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Abstract: We have used SOM and grid 3D and 4D QSAR schemes for modeling the 
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and external predictivities proves that this method can provide an efficient inhibition model. 
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Introduction 

Drug discovery is a complex issue that lacks a general approach. Drugs are mainly synthetic 
products developed by chemists. However, in this context the most fundamental and lasting objective 
of synthesis is not a production of new compounds but the production of properties, as commented by 
Hammond and cited by Sharpless and co-workers [1]. This fact clearly makes QSAR (Quantitative 
Structure-Activity Relationships), in its broadest sense, an essential and irreplaceable method in this 
field. However, more and more sophisticated tools are needed for the transformation of the molecular 
structure into the compound property space. Generally, the drug-receptor interactions are complex 
phenomena, which cannot be easily described. Therefore, a QSAR strategy of the comparison of a 
series of drug ligands separately from the receptor structure has evidently limitations. In 3D or 4D 
QSAR molecular superimposition that should be performed for the compound series can be mentioned 
here as an illustrative example. By performing superimposition, intentionally or by default, but 
generally independently from the receptor structure, we are assuming that molecular recognition 
proceeds with exactly the same mechanism and in the same place within the receptor macromolecule. 
The so-called similarity paradox (very similar molecules can evoke completely different biological 
activity) clearly proves that in reality this assumption is not true. Thus we need to make QSAR 
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insensitive, as much as possible, to the noise that may appear in the data. The application of robust 
modeling methods [2], i.e., such that they are resistant to uncertain data may be a key to success. 
Neural networks can be an example of such a technique that has been successfully used in drug design 
[3-5]. On the other hand, multivariate nonlinear regression has also been reported as an efficient 
alternative to neural techniques [6-8]. 

Our previous publications described possible applications of self-organizing neural networks for 
modeling 3D and 4D QSAR [9-18]. A self-organizing neural network is an unsupervised learning 
scheme consisting only of a single layer, usually two-dimensional rectangular or hexagonal grid of 
nodes (neurons). Different distance metrics can be used to define neighborhood relations between 
these neurons [19-22]. SOM (self-organizing map) network is designed to process multidimensional 
(N-dimensional) data vectors by distributing them between the neurons in such a way that similar 
inputs are put closer (into the neurons that are closer neighbors) to each other than those less similar. It 
is worth mentioning that the method preserves the topology of the processed input object.  

Considerable progress can be observed over the past decades in molecular development and 
design, in particular, in drug design. This includes new emerging disciplines and strategies that have 
appeared in this field. Combinatorial chemistry came as a first alternative to the traditional design and 
synthetic techniques. Genomics and related fields (e.g., chemo- and pharmacogenomics) have brought 
about an explosion of the data available for molecular design. The question may arise as to how much 
these new directions influence traditional methods. Do we still need traditional or multidimensional 
(3D or 4D) QSARs? Have traditional methods profited from these new directions? It can be clearly 
observed that generally, unnecessarily increasing the number of analyzed molecules, new methods 
investigate much larger data populations, irrespective of any technical problems encountered in such 
cases. 4D QSAR can be an example of such a technique. Basically, 4D QSAR investigates the 
conformational space of the molecular objects. However, in this calculation we generate for a single 
molecule the enormous number of conformers that investigates different spatial region. Actually, it is 
the likelihood of a formation of common 3D patterns of a series of molecules that is sought after by the 
molecular dynamics simulations. Many-fold replications of the molecules by different conformer 
representations allow for the increase of the chances for proper receptor structure mapping by the 
respective ligand structures. All this makes 4D QSAR scheme of the much more probabilistic nature, if 
compared to the 3D-QSAR. 

In this publication we discuss the application of the SOM neural network for a QSAR scheme, in 
particular the SOM-4D-QSAR. Moreover, we compare this method with Comparative Molecular 
Surface Analysis (CoMSA) – a 3D QSAR method by the SOM neural network coupled with the Partial 
Least Squares Analysis (PLS) for a series of dihydrofolate reductase (DHFR) inhibitors [23]. 
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Results and Discussion 
 

Scheme 1 illustrates the methods used, i.e. SOM-CoMSA  [9], s-CoMSA (sector – CoMSA) [24], 
grid-4D-QSAR and SOM-4D-QSAR [17]. 

