and recovered. As the shock wave releases, the
voids grow and may coalesce, resulting in material failure.

limiting speed of crack propagation [35,184,185], the brittle-to-ductile transition [35,154,186,187], or
the universal features of energy dissipation in fracture [188].

Most metals are crystalline in nature, i.e., they are solids composed of atoms arranged in a regularly
ordered repeating pattern. When crystals form, they may solidify into either a polycrystalline solid
or a single crystal. In a single crystal, all atoms are arranged into one lattice or a crystal structure.
The structure of single crystals makes them ideal for studies of material response to shock loading.
When a highly ordered material, such as a metal crystal, is put under a planar shock, the crystal
is compressed along the direction of the shock propagation, see Figure 24a. This uniaxial response
can remain elastic so that, once the disturbance is removed, the lattice will relax back to its original
configuration. However, under high-stress conditions, the configuration of atoms in the lattice may be
changed irreversibly. Irreversible changes in phase and the development of defects at the atomic level
lead to macroscopic changes, such as plasticity, melting, or solid-to-solid phase transformations. When
the dynamic compression is removed, the shock-modified micro structure may influence the formation
and growth of voids, cracks, and other processes that may cause the material to fail, see Figure 24b.
These atomistic changes can dramatically affect a materials behavior, such as its thermodynamic state,
strength, and fracture toughness. Few data are available on the phase transformations that occur under
highly dynamic stress conditions or on the defects and voids that may form and grow as a result. MD
methods for typical engineering applications on dislocation dynamics, ductility and plasticity, failure,
cracks and fracture under shock loading in solids were extended to large-scale simulations of more than
108 particles during the late 1990s by Abraham and Coworkers [33,34], Holian and Lomdahl [189],
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Figure 25. The particle Model as suggested in [195]. (a) Overlapping particles with radii
R0 and the initial (randomly generated) degree of overlap indicated by d0

ij . Here, only two
particles are displayed. In the model the number of overlapping particles is unlimited and
each individual particle pair contributes to the overall pressure and tensile strength of the
solid. (b) Sample initial configuration of overlapping particles (N = 2500) with the color
code displaying the coordination number: red (8), yellow (6), and green (4). (c) The same
system displayed as an unordered network.

Zhou [175] and others [190,191]. Today, many-particle MD simulations taking into account the degrees
of freedom of several billion particles have been simulated in atomistic shock wave and brittle to ductile
failure simulations [192–194].

In the following we discuss a recently proposed concurrent multiscale approach for the simulation
of failure and cracks in brittle materials which is based on mesoscopic particle dynamics, the Discrete
Element Method (DEM), but which allows for simulating macroscopic properties of solids by fitting
only a few model parameters [195].

Instead of trying to reproduce the geometrical shape of grains on the microscale as seen in
two-dimensional (2D) micrographs, in the proposed approach one models the macroscopic solid state
with soft particles, which, in the initial configuration, are allowed to overlap, cf. Figure 25a. The overall
system configuration, see Figure 25b, can be visualized as a network of links that connect the centers
of overlapping particles, cf. Figure 25c. The degree of particle overlap in the model is a measure of
the force that is needed to detach particles from each other. The force is imposed on the particles by
elastic springs. This simple model can easily be extended to incorporate irreversible changes of state
such as plastic flow in metals on the macro scale. However, for brittle materials, where catastrophic
failure occurs after a short elastic strain, in general, plastic flow behavior can be completely neglected.
Additionally, a failure threshold is introduced for both, extension and compression of the springs that
connect the initial particle network. By adjusting only two model parameters for the strain part of the
potential, the correct stress-strain relationship of a specific brittle material as observed in (macroscopic)
experiments can be obtained. The model is then applied to other types of external loading, e.g., shear and
high-speed impact, with no further model adjustments, and the results are compared with experiments
performed at EMI.
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Figure 26. (a) Schematic of the intrinsic scaling property of the proposed material model.
Here, only the 2D case is shown for simplicity. The original system (Model Ma) with edge
length L0 and particle radii R0 is downscaled by a factor of 1/a into the subsystem QA

of MA (shaded area) with edge length L, while the particle radii are upscaled by factor a.
As a result, model MB of size aL = L0 is obtained containing much fewer particles, but
representing the same macroscopic solid, since the stress-strain relation (and hence, Young’s
modulus E) upon uni-axial tensile load is the same in both models. (b) Young’s modulus E
of systems with different number of particles N in a stress-strain (σ−ϵ) diagram. In essence,
E is indeed independent of N .

Model Potentials

The main features of a coarse-grained model in the spirit of Occam’s razor with only few parameters,
are the repulsive forces which determine the materials resistance against pressure and the cohesive forces
that keep the material together. A material resistance against pressure load is introduced by a simple
Lennard Jones type repulsive potential Φij

rep which acts on every pair of particles {ij} once the degree of
overlap dij decreases compared to the initial overlap d0

ij:

ϕij
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Parameter γ scales the energy density of the potential and prefactor R0
3 ensures the correct scaling

behavior of the calculated total stress Σijσ
ij = ΣijF

ij/A which, as a result, is independent of N .
Figure 26 shows that systems with all parameters kept constant, but only N varied, lead to the same
slope (Young’s modulus) in a stress-strain diagram. In Equation (47) R0 is the constant radius of the
particles, dij = dij (t) is the instantaneous mutual distance of each interacting pairs {ij} of particles,
and d0

ij = dij (t = 0) is the initial separation which the pair {ij} had in the starting configuration. Every
single pair {ij} of overlapping particles is associated with a different initial separation d0

ij and hence
with a different force. The minimum of each individual particle pair {ij} is chosen such that the body is
force-free at the start of the simulation.

