
Molecules 2002, 7, 206-238

molecules
ISSN 1420-3049

http://www.mdpi.org

marvin: A Platform for Chemoinformatics Software
Development

A. Dominik* and H.J. Roth

Institute of Pharmaceutical Chemistry, University of Tübingen, Auf der Morgenstelle 8, D-72076
Tübingen , Germany.

* Author to whom correspondence should be addressed. Current address: Byk Gulden, Byk-Gulden-
Straße 2, D-78467 Konstanz, Germany; e-mail: andreas.dominik@byk.de

Received 11 October 2001; in revised form: 26 February 2002 / Accepted: 26 February 2002 /
Published: 28 February 2002

Abstract: A strategy for a new type of platform for chemoinformatics software development
and its first implementation are presented. The basic task of such a platform is to apply
sequences of computational methods to high numbers of molecules. The implementation
presented is based on four major components: (a) the application manager, responsible for
running programs and for data management; (b) executable applications that supply limited
pieces of functionality; (c) syntax definitions for data and control files and (d) the runtime
library which comprises routines for data handling and user interface. This simple concept is
implemented in the software package marvin. Different computational methods are available
within marvin, including parts of commercial software packages (e.g. molecular modeling,
bioinformatics, statistics, etc.) as well as newly developed and innovative algorithms. The
basic layout of marvin is described and a simple example illustrates its application.

Keywords: chemoinformatics, software platform, chemical similarity assessment, data
management, drug discovery

Introduction

Recent developments in automation of chemical synthesis and biochemical screening have resulted
in a fundamental paradigm shift in the drug discovery process [1]. Today, pharmaceutical companies

Molecules 2002, 7

207

are searching for new lead structures by screening huge compound libraries, including hundreds of
thousands or even millions of chemical compounds against an increasing number of biological targets.
This new drug discovery workflow is designated as "new technologies" or NT [2, 3]. The NT approach
outputs enormous amounts of experimental results, produced by high-throughput robotic systems. On
the other hand new and innovative methods of data management and molecular modeling are required
in order to handle the corresponding data and to reunite the experimental results with molecular
structures and with predicted molecular properties [4, 5]. These new computational methods must be
able to derive properties such as three-dimensional structures, structural indices, physicochemical
properties and other molecular descriptors for huge numbers of compounds in order to increase
efficiency of drug discovery [6, 7].

As a consequence of this development the new discipline chemoinformatics has been emerging [8-
10]. Chemoinformatics combines the techniques of molecular modeling, computer aided drug design,
data management and data mining and becomes an integrated part of the drug discovery process in the
pharmaceutical companies today [11-13]. Major parts of the drug discovery process are supported by
the new computational science (see Figure 1).

The new applications of chemoinformatics require rapid development of novel algorithms in order to
solve arising problems. Typical aims addressed by upcoming chemoinformatics software involve huge
numbers of screening data and huge numbers of molecular structures. The screening laboratories output
more than 100,000 points of data every day [14]. The number of compounds in the compound stocks
already exceeds the magic number of one million. Combinatorial libraries comprising more than 10,000
compounds are synthesized [15]. Virtual combinatorial libraries already contain more than 10 million
compounds. Future computational algorithms must be able to apply molecular modeling methods to
these compound libraries in order to find typical patterns in structural space, in pharmacological space
or in property space [16]. Chemoinformatics software is set up to compute properties, such as physico-
chemical properties [17], lipophilocity or drug-likeness [18] as well as molecular and structural
descriptors [19, 20] for huge numbers of molecules. Data-mining techniques are applied to correlate
descriptor similarity to chemical or biological similarity.

In the last few years the development in drug discovery was mainly driven by automation techniques
- as a consequence the computational methods must now follow quickly. Major developers of
commercial molecular modeling software are addressing the new problems by adding chemoinformatics
modules to the software packages. However commercial solutions suffer from the limitation to
proprietary computational methods and on complex data management systems.