Scheme 1. 

 
 
A series of dihydrofolate reductase inhibitors (DRI) are given in Table 1. 

Hopfinger et al. analyzed this series in a publication that introduces a 4D QSAR method [23]. Thus 
we decided to use the same series for the comparison of the SOM versions of 3D and 4D QSAR 
methods. Several 3D techniques failed to model QSARs for these compounds; however; Hopfinger’s 
4D QSAR appeared to give a final regression equation (R2=0.957, q2=0.885, s=0.34) optimized by 
genetic algorithm (GA), performed after initial PLS.  Instead of GA, we used in our method the PLS 
algorithm coupled with variable elimination. It is usually believed that variable elimination is not as 
important in PLS modeling as in standard regression procedure, because basically data transformed by 
PLS include this part of the original data that is essential for the description of the appropriate answer. 
However, data elimination can also be applied in PLS modeling, e.g. in Uninformative Variable 
Elimination (UVE) method developed by Centner et al. [25]. Compare references [7, 26] for the 
detailed investigations of variable selection in multiregression. 
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Table 1.  The set of substituted 2,4-diamino-5-benzylpyrimidine inhibitors of 
Escherichia coli DHFR and their activity data [23]. 

N

N

NH2

NH2 R7

R5R6 R4
R3

R2
R1  

No. R1 R2 R3 R4 R5 R6 R7 log(1/I50) 
1 OCH3 OCH3 OCH3 H H H H 8.23 
2 OCH3 OCH3 OCH3 CH3 H H H 5.85 
3R OCH3 OCH3 OCH3 H OH CH3 H 4.00 
4S OCH3 OCH3 OCH3 H OH CH3 H 4.00 
5 OCH3 OCH3 OCH3 H =CH2 H 5.60 
6R OCH3 OCH3 OCH3 H H CH3 H 5.35 
7S OCH3 OCH3 OCH3 H H CH3 H 5.35 
8 OCH3 Br OCH3 H H H H 8.53 
9 OCH3 OH OCH3 H H H H 7.96 
10 OCH3 OH OCH3 H H H CH3 6.52 
11 OCH3 OCH3 OCH3 H H H CH3 7.00 
12 OH H OH H H H H 2.78 
13 H H H H H H H 5.71 
14 CH2OH H CH3OH H H H H 5.83 
15 H H Cl H H H H 6.14 
16 H Br H H H H H 6.30 
17 OCH3 H H H H H H 6.40 
18 OCH3 H OCH3 H H H H 7.75 
19 CH3 H CH3 H H H H 7.45 
20 H C6H5 H H H H H 6.40 

 
In our previous publications we have shown that this method as well as its modifications, i.e., 

modified UVE (m-UVE) and iterative variable elimination (IVE) can be used in 3D QSAR schemes 
[11]. This allows identifications of the molecular areas important for the interactions with biological 
receptors or enzymes, so-called interaction pharmacophore elements (IPEs). 
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Figure 1.  The 4D QSAR models of the DRI series, performed using the occupancy and 
charge type IPEs. The numbers indicate the q2 and s performances, and 
optimal number of the PLS latent variables included in the model; after UVE 
and (modified procedure [11]) IVE data elimination, respectively 

 

Figure 2.  The SOM-4D QSAR models of the DRI series, performed using the 
occupancy and charge type IPEs. The numbers indicate the q2 and s 
performances, and optimal number of the PLS latent variables included in the 
model; after UVE and IVE data elimination, respectively 

 

. 
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The performance of the 4D QSAR PLS models obtained without data elimination ranges from 
q2=0.30-0.43 and for the best model takes a value of q2= 0.43, s=1.10, with 4 PLS components. After 
variable elimination these values can improve, as shown in Figures 1 and 2. This outperforms classical 
Hopfinger’s 4D QSAR with GA. However, these data refer to the series without molecule 12, which is 
an evident outlier according to our results. This can result from a fact that the activity of this 
compound evidently differs from the rest of the series. This may indicate some differences in the drug 
receptor interaction mechanism.  