When the material is put under a low tension the small deviations of particle positions from
equilibrium will vanish as soon as the external force is released. Each individual pair of overlapping
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Figure 27. Sample configurations of systems with N = 10000 particles and different particle
densities Ω. The color code displays the coordination numbers: blue (0), green (4), yellow
(6), red (8). (a) Ω = 0.7. (b) Ω = 0.9 (c) Ω = 1.3 (d) Ω = 1.7 (e) Breaking strength σb

for different system sizes N (filled symbols) as a function of particle density Ω, compared
with the theoretical breaking strength σmax (open symbols). The inset shows the stress-strain
(σ − ϵ) relation for systems with three different initial expansion times τ . In essence, the
larger the expansion time for the generation of the random initial overlap of particles, the
larger is the material strength σmax.

particles can thus be visualized as being connected by a spring, the equilibrium length of which equals
the initial distance d0

ij . This property is expressed in the cohesive potential by the following equation:

Φij
coh

(
λ, dij

)
= λR0

(
dij − d0

ij
)2

, dij > 0. (48)

In this equation, λ (which has dimension [energy/length]) determines the strength of the potential and
prefactor R0 again ensures a proper intrinsic scaling behavior of the material response. The total potential
is the following sum:

Φtot = Σij

(
ϕij
rep + ϕij

coh

)
. (49)

The repulsive part of Φtot acts only on particle pairs that are closer together than their mutual initial
distance d0

ij , whereas the harmonic potential Φcoh either acts repulsively or cohesively, depending on
the actual distance dij . Failure is included in the model by introducing two breaking thresholds for the
springs with respect to compressive and to tensile failure, respectively. If either of these thresholds is
exceeded, the respective spring is considered to be broken and is removed from the system. A tensile
failure criterium is reached when the overlap between two particles vanishes, i.e., when:

dij > (2R0). (50)
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Figure 28. Crack initiation and propagation in the virtual macroscopic material sample upon
uni-axial tensile load using N = 104 particles. The color code is: Force-free bonds (green);
Bonds under tensile load (red). (a) Initiation of local tensions. (b) Initiation of a crack tip
with local tensions concentrated around this crack tip. (c) Crack propagation including crack
instability. (d) Failure. (e) Averaged stress-strain (σ-ϵ) relation. For N = 2500 (green
curve) 10 different systems were averaged, and for N = 10000 (red curve) the stress-strain
relations of 5 different initial particle configurations obtained in uni-axial load simulations
were averaged.

Failure under pressure load occurs when the actual mutual particle distance is less by a factor α (with
α ∈ (0, 1)) than the initial mutual particle distance, i.e., when

dij < α · d0ij. (51)

Particle pairs without a spring after pressure or tensile failure still interact via the repulsive potential and
cannot move through each other.

An appealing feature of this model, as opposed to many other material models used for the description
of brittle materials, see e.g., [83,196–201], is its simplicity. The proposed model has a total of only three
free parameters: γ and λ for the interaction potentials and α for failure. These model parameters can
be adjusted to mimic the behavior of specific materials. The initial particle structure of the system is
generated in a warmup process before the actual simulation, during which the simulation box is filled
with particles which are allowed to grow for an expansion time τ , until the desired particle radii R0 and
overall particle density Ω are reached. From the initial particle pair distance distribution ⟨d0ij⟩ one can
derive a maximal expectation value for σmax [195]:

σmax = 1− ⟨d0ij⟩
2R0

. (52)

The maximum tensile strength does not appear as a parameter in the model; it follows from the initial
particle configuration and the resulting initial density Ω, see Figure 27. The closer ⟨d0ij⟩ is to 2R0, the
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less is the maximum tensile strength. The random distribution of initial particle distances ultimately
determines the system’s stability upon load, as well as its failure behavior and the initiation of cracks.

Figure 29. Snapshots of a 2D FEM simulation of the fracture process of a PMMA
(poly-methyl methacrylate) plate which is subject to an initial uniform strain rate in vertical
direction. Here, there is no statistical variability of the microstructure modeled with more
than 50 × 106 elements. Thus, the model solid has to be artificially pre-notched and it
still exhibits a strong dependence on the mesh size and the number of elements. Adapted
from [202].

Strain, Shear and Impact Load

In the following, some simulation snapshots of applications of the proposed multiscale model adapted
from [195] are displayed. Here, the model is applied to simulate a virtual material specimen of
macroscopic dimensions under tensile, shear and impact load. First, the model parameters have been
fitted so as to reproduce Young’s modulus and the strength of a typical ceramic (Al2O3) in a quasistatic
uniaxial tensile load simulation. Then, without any further fitting of parameters, the system is sheared
and an impact experiment, as described in Figures 22 and 23 is performed.

In quasi-static load experiments, the involved physical processes occur on time scales small enough
so that the system under investigation is always very close to equilibrium. The material is strained
instantaneously on two opposite sides and then allowed to relax by means of a MD integration scheme
with timestep ∆t = 0.001τ̂ in reduced simulation units. During relaxation the particles may move
and bonds may break. Equilibrium is reached per definition as soon as no bonds break during 1000

consecutive timesteps. After reaching equilibrium, the external strain is increased again and the whole
procedure is iterated until ultimate failure occurs. For the actual simulation adapted to Al2O3, Ω = 1.1,
ρ = 3.96 and κ = 350 are chosen; these values corresponding to a typical experimental situation of
99% volume density, ρ = 3.96 g/cm3 and E = 370 GPa. Results of the simulations are displayed
in the picture series of Figure 28, which shows 4 snapshots of the fracture process, in which the main
features of crack instability, as pointed out by Sharon and Fineberg [184] (onset of branching at crack
tips, followed by crack branching and fragmentation) are well captured. At first, many micro-cracks
are initiated all over the material by failing particle pair bonds. These micro-cracks lead to local
accumulations of stresses in the material until crack tips occur where local tensions accumulate to form a
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macroscopic crack. This crack ultimately leads to a macroscopic, catastrophic failure of the model solid,
which corresponds very well to the fracture pattern of a brittle material. Similar FEM simulations, see

Figure 30. Quasi-static shear loading of a virtual material specimen with N = 2500. The
color code is the same as in Figure 28 except for particle bonds under pressure which are
coded in blue. (a) Onset of shear tensile bands and (orthogonal) shear pressure bands in
the corners of the specimen. (b) Shear bands traversing the whole specimen. (c) Ultimate
failure.

Figure 29, using about 50 million elements, still exhibit a strong dependence of the number of elements
and of element size [202]. One advantage of the proposed particle model in contrast to FEM models
is, that many systems with the same set of parameters (and hence the same macroscopic properties)
but statistically varying micro-structure (i.e., initial arrangement of particles) can be simulated, which
is very awkward to attain using FEM. By way of performing many simulations a good statistics for
corresponding observables can be achieved.