In contrast, the concept implemented in the software package marvin [21, 22], is very simple and
open. It represents a first example for a platform that allows very fast development of innovative
chemoinformatics algorithms by combining the functionality of newly developed programs with
modules from existing molecular modeling software packages. Beyond this, marvin provides
completely automated setup and testing as well as automated application of the new methods to current
data sets. Because of its very simple basic concept, the strategy can be implemented very fast on any
computational platform. Because of its open interface, a multitude of modules and computational

Molecules 2002, 7

208

methods is available at once. Because of its modular concept, only small parts of any new
chemoinformatics algorithms must be developed from scratch - most parts of the algorithm can be
imported by interfacing software packages that already exists.

Figure 1: Simplified scheme of the preclinical drug discovery process. Every step in the
workflow is accompanied by computational sciences. Bioinformatics is an important tool
for target finding and target validation. Molecular modeling methods are used mainly in
the lead optimization cycles. Chemoinformatics supports a major part of the process with
property calculations, similarity assessment, data management and data mining.

Molecules 2002, 7

209

Basic strategy

The basic idea of marvin is to automatically run a sequence of computer programs on a number of
compounds. The functionality of the entire sequence is called algorithm in the context of marvin. The
single programs are addressed by the term application. Therefore, a marvin algorithm is built up by
putting together applications and running them on molecules. marvin is only the integration platform
that links together all pieces of data and software needed in a chemoinformatics project.

marvin as a black box

Because of the high level of automation, any marvin algorithm can be applied as a black box:
Chemical structures are used as input and results of the entire study are presented as output. Usage as a
black box is an important demand on an integrated chemoinformatics software solution, because
applying a variety of computational methods, implemented in different software packages on different
computational platforms, to millions of compounds would be a very time consuming job. High
efficiency and fast application of computational methods however, is one of the major preconditions for
chemoinformatics software within the strategy of NT drug discovery.

The concept of marvin allows manual setup and flexible optimization of an algorithm. Once it is
tested and validated, even a complex algorithm can be run at the touch of a button without any user
interaction until the final result is presented.

marvin as a box of bricks

Looking inside the black box, marvin presents itself as a box of bricks (see Figure 2). All
applications - the modules of the algorithm - are built up based on a small number of precisely defined
interfaces. These interfaces are data file formats and communication file formats, handled by marvin
library functions. All communication between applications is performed via these files. This is why all
applications can be designed individually and every application can be used together with any other
one. There is no need to interface modules from different software suppliers - as long as integrating of
the single modules into the integration platform is simple.

Before running an algorithm on this file based platform, the global setup file, that holds all runtime
parameters for all applications of the algorithm, must be created. The library functions read this setup
file and pass the parameters to the corresponding applications. Every application writes its output to
data files which are readable by all other marvin applications. Additional inter-application
communication is possible via the communication file, which is how error messages and warnings are
passed from one application to another.

The status output (such as warnings and error messages) are written to a common output file that
comprises a detailed documentation of the entire study. This status file is generated automatically.

Molecules 2002, 7

210

Figure 2: Visualization of the modular structure of a marvin algorithm (see Section 4 for
the example study). Data sets are transferred between applications by so-called maff data
files. Different types of applications, such as generic applications (displayed as yellow
rectangles), interfaced applications (ovals) or high-level applications (in orange and 3D
representation) are used seamlessly in order to include all functionality needed by the
marvin algorithm. Blue arrows indicate data flow, magenta arrows indicate control flow.

Molecules 2002, 7

211

Information flow and control flow

Input of the marvin black box are molecule structures and parameter setup files. The information
flow inside the black box is controlled by the application manager (APM, see Figure 3). At start time,
the APM analyzes the setup, completes application parameter sets by looking up default values and
writes a so-called job file. This job file is a script that runs the current study on the specified host
computers. It holds all commands necessary to run applications as well as commands needed for data
management and control flow. Additional functionality includes copying files, removing files,
compressing and decompressing of files, transferring files to remote hosts, partitioning data sets for
parallel processing, merging outputs from parallel processing, etc.

Figure 3: Control flow and data flow of a marvin study. The user can apply marvin as a
black box. Only marvin input file and study results must be handled manually. The entire
marvin study runs automatically and is controlled by the APM, which reads the setup from
the input file. Blue arrows indicate data flow, magenta arrows indicate control flow.