During modeling we always estimated an optimal number of the PLS components, but the maximal 
model complexity (a number of PLS components) was truncated not to exceed four. Our results only 
slightly depend upon the method used, i.e., classical grid method or its SOM version, and 
superposition mode. Figures 1 and 2 compare the IPEs revealed for DRI by SOM-4D-QSAR to that of 
4D QSAR-PLS-UVE (IVE, m-UVE) methods. The performances have also been compared.  

In the original publication Hopfinger et al. did not perform any additional model validation. 
However, according to the current knowledge, the q2 value is not a sufficient criterion for verifying 
model quality. Thus, the description of the series using a few original variables (individual grid cells) 
without validation of the external predictions seems to be risky. Therefore, we divided the series into 
two groups of the training (compounds: 1-11 and 13-15) and test sets (compounds: 16-20) and verified 
model calculated for the training set by the residual error estimated for the values predicted in the test 
set. The best model was obtained for grid-4D-QSAR with joint occupancy type descriptors (Ic), which 
is characterized by q2= 0.96, s=0.10 and standard deviation of error of prediction (SDEP) = 0.64 (with 
10 PLS components. Of course a high number of PLS components makes a problem. On the other 
hand, this complexity is determined by model optimization. After data elimination that force lower 
complexity the performance is only slightly lower: q2=0.96, s=0.12, SDEP = 0.61 with 4 PLS 
components. Thus, in this particular case lower complexity does not improve model predictability 
(SDEP value).  

We think there are few interesting observations that appeared from the analysis of the results given 
in Figure 1. Thus, the molecular areas indicated by our analysis with the occupancy type descriptors 
are similar to those revealed in Hopfinger’s work, in which these type descriptors were also used. The 
inclusion of charge descriptors improves model quality given by the q2 and SDEP values. There is 
also some important regularity that can be observed during data elimination in the PLS model. In fact, 
we observed that for the models of the high predictivity data elimination cannot improve model 
quality. However, for the poor initial models, UVE (IVE) data elimination can bring an important 
improvement.  

Both SOM- and grid- 4D-QSAR analyzed schemes provide comparable results. Table 2 compares 
performances of these schemes with 3D-QSAR modeling of the series activity. We used for this 
purpose the SOM and sector version of the Comparative Molecular Surface Analysis [24]. The results 
of 3D QSAR modeling are evidently worse than 4D QSAR. This indicates that conformational 
flexibility of the benzylpirymidine series makes 4D QSAR more efficient in modeling their inhibiting 
properties. 
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Conclusions 

We used SOM and grid 3D and 4D QSAR schemes for modeling the activity of a series of 
dihydrofolate reductase inhibitors. We used PLS with UVE (IVE) for modeling all schemes. Careful 
analysis of the performances and external predictivities proves that this method can provide an 
efficient inhibition model. 

Table 2. 3D QSAR results. 

 

 
 Superposition mode 

 a b c 
CoMSA 

MDa) 0.5 0.5 0.5 
q2 0.62 0.72 0.64 all b) 

S 1.17 1.01 1.08 

MD 0.5 0.5 0.5 

q2 0.59 0.64 0.71 

S 1.02 0.91 0.90 

Training/test 
set 

SDEP 1.25 0.96 1.20 

max Ac) 6 5 6 
MD 0.5 0.5 0.5 
q2 0.62 0.87 0.71 
S 0.89 0.58 0.79 

IVE 

SDEP 0.81 0.72 0.78 

s-CoMSA 
sector size 1 1 3 
q2 0.38 0.56 0.47 all 
s 1.50 0.90 1.01 

sector size 1 1 1 

q2 0.54 0.70 0.69 

s 1.96 1.59 1.26 

Training/test 
set 

SDEP 1.42 1.32 1.42 

sector size 1 1  4 

max A 4 1 3 

q2 0.73 0.59 0.68 

s 0.83 0.92 0.85 

IVE 

SDEP 0.93 1.15 1.10 
a) MD – Maximal distance for comparative Kohonen maps [10]  b) Models 
without variable elimination c) Maximal number of PLS components 
during variable elimination procedure (IVE-PLS) [11]. 