The results of uni-axial shear simulations are presented in Figure 30. Only the color-coded network
of particles is shown: stressfree (green), tension (red) and pressure (blue). Starting from the initially
unloaded state, the top and bottom layer of particles is shifted in opposite directions. At first, in
Figure 30a, the tension increases over the whole system. Then, as can be seen from Figure 30b and
c, shear bands form and stresses accumulate, until failure due to a series of broken bonds occurs.

Finally, in Figure 31 non-equilibrium MD simulation (NEMD) results for systems with varying shock
impact velocities are presented and compared with high-speed impact experiments performed at EMI
with different ceramic materials (Al2O3 and SiC). These oxide and non-oxide ceramics represent two
major classes of ceramics that have many important applications. The impactor hits the target at the left
edge. This leads to a local compression of the particles in the impact area. The top series of snapshots
in Figure 31a shows the propagation of a shock wave through the material. The shape of the shock
front and also the distance traveled by it correspond very well to the high-speed photographs in the
middle of Figure 31a. These snapshots were taken at comparable times after the impact had occurred in
the experiment and in the simulation, respectively. In the experiments which are used for comparison,
specimens of dimensions (100 × 100 × 10)mm were impacted by a cylindrical blunt steel projectile of
length 23mm, mass m = 126 g and a diameter of 29.96mm [18]. After a reflection of the pressure wave
at the free end of the material sample, and its propagation back into the material, the energy stored in
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Figure 31. Results of a simulation of the edge-on-impact (EOI) geometry, cf. Figure 23,
except this time, the whole macroscopic geometry of the experiment can be simulated while
still including a microscopic resolution of the system. The impactor is not modeled explicitly,
but rather its energy is transformed into kinetic energy of the particle bonds at the impact site.
(a) Top row: A pressure wave propagates through the material and is reflected at the free end
as a tensile wave (not shown). Middle row: The actual EOI experiment with a SiC specimen.
The time interval between the high-speed photographs is comparable with the simulation
snapshots above. The red arrows indicate the propagating shock wave front. Bottom row:
The same simulation run but this time only the occurring damage in the material with respect
to the number of broken bonds is shown. (b) Number of broken bonds displayed for different
system sizes N , showing the convergence of the numerical scheme. Simulation parameters
(α, γ, λ) are chosen such that the correct stress-strain relations of two different materials
(Al2O3 and SiC) are recovered in the simulation of uniaxial tensile load. The insets show
high-speed photographs of SiC and Al2O3, respectively, 4 µs after impact.

the shock wave front finally disperses in the material. One can study in great detail the physics of shock
waves traversing the material and easily identify strained or compressed regions by plotting the potential
energies of the individual pair bonds. Also failure in the material can conveniently be visualized by
plotting only the failed bonds as a function of time, cf. the bottom series of snapshots in Figure 31a. A
simple measure of the degree of damage is the number of broken bonds with respect to the their total
initial number. This quantity is calculated from impact simulations of Al2O3 and SiC, after previously
adjusting the simulation parameters γ, λ and α accordingly. Figure 31b exhibits the results of this
analysis. For all impact speeds the damage in the SiC-model is consistently larger than in the one for
Al2O3 which is also seen in the experiments.

The impactor is not modeled explicitly, but rather its total kinetic energy is transformed into kinetic
energy of the particles in the impact region. Irreversible deformations of the particles such as plasticity
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or heat are not considered in the model, i.e., energy is only removed from the system by broken bonds.
Therefore, the development of damage in the material is generally overestimated.

In summary, the discussed concurrent multiscale particle model reproduces the macroscopic physics
of shock wave propagation in brittle materials very well while at the same time allowing for a resolution
of the material on the micro scale and avoiding typical problems (large element distortions, element-size
dependent results) of FEM. The observed failure and crack pattern in dynamic impact simulations can
be attributed to the random initial distribution of particle overlaps which generates differences in the
local strength of the material. By generating many realizations of systems with different random initial
overlap distribution of particles, the average values obtained from these many simulations lead to the
fairly accurate results when compared with experimental studies.

6. Coarse-Grained MD Simulations of Soft Matter: Polymers and Biomacromolecules

The field of simulation of polymers and of biological macromolecular structures has seen an exciting
development over the past 30 years, mostly due to the emergence of physical approaches in the biological
sciences, which lead to the investigation of soft biomaterials, structures and diseases as well as to the
development of new medical treatments and diagnostic methods [203,204]. The challenge faced by
material scientists, namely that structure and dynamics of materials are characterized by extremely
broad spectra of length and time scales, is particularly apparent with polymeric materials. Due to
their length, polymers can attain a large number of conformations which contribute to the total free
energy of a macromolecular system [205]. The structure of macromolecules is thus determined by an
interplay between energetic and entropic contributions. The hydrodynamic interactions of polymers
with solvent molecules, covalent interactions, intra- and intermolecular interactions and – particularly in
biological macromolecules – the Coulomb interactions between charged monomers along with hydrogen
bonds add up with the entropic forces to build a very complex system of interacting constituents.
The enormous range of characteristic time and length scales accounts for their widespread use in
technological applications and furthermore the most important biomolecular structures are polymers.
It is clear that the treatment of such systems calls for hierarchical multiscale modeling approaches
which can efficiently sample the complex potential energy hypersurface of polymeric materials, ensuring
equilibration over the relevant length and time scales. Here, we provide a few examples of a very
powerful MD method that is widely used in polymer physics for extending the available time and length
scales in simulations, namely coarse-grained MD. With this method, the explicit chemical structure of
the macromolecules is neglected by summarizing many atoms within one monomer in the simulation.
With this approach, a focus is put on the structure due to the specific connectivity of the monomers and
on general universal scaling laws.

6.1. Coarse-Grained Polymers

With polymer systems, many properties can be successfully simulated by only taking into account
the basic and essential features of the chains, thus neglecting the detailed chemical structure of the
molecules. Such coarse grained models, cf. Figure 32, are used because atomistic models of long
polymer chains are usually intractable for time scales beyond nanoseconds, but which are important
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for many physical phenomena and for comparison with real experiments. Also, the fractal properties
of polymers render this type of model very useful for the investigation of scaling properties. Fractality
means, that some property X of a system (with polymers, e.g., the radius of gyration Rg) obeys a relation
X ∝ Nk, where N ∈ N is the size of the system, and k ∈ Q is the fractal dimension which is of the
form k = p/q with p ̸= q, q ∈ N and p ∈ N. The basic properties that are sufficient to extract many
structural static and dynamic features of polymers are:

• The connectivity of monomers in a chain.