Molecules 2002, 7

212

marvin modules

mavin modules are the application manager (APM), applications, file format definitions and the
marvin runtime library. The application manager reads basic parameters from the input files and sets up
the entire marvin job.

Applications are computer programs, which address small functional parts of an algorithm (such as
generation of 3-dimensional structure from molecular topology, calculate one molecular property, etc.).

The parameter input files contain all run-time parameters for all applications and the marvin specific
setup.

The marvin run-time library is used to integrate new software into the marvin system. The library
functions covers functionality concerning user interface, data input and output, protocol recording and
documentation.

Application manager

The minimum requirement of an application manager is to apply a number of applications to a
number of molecules. Beyond this, the marvin APM works as a data management and networking
module by controlling host-to-host file transfers, batch job submission, inter-application
communication etc. The marvin APM is controlled by keywords given in the input files (see Listing 2
for an example). The functionality of the marvin APM includes:

Multiple run modes (single, all, list): The application manager decides whether an application is to
run with all molecules or just once for all molecules or only with a certain class of molecules (e.g.
special handling of ionic compounds).

Network support: The APM finds applications in a local area network or the internet and starts
them on the remote host. Data files are transferred if necessary, default settings are adapted and output
files are concatenated automatically.

Integration of resources: Databases and other local or remote resources are included.
Commercial software packages: Functionality supported by commercial software packages is

included. External packages can be run as interfaced applications as an integrated part of any marvin
study.

Innovative applications: Novel and innovative applications can be implemented in c/c++ and
seamlessly combined with the interfaced applications.

File format conversions: Necessary file-format conversions are recognized and performed
automatically.

Runtime parameter organization: Every application is provided with the correct parameter input
from the input file.

Checkpointing and restart of studies: Already calculated results are recognized and noticed (e.g.
in order to restart stopped studies or rerun with only some of the application parameters changed).

Parallelisation: Time-consuming calculations are optimized by starting multiple instances of an
application in parallel. This allows "cluster-like" parallelisation on multi-cpu computer servers.

Molecules 2002, 7

213

Individual applications need not to be parallelized by compiling special versions for specific host
computers. Even software modules of which no parallelized versions are available (e.g. commercial
software packages) can be run in parallel using this concept.

Batch processing: If processes are submitted to a batch queue, the APM waits for the completion of
the job. The marvin algorithm is continued as soon as all needed results are available.

Documentation and error log: The APM generates a detailed documentation for the run of all
executed applications. Errors, warnings, status output and cpu-times are reported to the marvin output
file.

Optimized data management: Data files are stored in a compressed format and temporary files are
removed automatically.

Fail save concepts: The APM recognizes technical problems and tries to find work-arounds or
notifies the user.

Applications

marvin applications are built up as generic, as high-level or as interfaced applications.
Generic applications are programs developed for usage within marvin algorithms by linking the

marvin runtime library. The functions and data types of the marvin library can be used to handle all
data and parameter input and output (see Section 3.4 for details on the runtime library). Generic
applications are most commonly used for external data interfaces, such as reading external file formats,
or for implementing innovative computational methods.

In addition, most of the marvin system functions (such as the application manager) are implemented
as generic applications.

High-level applications are defined in one of the marvin input files. High-level applications run any
other marvin applications with a different set of default parameters (see Listing 1 for an example).

Interfaced applications are external software packages, integrated by using the generic application
cmdLine [24] or by implementing a generic marvin interface application.

Example applications are given in Table 1. All types of applications can be used to build up an
algorithm, regardless of their type.

Table 1: Example applications for use within a marvin algorithm

Application Type Description

Add Generic Performs simple arithmetic operations on datasets

AutoAtom Generic Calculates autocorrelation coefficients based on 3-dimensional molecular
structures and atomic properties (e.g. atomic point charges or extended
properties)

Molecules 2002, 7

214

Application Type Description

AutoScale Generic Scaling of all data sets in a study

AtomProperty Generic Calculates extended atom properies (e.g. lipophilicity, hydrogen bond
acceptor/donor, etc.)