 
 

N

N

NH2

NH2
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Experimental 
 

The SOM-CoMSA [9], s-CoMSA [24], grid-4D-QSAR [23] and SOM-4D-QSAR [17] procedures 
were described in the cited previous publications, respectively.  

 
Model builders 

All the experimental data, i.e. biological activities for the dihydrofolate reductase inhibitors were 
extracted from ref. [23] and are given in Table 1 

 
Kohonen mapping 

The competitive Kohonen strategy [19] was used to construct a two-dimensional topographic map 
obtaining the signals from the points sampled randomly at the molecular surface. As molecular 
surfaces are continuous the plane of projection was also selected to be a continuous surface. Thus we 
used a torus for this purpose, which was cut along two perpendicular lines and then spread into a plane. 
Each neuron, j, was then defined by three weights, wji. The competitive training of the network was 
based on the rule that each point, s, of the molecular surface was projected into that neuron, sc, that has 
weights, wci, that come closest to the Cartesian coordinates, xsi, of this point, s, (eq. 1). 

( ) 







−← ∑

=

m

i
jisisc wxout

1

2min      (1) 

A projection of the molecular electrostatic potential (MEP) value from the surface points, s, into 
such a two-dimensional arrangement of neurons, after calculating the average MEP value within this 
particular neuron and scaling this values into the respective colors results in the so called feature map. 

 
Comparative Kohonen mapping 

In fact, such a map illustrates the property (MEP) of a single molecule. As however, the weights of 
the Kohonen network contain the shape of the certain molecular surface, it can be used to compare the 
geometries of molecular surfaces of other molecules. In such a method the trained Kohonen network is 
processing the signals coming from the surface of other molecule(s), i.e., the electrostatic potential of 
each input vector was projected through the network to obtain a series of comparative maps both for 
the template molecule and each analyzed molecule. The respective electrostatic potential values from 
the surfaces of the processed molecules were then projected into such a network allowing us to 
compare these parts of the molecule surfaces that can be superimposed. If the surfaces cannot be 
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superimposed on the reference molecule (template) then the respective output neurons get no signal 
from the molecules processed. 

All the molecules were superimposed before the calculation of molecular surfaces. The 
superimposition was performed as shown in Table 2. In practice, we used Match3D program [27] for 
performing this operation. The KMAP 3.0 program [27] was used for the simulation of Kohonen 
networks. The size of the Kohonen networks amounts from 10x10 to 30x30 neurons. The output of this 
program was used for the calculation of the mean electrostatic potential values within each neuron and 
respective feature maps were transformed to a respective 102, 202 and 302 element vectors. 

 
4D QSAR calculation 

We used Hopfinger’s spatial grid system [23] for coding molecules. The molecules after AM1 
(Austin model 1) optimization were used as initial structures in the molecular dynamic simulation 
(MDs). Each 3D structure is the starting point in generating conformational ensemble profile (CEP). 
Molecular dynamics was performed using the Sybyl software [28] with standard Tripos force field. 
2500 conformations were sampled for each analogue. Partial atomic charges were calculated using the 
semiempirical AM1 Hamiltonian (HYPERCHEM package [29]). The alignment of the molecules was 
the next step of the 4D-QSAR analysis. We aligned the molecules according to the previous rules of 
the Hopfingers’ study [23]. Individual conformers are placed in the grid cell space surrounding the 
aligned compounds. We applied cubic grid lattice of 20 Å on each side with grid cell resolution of 1, 2 
or 0.5 Å, respectively. Different types of grid cell occupancy descriptors (GCODs) were considered 
and calculated for the indicated atoms referred to as interaction pharmacophore elements (IPE). Apart 
from, the GCODs used by Hopfinger et al. [23], we applied in our current work the absolute charge 
occupancy (Aq) for the chosen IPE atoms of compound c defined as  