• The topological constraints, e.g., the impenetrability of chain bonds.

• The Flexibility or stiffness of monomer segments.

Using coarse-grained models in the context of lipids and proteins, where each amino acid of the
protein is represented by two coarse-grained beads, it has become possible to simulate lipoprotein
assemblies and protein-lipid complexes for several microseconds [134].

Figure 32. A coarse-grained model of a polymer chain where some groups of the detailed
atomic structure (yellow beads) is lumped into one coarse-grained particle (red). The
individual particles are connected by springs (bead-spring model).

6.2. Scaling of Linear, Branched and Semiflexible Macromolecules

As for bulk condensed matter in general, analysis of the microscopic structure of polymer systems
is mostly carried out by scattering experiments. Depending on the system under study and the desired
resolution, photons in the X-ray and light scattering range, or neutrons are used. The general set up
of a scattering experiment is very simple and indicated schematically in Figure 33 [206]: One uses
an incident beam of monochromatic radiation with wavelength λ and initial intensity I0. This beam
becomes scattered by a sample and the intensity I of the scattered waves is registered by a detector (D)
at a distance d, under variation of the direction of observation. The scattering vector q⃗ is defined as

q⃗ = k⃗f − k⃗i (53)
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where k⃗f and k⃗i denote wave vectors of the incident and the scattered plan waves. The result of
a scattering experiment is usually expressed by giving the intensity distribution I(q⃗) in q⃗-space, cf.
Figure 33. In the majority of scattering experiments on polymers the radiation frequency remains
practically unchanged, thus one has

|⃗kf | ≈ |⃗ki| =
2π

λ
(54)

where q⃗ is related to the Bragg scattering angle θB by

|q⃗| = 4π

λ
sin θB (55)

If the scattering can be treated as being due to just one class of materials, the scattering properties can be

Figure 33. General set up of a scattering experiment according to [206]. Details are
described in the main text.

described by the interference function S(q⃗), also called scattering function or structure function., which
is defined as:

S(q⃗) =
I(q⃗)

ImNm

(56)

Here Nm represents the total number of particles (or monomers in the case of macromolecules) in the
sample and Im is the scattering intensity produced by one particle, if placed in the same incident beam.
The scattering function expresses the ration between the actual intensity which would be measured
and the intensity which would be measured, if all particles in the sample were to scatter incoherently.
Scattering diagrams generally emerge from the superposition and interference of the scattered waves
emanating from all particles in the sample. The total scattering amplitude measured at the detector is
then given by

C =
Nm∑
i=1

exp iϕi (57)

Simple geometric considerations [206] show that the phases ϕi are determined by the particle position
R⃗i and the scattering vector q⃗ only, being given by

ϕi = q⃗ r⃗i (58)
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Thus, the scattering amplitude produced by a set of particles at locations r⃗i may be formulated as a
q⃗-dependent function in the form

C(q⃗) =
Nm∑
i=1

exp iq⃗ r⃗i (59)

It is a well-known fact from electrodynamics that the scattering intensity is proportional to the squared
total scattering amplitude, i.e.,

I(q⃗) ∝ ⟨|C(q⃗)|2⟩ (60)

The brackets indicate an ensemble average which involves, as always in statistical treatments of physical
systems, all microscopic states of the sample. For ergodic systems the time average carried out by the
detector equals the theoretical ensemble average. As the normalization of the amplitudes of the single
scattered waves is already implied in the definition of the structure function, Equation (56), Equation
(60) can be written as

S(q⃗) =
1

Nm

⟨|C(q⃗)|2⟩ (61)

which is a basic equation of general validity that may serve as starting point for the derivation of other
forms of scattering, e.g., for isotropic systems, where S(q⃗) = S(q) with q = |q⃗|, cf. Equation (68).
Inserting Equation (59) into (61) one obtains

S(q⃗) =
1

Nm

Nm∑
i,j=1

⟨exp iq⃗(r⃗i − r⃗j)⟩ (62)

Equation (62) can be calculated directly in molecular computer simulations as the positions r⃗ of all
scattering particles Nm are exactly known at all times (within the boundaries of numerical errors when
using floats in double precision as a representation of real numbers).

Polymers usually do not exist in vacuum but in solution. A solvent is referred to as good when the
prevailing form of the effective interaction between polymer segments in this solvent is the repulsive
part of the potential energy at shorter distances. In this case the chains tend to swell and the size R of
the polymer (e.g., the end-to-end distance Re in the case of linear chains or the radius of gyration Rg)
scale with an exponent ν = 3/5. In the opposite case of a poor solvent, polymers tend to shrink and
R scales with ν = 1/3. The point were the repulsive and attractive interactions just cancel each other
defines the θ–point and θ–temperature, respectively. Here, the chain configuration is that of a Gaussian
random coil with an exponent ν = 1/2. There are still three-body and higher order interactions present
in a θ–solvent, but their contribution to the free energy is negligibly small [52]. For the description of
the distance of temperature T from the θ–temperature, a dimensionless parameter is used, the reduced
temperature ζ which is defined as:

ζ =
| T − Tθ |

Tθ

. (63)

A crossover scaling function f serves for the description of the scaling behavior of polymer chains in
different solvent conditions [52]. The argument of f is given by ζ

√
N . At θ–temperature,

f(ζ
√
N) ≃ 1, ζ

√
N ≪ 1, R = R0 ∝ N1/2. (64)
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At T < Tθ,

f(ζ
√
N) ≃ (ζ

√
N)

1/3
, ζ

√
N ≫ 1, R ∝ N1/3ζ1/3. (65)

At T > Tθ,

f(ζ
√
N) ≃ (ζ

√
N)3/5, ζ

√
N > 1, R ∝ N3/5. (66)

In experiments, it is rather difficult to obtain complete and conclusive results in the study of the
collapse transition of chains, because one is often restricted to the three distinct limiting cases of
polymer solutions, the extreme dilute regime, the θ-point, and the regime of very high polymer
concentrations [207].