CmdLine Generic Interface to external command processor. cmdLine can be used to run
external applications from within a marvin study

Derivat Generic Calculates the derivative of a multi-dimensional data set

ft2 Generic Calculates the fast fourier transformation of a multi-dimensional data set
(forward real to complex and backward)

GnuPlot2 Interfaced
Interface to gnuplot [30] program for plotting marvin data sets to a terminal,
file or printer

MarvinBabel Interfaced Interface to the molecular structure file format translator babel [25] (babel
reads and writes more than 60 file formats)

MarvinMOPAC Interfaced Interface to the quantum chemical program package MOPAC [23]

MarvinSybyl Intefaced Interface to the molecular modeling software package Sybyl

Mip Generic Calculates the molecular interaction potential as sum of the electrostatic
potential and the 6-12-Lennard-Johnes potential in a rectangular box around
a molecule

MkData Generic Generates a multidimensional dummy test-dataset (e.g. triangle, ramp,
cube...) for software evaluation and testing

MolIn Generic Imports two- or three-dimensional molecular structures into marvin data
files

MolOut2 Generic Exports molecule structures

NLM Generic Performs non-linear mapping of high-dimensional data sets into one-, two-,
or three-dimensional maps

PotSelect Generic Applies individual scaling factors to the points of a 3-dimensional potential
depending on their distance to atoms of specified types. The application is
used to select regions in space around atoms or groups in a molecule
molecule for further calculation.

QSARtable Generic Organizes data from all molecules of a study in a pivot table

Molecules 2002, 7

215

Application Type Description

Scale Generic Implements several different methods for linear and non-linear scaling of
data sets

Smooth Generic Implements several different methods for smoothing (e.g. integral-
smoothing, fourier-filtering, etc.) of data sets

Susi Generic Calculates the similarity between a molecular structure and a cluster of
structures

marvin files

Communication between the different applications and between applications and APM is based on
text files. Formats of these files are fixed and implemented in the marvin runtime library. Most
important marvin files are input files (parameter setup), data files, phone files (communication between
applications) and output files.

Input files

All run-time and control parameters of marvin are given in three hierarchically organized input files.
The structure of all input files follows the same syntax. The file local.defaults holds the host dependent
settings for the local computer, such as paths to local applications, the local marvin installation, etc.
(see Listing 3 for an example).

The file application.defaults includes all default parameters for applications. When executing an
application on a remote host, the application manager copies application.defaults to the remote system
to guarantee usage of the same settings for the entire study. High-level applications are defined in this
file preferably (see Listing 4).

The file myname.marvIn (= marvin Input) holds the setup for the current marvin study to be run.
The setup section of this file contains the sequence of applications and the list of molecules of a study.
All settings can be redefined in the marvIn file (see Listing 2).

All marvin input files are plain text files. A section is defined for each application. Beginning and
end of an application section are marked by the keys %%application and %%end of

application. Every application reads parameters from its personal section only. The application
manager makes use of the section %%setup. Within the sections run-time parameters are characterized
by their name (e.g. number of data points:). Several values of different data types can be
given after the colon. The scope of a parameter definition can cover one or more lines. Different types
of parameters are given in Table 2. Text outside a parameter definition and text outside a section are
ignored by the parameter read functions of the marvin run-time library and thus can be used for user
comments.

Molecules 2002, 7

216

Table 2: List of runtime parameter types used in the input file

Type Description
int one integer value
float one floating point value
string one word
char one character (i.e. first character of a word, such as yes or no)
list list of words
line one line (starting with the first visible character after the

colon; continued lines are concatenated)
files list list of filenames (including wildcards)

Data files

All marvin applications output molecular data into a standard data file for every molecule
(molecule.maff = marvin file format). Maff files are text-files that store molecule date and history
information in a readable form. Therefore every data file includes a brief documentation displaying the
applications, used to generate these data. Listing 6 shows an example maff data file from the example
algorithm described in Section 4. For optimized data management marvin allows automatic
compression and decompression of data files. Maff files may contain different types of information
assigned to molecules, such as molecular topology (i.e. structural formula), three-dimensional structure,
additional properties of the molecule or the atoms, tables of high-dimensional data (e.g. potentials,
surfaces, etc.) and comments.