mqkjicONkjicA
T

t
tq /),,,(),,,,(

0
×=∑

=

    (2) 

where m means the number of the atoms of compounds, c present in the cell (i,j,k) at time t, q means 
the sum of partial atoms of charges present in some cell at time t, T is the length of the time in MDs. N 
is the number of sampling MDs steps. The joint (Jq ) and self charge occupacy (Sq) with the most 
active reference compound R were defined after following equations: 

mqkjiROkjicONkjicJ qt

T

t
tq /),,,(),,,(),,,,(

0
×∩= ∑

=

  (3) 

∑ ∑
= =

−=
T

t

T

t
ttq kjicOkjicONkjiRcS

0 0
),,,([),,,({),,,,,( mqkjiROt /)]},,,( ×∩   (4) 

We used the MATLAB [30] environment to program the calculation of the above mentioned 
descriptors. The Partial Least Squares (PLS) method with variable elimination was used to estimate the 
relationship between independent variables (GCODs) and corticosteroid binding globulin (CBG) 
affinity. 
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Calculation of the molecular surface (s-COMSA) descriptors based on virtual cubic grid 

For the calculation of shape descriptors we applied formalism similar to Hopfinger’s 4D-QSAR 
grid coding system using the absolute type descriptors, as given by the above mentioned equations. 
However, unlike in 4D QSAR our method compares single conformers. Thus, each 3D molecular 
representation is placed in its own virtual cubic grid and molecular surface is calculated, respectively. 
The electrostatic potential is calculated for the points randomly sampled on the molecular surface and 
a mean value of the electrostatic potential corresponding to the respective points found in each grid 
cell is used to describe this cell. Grid cells are unfolded into vectors and vectors describing all 
molecules of the series are aligned into a matrix. Grid cells that are empty for all molecules in the 
series analyzed are eliminated and the resulted matrix was used for further calculations using the PLS 
method. 

 
PLS analysis 

Obtained vectors were processed by the PLS analysis with a leave-one-out cross-validation 
procedure. The PLS procedures were programmed within the MATLAB environment (MATLAB) 
[30].  

A PLS model was constructed for the centered data and its complexity was estimated on the basis of 
the leave-one-out cross-validation procedure (CV). In the leave-one-out CV one repeats the calibration 
m times, each time treating the i-th left-out object as the prediction object. The dependent variable for 
each left-out object is calculated on the basis of the model with one, two, three etc. factors. The Root 
Mean Square Error of CV for the model with j factors is defined as: 

m
)predobs(

RMSECV
2

ji,i
j

∑ −
= i      (5) 

where obs denotes the assayed value; pred - predicted value of dependent variable and i refers to the 
object index,  which ranges from 1 to m. Model with k factors, for which RMSECV reaches a 
minimum, is considered as an optimal one. 

We used the performance metrics that are accepted and widely used in CoMFA analyses, i.e., cross-
validated qcv

2 

∑
∑

−

−
−= 2

2
2

))((
)(

1
obsmeanobs

predobs
q

i

ii
CV      (6) 

where obs - the assayed values; pred - predicted values, mean - mean value of obs and i refers to the 
object index, which ranges from 1 to m; and cross-validated standard error s 

1
)( 2

−−

−
= ∑

km
predobs

s ii       (7) 

where m- number of objects, k- number of the PLS factors in the model. 
Before the PLS analysis was performed the descriptors were centered and this operation was 

repeated for each cross-validation run. 
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The quality of external predictions was measured by the Standard Deviation of Error of Prediction 
(SDEP) parameter: 

n
obspred

SDEP iii∑ −
=

2)(
      (8) 

where pred – predicted value, obs – observed value. 
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