Figure 34. Coil-to-globule transition from good to bad solvent behavior of a polymer chain.
Plot of ⟨Rg

2⟩ /(N − 1)2ν vs. interaction parameter λ for linear chains. The points represent
the simulated data and the dotted lines are guides to the eye. ν = νθ = 0.5. Also displayed
are simulation snapshots of linear chains for the three cases of a good, θ-, and a bad solvent.

At the θ–temperature the chains behave as ⟨Rg
2⟩ ∝ ⟨Re

2⟩ ∝ (N − 1)2ν� with νθ = 0.5 besides
logarithmic corrections in 3D. Therefore, one expects that a plot of ⟨R2⟩ /(N − 1) vs. T for different
values of N shows a common intersection point at T = Tθ where the curvature changes: for
T > Tθ the larger N , the larger the ratio ⟨R2⟩ /(N − 1), while for T < Tθ the larger N , the smaller
the ratio ⟨R2⟩ /(N − 1). Using the model potential of Equation (25) – instead of varying temperature
(which involves rescaling of the particle velocities), different solvent qualities are obtained by tuning the
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interaction parameter λ. The corresponding transition curves are displayed in Figure 34 which show a
clear intersection point at roughly λ = λθ ≈ 0.65. Moreover it can be seen that the transition becomes
sharper with increasing chain length N . The different curves do not intersect exactly at one single point,
but there is an extended region in which the chains behave in a Gaussian manner. The size of this region
is ∝ N−1/2 [52]. There is a very slight drift of the intersection point toward a smaller value of λ with
increasing chain length N .

Figure 35. Interaction parameter λ of Equation (25) vs. N−1/2 for different values of the
scaling function. Data points are based on the radius of gyration of linear chains [51].

Therefore, to obtain a more precise estimate of the θ–temperature in the limit of (N → ∞), one
has to chose a different graph that allows an appropriate extrapolation. If one draws straight horizontal
lines in Figure 34 the intersection points of these lines with the curves are points at which the scaling
function f(

√
Nζ) of Equation (65) is constant. Plotting different intersection points over N−1/2 therefore

yields different straight lines that intersect each other exactly at T = Tθ and λ = λθ respectively.
This extrapolation (N → ∞) is displayed in Figure 35. The different lines do not intersect exactly at
N−1/2 = 0 which is due to the finite length of the chains. As a result of these plots one yields the value
of λ for which the repulsive and attractive interactions in the used model just cancel each other:

λθ = 0.65± 0.02. (67)

An important property of individual chains is the structure factor S(q) the spherical average of which is
defined as [3]:

S(q) =

⟨
1

N2


N∑
i=1

e−iq⃗r⃗i


2⟩

|q⃗|

, (68)
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Figure 36. Kratky plot of S(q) of linear chains (N = 2000) for different values of the
interaction parameter λ.

with subscript |q⃗| denoting the average over all scatter vectors q⃗ of the same magnitude |k| = q, r⃗i being
the position vector to the ith monomer and N denoting the total number of monomers (scatter centers).
For different ranges of the scatter vectors the following scaling relations hold [52]:

S(q) =


(1− 1/3 q2 ⟨Rg

2⟩)N (2π)2/ ⟨Rg
2⟩ ≫ q2,

q−1/ν (2π)2/ ⟨Rg
2⟩ ≪ q2 ≪ (2π)2/lb

2,

1/N (2π)2/lb
2 ≪ q2,

(69)

where lb is the (constant) bondlength of the monomers (often also called segment length). The
importance of S(q) lies in the fact that it is directly measurable in scattering experiments. For ideal
linear chains the function S(q) can be explicitly calculated and is given by the monotonously decreasing
Debye function.

S(x) =
2

x2

(
x− 1 + e−x

)
, (70)

where the quantity x is given by x = q2 ⟨Rg
2⟩0 with index 0 denoting θ–conditions. For small values of x,

corresponding to large distances between scattering units, the Debye function S(x) also provides a good
description of a linear chain in a good solvent with the scaling variable x describing the expansion of the
chain. For very small scattering vectors q one obtains the Guinier approximation [51] by an expansion of
S(q), which is used in experiments to calculate the radius of gyration ⟨Rg

2⟩. In the intermediate regime
of scattering vectors, S(q) obeys a scaling law which, in a double-logarithmic plot, should yield a slope
of −1/ν. For large q-values finally, S(q) is expected to behave as 1/N . The overall expected behavior
of S(q) is summarized in Equation (69).
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Figure 37. (a) Log-Log plot of ⟨Rg
2⟩ vs. N of star polymers with different arm numbers f .

For comparison, data for linear chains (f = 2) are displayed as well. (b) Scaling plot of the
corrections to scaling of ⟨Rg

2⟩(f) plotted vs. N−1 in good solvent. For clarity, the smallest
data point of the linear chains (f = 2, N = 50) is not displayed.

In the vicinity of the θ–region, the scaling exponent equals ν = νθ = 0.5. Therefore q2S(q), plotted
against wave vector q, which is called a Kratky plot should approach a constant value. Figure 36
displays this behavior for different chain lengths with high resolution in terms of λ. The respective
dotted horizontal line is a guide to the eye. The larger the chains are, the smaller is the λ-range at
which the chains display ideal (Gaussian) random–walk behavior. For large values of λ the chains are
collapsed and form compact globules the local structure of which is also reflected in the structure function
by several distinct peaks for larger q-values. These peaks become the more pronounced the longer the
chains are, reflecting the fact that the transition curves become ever sharper with increasing chain length.
Hence, longer chains are already in the collapsed regime for values of λ at which the smaller chains still
exhibit Gaussian behavior. The structure function of the largest system in Figure 36 for λ = 1.0 already
resembles very much the scattering pattern of a sphere.