Communication file

The marvin communication file (study.phone) allows applications of a study to communicate to each
other (e.g. an application can exclude some molecules from the data set at run-time, see Listing 9 for an
example).

Output file

The marvin output file (study.log) comprises all status information from all applications, such as
warnings, error messages, computation times, etc. The thoroughness of this information is adjusted by
setting the logfile size: parameter in the %%setup section of the marvin input file (possible
values are small, medium, big or debug, see Listings 7 and 8).

Molecules 2002, 7

217

marvin run-time library

The marvin run-time library is a compilation of functions and data types that help software
developers in implementing novel marvin applications. The library functions are designed to address
problems of data handling, file handling, user interface and marvin system management.

Data structures: marvin library functions are used to accessing molecular data stored in predefined
data structures. The data show the same modular structure as the data files (see Figure 4).

Figure 4: Schematic representation of a marvin dataset. The molecule data can be
handled on different levels of graining. The marvin library function provide access to
many types of grouped information.

Molecules 2002, 7

218

Different nesting levels of variables are used to address different levels of detail of information. In
the highest hierarchical level entire sets of information about one molecule are handled as one object.
But the interface gives handles to more fine-grained information, such as molecular structure, molecular
properties or even properties of single atoms.

Functions for data handling: The data-handling library includes functions for writing and reading

data from maff data files into predefined data structures and functions for managing these data. marvin
data structures include molecular data (e.g. atom coordinates, atom properties, topologies, molecular
properties, etc) and high-dimensional vectors (e.g. potential fields, description vectors, etc).
The functions allow accessing data in different ways, such as addressing values by index or by
coordinates (see Table 3 for example functions).

User interface functions: The user interface library includes functions to read run time parameters

from one of the input files. The parameters must be specified by section name, parameter name and
parameter element number in the parameter list. The routines are searching all marvin input files for the
demanded parameter hierarchically: If the parameter is not found in the setup of the current job (i.e. the
marvIn file), the file applications.defaults and – if necessary – the file local.defaults are searched. This
way parameters are set to default settings automatically (see Table 4 for example functions).

marvin system management: The marvin system management library includes functions for setting

and accessing information in the marvin environment (see Table 5 for example functions).

Table 3: marvin runtime library: Example functions for data handling

Function Description
ReadData(Name) reads a molecular data set from maff file Name
MarvinWriteData(Name) writes a molecular data set into maff file Name
MarvinGridPoint(Index) returns the value referenced by index vector Index
MarvinGridInterp(Coors) returns the value of a n-dimensional vector at the point given

by the coordinates Coors by interpolating the grid
MarvinGridNumber(Coors) returns a pointer to the data point next to the point defined by

the coordinates Coors in a n-dimensional vector
MarvinAtomProperty(Num) returns the properties of atom number Num
… …

Molecules 2002, 7

219

Table 4: marvin runtime library: Example user interface functions.

Function Description
MarvinGetFloat(Sect, Para, Num,
Val)

Reads the value at position Num from the input parameter
Par in the section Sect into the variable addressed by Val.

MarvinGetChar(Sect, Para, Num,
Val)

Reads the first character of the word at position Num
from the input parameter Par in the section Sect into the
variable addressed by Val (e.g. yes or no)

MarvinGetInt(), MarvinGetString(),
MarvinGetNum(), MarvinGetList(),
MarvinGetLList(), MarvinGetLine(),
…

Different types of run time parameters in the input files
are accessible directly from within an application (e.g.
words, lines, lists (as vectors), lists (as linked lists), etc.

MarvinLog(size, string) writes a message into the status output file if size matches
the global setting of the current output detail level (one of
small, medium, big, debug). E.g. the command
MarvinLog(“d”, “The value of Errorlevel is -1”) will
write the message into the log file only if the output detail
level is set to debug.

MarvinError(Num, Mssg) The function reports the error message corresponding to
the error number Num. The correct error message is
assigned to Num and the string Mssg is printed as an
additional explanation.

MarvinPercent(Actual, Total) Reports the progress of a computation in percent.
... ...

Table 5: marvin runtime library: Example functions for marvin system management.