In Figure 37 the scaling of ⟨Rg
2⟩ for different star polymers as a function of N and for different

functionalities f is displayed. Functionality f = 2 corresponds to linear chains, f = 3 corresponds
three-arm star polymers and so on. The star polymers were generated with the MD simulation
package “MD-Cube” developed by Steinhauser [51,63] which is capable of handling a very large array
of branched polymer topologies, from star polymers to dendrimers, H-polymers, comb-polymers or
randomly hyperbranched polymers. Details of the set-up of chains which works the same way for linear
and branched polymer topologies can be found in [208]. Figure 37a shows a double-logarithmic plot
from which one obtains the scaling exponents of Rg for stars with different numbers of arms. The results
for linear chains are displayed as well, for which chain lengths of up to N = 5000 were simulated.
Within the errors of the simulation, the exponents do not depend on the number of arms, as expected from
theory. The obtained scaling exponents are summarized in Table 4 and exhibit a reasonable agreement
with theory.
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Table 4. Obtained scaling exponents ν for star polymers in simulations with different arm numbers f .

f 2 3 4 5 6 10 12 18

ν 0.5989 0.601 0.603 0.614 0.617 0.603 0.599 0.601

In Figure 37b it is exhibited, that the corrections to scaling due to the finite size of the chains are
∝ N−1. A plot with exponents −2 or −1/2 leads to worse correlation coefficients. This result is
consistent with lattice-MC simulations on a fcc-lattice [209]. More details on finite-size scaling can be
found in [50,51].

The fundamentals of the dynamics of fully flexible polymers in solution or in the melt were worked
out in the pioneering works of Rouse [210] and Zimm [211], as well as of Doi and Edwards [212] and de
Gennes [52]. In contrast to fully flexible polymers, the modeling of semiflexible and stiff macromolecules
has received recent attention, because such models can be successfully applied to biopolymers such as
proteins, DNA, actin filaments or rodlike viruses [213,214]. Biopolymers are wormlike chains with
persistence lengths lp (or Kuhn segment lengths lK) comparable to or larger than their contour length L

and their rigidity and relaxation behavior are essential for their biological functions.

Figure 38. (a) S(q) of single linear chains with N = 700 and varying stiffness kθ. The
scaling regimes (fully flexible and stiff rod) are indicated by a straight and dashed line,
respectively. (b) Scaling plot of S(q)/lK versus q · lK using the statistical segment length lK

adapted from [208].

Using the second term of the bonded potential of Equation (26), a bending rigidity Φbend(θ) can be
introduced. Rewriting this term by introducing the unit vector u⃗j = (r⃗j+1 − r⃗j)/|r⃗j+1 − r⃗j| along the
macromolecule, cf. Figure 10, one obtains:

Φbend(θ) =
kθ
2

N−1∑
j=1

(u⃗j+1 − u⃗j)
2 = kθ

N−1∑
j−1

(1− cos θj), (71)
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where θi is the angle between u⃗j and u⃗j+1. The crossover scaling from coil-like, flexible structures
on large length scales to stretched conformations at smaller scales can be seen in the scaling of S(q)
when performing simulations with different values of kθ [208]. Results for linear chains of length
N = 700 are displayed in Figure 38a. The chains show a scaling according to qν . The stiffest chains
exhibit a q−1–scaling which is characteristic for stiff rods. Thus, by varying parameter kθ, the whole
range of bending stiffness of chains from fully flexible chains to stiff rods can be covered. The range
of q–vectors for which the crossover from flexible to semiflexible and stiff occurs shifts to smaller
scatter vectors with increasing stiffness kθ of the chains. The scaling plot in Figure 38b shows that
the transition occurs for q ≈ 1/lK , i.e., on a length scale of the order of the statistical Kuhn length.
In essence, only the fully flexible chains (red data points) exhibit a deviation from the master curve on
large length scales (i.e., small q–values), which corresponds to their different global structure compared
with semi-flexible macromolecules. Examples for snapshots of stiff and semiflexible chains are finally
displayed in Figure 39.

Figure 39. Simulation snapshots of (a) flexible chains (kθ = 0), (b) semiflexible chains
(kθ = 20), (c) stiff, rod-like chains (kθ = 50).

6.3. Polyelectrolytes

A large variety of synthetic and biological macromolecules are polyelectrolytes [215]. The most
well-known polyelectrolyte biopolymers, proteins, DNA and RNA, are responsible in living systems
for functions which are incomparably more complex and diverse than the functions usually discussed for
synthetic polymers present in the chemical industry. For example, polyacrylic acid is the main ingredient
for diapers and dispersions of copolymers of acrylamide or methacrylamide and methacrylic acid are
fundamental for cleaning water [216]. In retrospect, during the past 30 years, despite the tremendous
interest in polyelectrolytes, unlike neutral polymers [52,217], the general understanding of the behavior
of electrically charged macromolecules is still rather poor. The contrast between our understanding of
neutral and charged polymers results form the long range nature of the electrostatic interactions which
introduce new length and time scales that render an analytical treatment beyond the Debye-Hückel
approximation very complicated [218,219]. Here, the traditional separation of scales, which allows
one to understand properties in terms of simple scaling arguments, does not work in many cases.
Experimentally, often a direct test of theoretical concepts is not possible due to idealizing assumptions
in the theory, but also because of a lack of detailed control over the experimental system, e.g., in terms of
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Figure 40. Twisted, DNA-like polyelectrolyte complexes formed by electrostatic attraction
of two oppositely charged linear macromolecules with N = 40 at τ̂ = 0 (a), τ̂ = 10500 (b),
τ̂ = 60000 (c) and τ̂ = 120000 (d), where τ̂ is given in Lennard-Jones units. The interaction
strength is ξ = 8 [222,223].

the molecular weight. Quite recently, there has been increased interest in hydrophobic polyelectrolytes
which are water soluble, covalently bonded sequences of polar (ionizable) groups and hydrophobic
groups which are not [220]. Many solution properties are known to be due to a complex interplay
between short-ranged hydrophobic attraction, long-range Coulomb effects, and the entropic degrees of
freedom. Hence, such polymers can be considered as highly simplified models of biologically important
molecules, e.g., proteins or lipid bilayers in cell membranes. In this context, computer simulations are a
very important tool for the detailed investigation of charged macromolecular systems. A comprehensive
review of recent advances which have been achieved in the theoretical description and understanding of
polyelectrolyte solutions can be found in [221].