Function Description
MarvinStart() Initializes all marvin related settings. The marvin library

functions can be used after call of MarvinStart().
MarvinEnd() Cleans up all data structures previously used by marvin.
MarvinStop(Error) Stops the execution of the current application or of the entire

marvin job, depending on the error level.
MarvinPhone(Recipient, Message,
Signal)

Transmits a message to another application.

MarvinReadPhone() Reads messages from other applications.
… …

Molecules 2002, 7

220

Example algorithm

Example problem

The marvin platform allows building up complete chemoinformatics algorithms by simply
combining generic, high-level and interfaced applications. In the following example, a marvin
algorithm is set up to address the problem of mining a chemical database for compounds which are
similar to a set of well known drug molecules.

The database comprises 5000 synthetically available compounds designed as a virtual combinatorial
library. The reference set consists of the 15 non-steroidal antiinflamatory drugs (NSAIDs) Diclofenac,
Flufenamic Acid, Flurbiprofen, Ibuprofen, Indometacin, Ketoprofen, Meclofenamic Acid, Mefenamic
Acid, Naproxen, 6-MNA (active metabolite of Napxoxen), Nabumeton, Piroxicam, Sulindac Sulfide
(active metabolite of Sulindac), Tenoxicam and Meloxicam.

As a first step in the algorithm, different molecular properties are calculated for all molecules in the
reference set and in the database. These calculated properties are called molecular descriptors in this
context. As next, pairs of descriptors are compared and the similarities are computed as Euclidean
distances between the descriptor pairs (i.e. similarity is not assessed in space of chemical structures but
in descriptor space).

Obviously, the choice of descriptors is crucial – different descriptors will result in different
similarities of the molecules. Therefore, the algorithm used for the virtual screening of the database
must allow high flexibility in choice of computational methods for descriptor calculations.

Applications

Several high-level, interfaced and generic marvin applications are needed to perform all calculations
of the example study. Application setup and a detailed listing of parameter definition are given in the
listings.

Applications used within this algorithm are molIn (generic), PropertyHbonds (high-level),
marvinLogP (interfaced), atomAutoCharge (high-level), atomAutoHbond (high-level), susi (generic)
and printSusi (high-level). In the following, these marvin applications are described briefly. The
description is focused on technical aspects – the theoretical background of the implemented methods is
discussed in more detail in [22].

molIn reads the topology of all molecules and writes an initial maff-file for each molecule. molIn is
a generic application that generates the marvin specific molecule format. It accepts more than 50
different input formats by accessing the external program babel [25]. Maff files, written by molIn, hold
the topology information of the molecules only. Following applications will add data fields to the files
and after finishing the marvin run, every file contains a variety of molecular information such as
descriptors, properties and the results of filtering operations.

PropertyHbonds is a high-level application that runs the generic application atomProperty with the
parameters needed to scan the molecules for hydrogen bond acceptors and hydrogen bond donors. All

Molecules 2002, 7

221

hydrogen bond acceptors are marked by a –1 and all donors by a +1 flag. The markers are stored as
extended atom properties in the maff files.

marvinLogP is an interfaced application that uses the clogP program [26] for calculation of
octanole/water partition coefficients (logP values). The clogP values are stored in table type data sets,
that consist of one row and one column.

atomAutoCharge is a high-level application that uses the generic application atomAuto to compute
autocorrelation coefficients based on the atom charges.

atomAuto derives spatial autocorrelation coefficients [22, 27, 28] from three-dimensional molecular
structures. Autocorrelation coefficient describe properties of atom pairs for given distances (e.g. The
coefficient ACH(10-11) indicates patterns of charges in distance between 10Å and 11Å). Usage of
autocorrelation coefficients is widespread in automated comparison of molecules, because comparison
of the autocorrelation coefficients is possible without the necessity of superimposing the molecules
[29].

atomAutoHbond is the corresponding high-level application that uses the same generic application
atomAuto to compute autocorrelation coefficients based on the extended atom property hydrogen bond,
previously calculated by propertyHbonds.

susi is a generic application that computes similarity of one molecule compared to a reference set.
First, Euclidean distances between the sample descriptors and all reference descriptors are calculated.
Non-linear scaling of the Euclidean distances leads to similarity scores that are in a range between 0.0
and 1.0. A similarity score of 1.0 denotes exact similarity (respectively a small distance between the
descriptors). A similarity score of 0.0 indicates no similarity (i.e. the distance between the descriptors is
higher than the predefined maximum distance).

All similarity scores for the sample molecule and reference set are summed up to and gives the so-
called susi (sum of similarity scores). Small values of the susi characterizes molecules that are similar
to the reference set [22].

In the example study the description vector for each molecule is built up from two sets of
autocorrelation coefficients and the computed cLogP value (41 values in total, see Listing 6).

printSusi is a high-level application that parameterizes the interfaced application GnuPlot in order
to give a graphical output of the study result.

The application GnuPlot uses the external GnuPlot [30] program to plot data to a printer or file.
Most of the GnuPlot parameters are accessible from within the marvIn setup. The GnuGlot application
provides suitable default settings for plotting marvin datasets of different types and is used mainly to
output study results. Default plot styles, defined as high-level applications, hide most of the GnuPlot
parameters.

Run modes

The applications molIn, PropertyHbonds, marvinLogP, atomAutoCharge and atomAutoHbond are
configured to run with all molecules so that all molecule data files contain the descriptors needed for

Molecules 2002, 7

222

the comparison. The applications susi and printSusi are called only once to calculate the sum of
similarity scores for all molecules in the database. Susi lists molecule names and corresponding susi
values into the status output file. Compounds with high scores can be selected from the list for
synthesis.

Listings

Application setup and a detailed listing of parameter definitions are given in Listing 2. Run-time
parameters for marvin are defined in the section %%setup, parameters for the applications in the
subsequent sections. Comments are included for better readability. The syntax for parameter definitions
is the same in all input files and for generic, high-level or interfaced applications.

Listings 3 and 4 display parts of the files local.defaults and application.defaults, used in the example
study.

Example application manager output is shown in Listing 5. This file is an unix shell script and runs
all applications and helper programs of the study.

An example data file is given in Listing 6. The header of every data file includes a history section
with messages from all programs, worked on the molecule or the data. This history section is generated
automatically every time a data set is written by the MarvinWriteData() functions that are part of the
marvin run-time library.

Listing 7 and Listing 8 show clippings from the status output file, printed with the log file detail
setting small and medium. The settings big and debug generate a more detailed status output.
Optimization of the algorithm

The success of any similarity assessment of molecule databases depends on the descriptors used.
This is because every similarity or diversity assessment is based on descriptors instead on molecular
structures. Strictly speaking, not the similarity of molecules, but the similarity of descriptors is
calculated and diplayed.

Therefore a platform for chemoinformatics algorithm development must allow very high flexibility
in parameter setup and in usage of descriptor calculation programs [31]. The platform must be able to
rerun a study with minimum expenditure of time in order to optimize the parameter setup for descriptor
calculation and comparison.

In a study that runs under the marvin platform all parameters for every single application can be
modified easily and any application can be replaced by another one. It is possible to rerun the entire
study with modified setup. The job setup and all parameter settings are documented automatically in the
marvin status output file for every single run. The studies run without further user interaction so that
optimization of the algorithm by variation of parameters and methods is only limited by cpu time
available.

Summary and outlook

Molecules 2002, 7

223

The modular chemoinformatics platform marvin allows flexible setup of algorithms such as the
similarity screening outlined in the example. Multiple runs of the same study are possible with different
parameterization or with different methods used. Interactive work on the algorithm is reduced to a
minimum. All runs are documented automatically. Data management tasks, such as removal, copying or
compression and decompression of files as well as network file transfers are handled and controlled by
marvin. All applications, the algorithm and the marvin components are controlled by the same input
file using an uniform and easy to use syntax.

Most of the requirements of a platform for chemoinformatics algorithm development are met by a
simple modular system like marvin. The combination of the basic components application manager,
runtime library and interface to external software packages has proven to be flexible and strong enough
to work as a chemoinformatics software platform. Chemoinformatics algorithms can be developed and
optimized easily. The basic strategy of marvin is very simple and can be implemented quickly.