The investigation of aggregates between oppositely charged macromolecules plays an important role
in technical applications and in in particular biological systems. For example, DNA is associated with
histone proteins to form the chromatin. Aggregated of DNA with cationic polymers or dendrimers
are discussed in the context of their possible application as DNA vectors in gene therapies [224,225].
Here, we present MD simulations of two flexible, oppositely charged polymer chains and illustrate the
universal scaling properties of the formed polyelectrolyte complexes that are formed when the chains
collapse and build compact, cluster-like structures which are constrained to a small region in space [223].
The properties are investigated as a function of chain length N and interaction strength ξ. Starting with
Equation (10) and using k = 1 (cgs-system of units) the dimensionless interaction parameter

ξ = ξBkBT/ϵσ (72)

can be introduced, where the Bjerrum length ξB is given by:

ξB = e2/ϵkBT, (73)

where kB is the Boltzmann constant, T is temperature, epsilon is the energy scale from the
Lennard-Jones potential of Equation 21, σ defines the length scale (size of one monomer) and e is
the electronic charge. The interaction parameter for the presented study is chosen in the range of
ξ = 0, ..., 100 which covers electrically neutral chains (ξ = 0) in good solvent as well as highly charged
chain systems (ξ = 100). The monomers in the chains are connected by harmonic bonds using the first
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term of the bonded potential of Equation (26). The interaction with the solvent is taken into account by
a stochastic force (Γ⃗i) and a friction force with a damping constant χ, acting on each mass point. The
equations of motion of the system are thus given by the Langevin equations

m¨⃗ri = F⃗ − χm ˙⃗ri + Γ⃗i. (74)

The force F⃗i comprises the force due to the sum of potentials of Equation 21 with cutoff rcut = 1.5,
Equation 11 with k = 1 and zi/j = ±1, and the first term on the right-hand side of the bonded potential
in Equation 26 with κ = 5000ϵ/σ and bond length l0 = σ0 = 1.0. The stochastic force Γ⃗i is assumed
to be stationary, random, and Gaussian (white noise). The electrically neutral system is placed in a
cubic simulation box and periodic boundary conditions are applied for the intermolecular Lennard-Jones
interaction according to Equation (21), thereby keeping the density ρ = N/V = 2.1 × 10−7/σ3

constant when changing the chain length N . The number of monomers N per chain was chosen as
N = 10, 20, 40, 80 and 160 so as to cover at least one order of magnitude. For the Coulomb interaction
a cutoff that is half the box length rcut = 1/2LB was chosen. This can be done as the eventually
collapsed polyelectolyte complexes which are analyzed are confined to a small region in space which
is much smaller than rcut. In the following we discuss exemplarily some scaling properties of charged
linear macromolecules in the collapsed state. The simulations are started with two well separated and
equilibrated chains in the simulation box. After turning on the Coulomb interactions with opposite
charges zi/j = ±1 in the monomers of both chains, the chains start to attract each other. In a first step
during the aggregation process the chains start to twist around each other and form helical like structures
as presented in Figure 40. In a second step, the chains start to form a compact globular structure because
of the attractive interactions between dipoles formed by oppositely charged monomers, see the snapshots
in Figure 41a.

Figure 41a exhibits the universal scaling regime of Rg obtained for intermediate interaction strengths
ξ and scaled by (N − 1)2/3. Here, the data of various chain lengths fall nicely on top of each other. This
scaling corresponds to the scaling behavior of flexible chains in a bad solvent and is also in accordance
with what was reported by Shrivastava and Muthukumar [226]. The change of Rg is connected with a
change of the density ρ of the polyelectrolyte aggregate. However, in Figure 41b, which presents an
example of ρ for ξ = 4, only a slight dependence of the density on the chain length N can be observed.
ρ measures the radial monomer density with respect to the center of mass of the total system. For longer
chains, there is a plateau while for short chains there is a pronounced maximum of the density for small
distances from the center of mass. While this maximum vanished with decreasing ξ it appears also at
higher interaction strengths for longer chains. Monomers on the outer part of the polyelectrolyte complex
experience a stronger attraction by the inner part of the cluster than the monomers inside of it, and for
smaller ξ, chains of different lengths are deformed to different degrees which leads to a chain length
dependence of the density profile.

7. Emerging Computational Applications in Biophysics and Medical Tumor Treatment

Biology is becoming one the most fascinating interdisciplinary field where physics, chemistry,
mathematics and materials science meet. The insight that was gained at the cellular and subcellular
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Figure 41. (a) Radii of gyration as a function of the interaction strength ξ for various chain
lengths according to [223]. The radius of gyration Rg

2 is scaled by (N − 1)2/3, where
(N−1) is the number of bonds of a single chain. Also displayed are sample snapshots of the
collapsed globules with N = 40 and interaction strengths ξ = 0.4, 4, 40. (b) Radial density
of monomers with respect to the center of mass of a globule and interaction strength ξ = 4

for different chain lengths, N = 20 (blue), N = 40 (red), N = 80 (green) and N = 160

(brown).

scales during the last few decades offer a possibility to develop a formal description of biology using the
quantitative methods of physics. Simulation studies of biological materials now range from electronic
structure calculations of DNA, molecular simulations of proteins, biomembranes and biomacromolecules
like actin to continuum theories of collagenous tissues. Several collagen-related diseases occur in
humans, with osteoporosis and tendinitis being complex examples. Both are linked to the mechanical
properties of collagen and its higher order, structurally related form: collagen fibrils and fibers, as well
as macroscopic tissues, tendon, and bone, cf. Figure 42.

Soft biological matter is the constituent element of life, and therefore, the integration of concepts
from different disciplines to develop a quantitative understanding of matter in living systems has
become an exciting new area of research. Characterization of soft biological materials within a physical
approach is focused towards the elucidation of the fundamental principles of self-assembly, deformation
and fracture. Deformation and fracture in turn are closely linked to the atomic micro structure of a
material. While in hard matter like polycrystalline solids mechanisms such as dislocation propagation,
random distribution of cracks or crack extension occur, biomacromolecules exhibit molecular folding or
unfolding, rupture of hydrogen or other chemical bonds, intermolecular entanglements or cross-links.
The role of mechanics is even more decisive on the cellular level, because on this level, several basic
questions can be addressed: How is cell stress and energy transmitted to the environment; what are
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Figure 42. (a) Hierarchical features of collagen which determines the mechanical
properties of cells, tissues, bones and many other biological systems, from atomistic
to microscale. Three polypeptide strands arrange to form a triple helical tropocollagen
molecule. Tropocollagen (TP) molecules assemble into collagen fibrils which mineralize by
formation of hydroxipatite (HA) crystals in the gap regions which exist due to a staggered
array of molecules. (b) Stress-strain response of a mineralized collagen fibril exhibiting
larger strength than a non-mineralized, pure collagen fibril. Both figures adapted from [227]
with permission.

the forces and interactions that give rise to cell deformations or cell rupture; What exactly is the role of
hydrogen bonds when it comes to the stability of cell membranes? While standard biology answers these
questions in an empirical, merely descriptive manner, a physical approach tries to establish a framework
for a quantitative description [228,229]. At larger length scales the interaction of molecules with cells or
different types of tissue become dominant and play a major role in the mechanical material behavior.

Here, the application of shock waves is of particular interest for medical applications. Since the
introduction of shock wave therapy for the treatment of gall- and kidneystones as a new non-invasive
technique to disintegrate concrements, i.e., extracorporeal shock wave lithotripsy (ESWL), in the
1980s [232], a multitude of new indications for ESWL have arisen. Apart from physical disintegration of
calculi as an approved standard therapy in humans, enthesopathies like tennis elbow or bone pathologies
(pseudoarthroses and delayed unions) represent classical indications for ESWL, see e.g., [233] and the
references therein. The antibacterial effects of extracorporeal shock waves could offer new applications
in some difficult-to-treat infections [234]. At the beginning of ESWL a major problem was that kidney
or gall stones were destroyed by waves only, when the stone was exactly on target. Thus, it became
necessary to locate the stones in 3D. Initially this was considered a major technological problem and
was solved with several independent X-rays; today, on uses magnetic resonance (MR) imaging which
allows live monitoring of ESWL treatments. Despite the therapeutic success of ESWL as therapeutic
modality without the need of surgical risks and surgical pain, the exact mechanisms of shock wave
therapy, e.g., effects on tissue damage, rupture or damage of cell membranes, remain widely unknown.
Albeit the term “shock waves” is commonly used in the context of medical treatments, usually the waves
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Figure 43. (a) Schematic of the principle of ESWL. (b) Image of human body with
symptomatic fibroids. Sonication pathway is superimposed on the image and the spot where
irreversible thermal damage is expected is also superimposed onto this image. Adapted
from [230] with permission. (c) Schematic of a magnetic resonance guided HIFU equipment
for the possible treatment of tumor tissue. Figure adapted from [231] with permission.

that are generated by an underwater high-voltage spark discharge and subsequently focused using an
elliptical reflector, cf. Figure 43, are merely high-pressure ultrasound waves (highly focused ultrasound,
HIFU) which do not attain the physical characteristics and short rise times of real shock waves. Thus,
up to now, the full potential of shock waves for medical treatments remains to be fully explored.

Figure 44. Scheme of the disintegration of a kidney stone as a result of direct and indirect
shock wave effects. Figure adapted from [235] with permission.

MR-guided HIFU is able to disintegrate kidney stones and to cure non-unions and certain soft tissue
disorders. The effect of the shock wave in urology and orthopaedic applications seems to be different.
Currently, at least two different mechanisms of shock waves are noted. On the one hand, the positive
pressure is responsible for a direct shock wave effect, and on the other hand, tensile waves cause
cavitation, which is called indirect shock wave effect [236], cf. Figure 44. Reflections at interfaces
and damping in the material leads to energy loss of the wave. The disintegrating effect of the shock wave
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however very strongly depends on the plasticity of the material; for example, a wave with sufficient
energy to disintegrate a kidney stone has minimal effect on an intact bone [235]. Many questions in
the medical application of shock waves, e.g., the possibility for the successful treatment of tumor cells
using ESWL and MR-guided HIFU are still unanswered, opening a wide research field which requires
the application of sophisticated experimental and numerical techniques not only on multi-scales but also
on multi-fields of research.

8. Concluding Remarks

In summary we have attempted to provide a survey of numerical methods used on different time
and length scales. We discussed first the importance of physical modeling in computational physics
and then focused on the MD method which is the most used simulation technique on the molecular
scale. As typical applications we presented methods for the generation of realistic microstructures of
polycrystalline solids in 3D which can be used for FEM analysis on the macroscale including micro
structural details. Results of MD and NEMD shock impact simulations employing a multiscale model
based on microscopic soft particles were presented and the potential of the model for the description of
macroscopic properties of brittle materials was demonstrated. Also, MD applications in polymer physics
were presented which build the framework for modeling biological macromolecules and for modeling
more complex systems such as the application of shock waves in cellular structures and biological
tissue. Eventually we discussed new exciting emerging applications of shock wave and polymer physics
in medical research where many physical principles which make the application of ESWL and HIFU
successful, are still widely unexplored.

The improvement of simulation techniques which allow for a coupling of different length and time
scales and for simulating larger systems on mesoscopic and macroscopic scales has been a very active
field of research in computer simulation during the last ten years and many research programs devoted
to intensive methodological development have been initiated in many research areas, see e.g., [237].
Developing efficient algorithms, and coupling strategies, as well as extending the available physical
length and time scales in simulations up to at least micrometers and -seconds and beyond, remains one of
the top motivations in all different fields of basic and applied research using supercomputers, cf. Figure 8.
The theoretical progress in understanding hierarchical biological materials will facilitate to develop new
materials technologies through the use of multiple hierarchies in an efficient and controlled manner,
that is, lead to a structural design of materials on many scales concurrently, instead of trial-and-error
approaches.

Since there is tremendous continuing progress in multiscale computational techniques, this review is
by no means exhaustive. We hope that by presenting several recent research examples from shock wave
and polymer physics, which is triggered by our own research interests, and by highlighting emerging
applications of these established computational approaches in medical engineering, we have conveyed
the message that multiscale modeling is an enterprise of truly multidisciplinary nature which combines
the skills of physicists, materials scientists, chemists, mechanical, chemical and medical engineers,
applied mathematicians and computer scientists. The breaking down of traditional barriers between
different scientific disciplines represents the actual power and the great promise of computational
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multiscale approaches for enhancing our understanding, and our ability to controlling complex physical
phenomena, even in the field of life sciences, biology and medicine.
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