However, the layout of marvin shows major disadvantages, mainly in handling huge data sets: The
application manager executes all applications internal and external to marvin in a simple way from the
unix command line. All data is stored in compressed plain text files. Both characteristics cause a
limitation of the number of molecules examined in a study. No considerable problems occur with data
sets between 1000 and 10 000 molecules. Applied to a higher number of molecules the script files
become too big and the number of data files too high.

Therefore the platform is appropriate for development of new applications and algorithms. Further
developments are necessary in order to apply the new algorithms to data sets of more than 10 000
molecules.

Tomorrow chemoinformatics platforms should be implemented in a different way. For example,
using completely object-oriented concepts, CORBA-interfaces for communications tasks and object-
relational databases for storage of huge data sets. But this first implementation demonstrates the proof-
of-priciple: A simple concept is able (or necessary) to meet the needs to a future chemoinformatics
platform.

Listings

The listings illustrate the way parameters are set in a marvin algorithm. All listings are clippings
from the control files and data files of the example study.

Listing 1

Example definitions for nested high-level applications (file: application.defaults): The high-level
application “mopacAM1” runs the external program mopac [23] with the AM1 hamiltonian. The
second high-level application “mopac-on-Sun” runs mopac with the same parameters on a remote host
named bigsun. Both high-level applications refer to the interfaced application marvinMOPAC.

Molecules 2002, 7

224

mopac high-level applications:
%%mopacAM1
default keys: AM1 PRECISE NOINTER \
 MMOK GEOOK
geo opt: all
time: 3600 sec
default: marvinMOPAC
%%end of mopacAM1

%%mopac-on-Sun
machine: bigsun target host name
launch: run QUEUE run on normal queue
arguments: no
wait: yes wait for all mopac output files output
default: mopacAM1
%%end of mopac-on-Sun

 the mopac interface application:
%%marvinMOPAC
run mode: files
remove: * .dat

 MOPAC execution parameters:
mopac execute: $MARVIN_DIR/bin/mopac
batch queue: normal
wait interval: 1 48 h ask for mopac results every hour,
 maximum wait time: 48 hours
mopac id: _mopac suffix of all temporary mopac files
result file name: arc

 MOPAC default keywords:
hamilton: AM1
time: 172000 maximum mopac run time in seconds
geo opt: yes
default keys: NOINTER XYZ
mopac keys:
mopac comment line: mopac job from marvinMOPAC version 3.1

 retrieve options:
retrieve: energy geo charges

%%end of marvinMOPAC

Listing 2

marvin input file for the example algorithm. Text outside a section or outside parameter definitions
is ignored by the ReadParameter() routines of the marvin runtime library. Section %%setup contains
marvin settings. Other sections (e.g. %%molIn, %%PropertyHbonds, %%marvinLogP, etc.) are used to
define application specific setup.

selection of similar compounds from a database

%%setup
owner name: dominik
project: similarity selection

hold temp files: no
compress: yes
handle existing files: new

Molecules 2002, 7

225

logfile size: small
system logfile: no
echo to stdout: yes

 molecules = reference and
 database (in separate file db.list)

molecules: diclofenac \
 flufenamic_acid flurbiprofen \
 ibuprofen indometacin \
 ketoprofen meclofenamic_acid \
 mefenamic_acid naproxen \
 nabumeton piroxicam \
 sulindac_sulfide tenoxicam \
 meloxicam 6-mna
inline: db.list

program sequenz: molIn PropertyHbonds marvinLogP \
 atomAutoCharge atomAutoHbond susi printSusi
%%end of setup

***** import molecules *****
%%molIn
paralell: 1
input type: mol (mdl mol file)
comment: molecule from db.list
%%end of molIn

***** h-bond property *****
%%PropertyHbonds
default: atomProperty
parallel: 8
machine: local
property: h-bond property to compute
%%end of PropertyHbonds

***** log P *****
%%marvinLogP
parallel: 8
machine: local
%%end of marvinLogP

***** autocorrelation *****
%%atomAutoCharge
default: atomAutoAll
property: charges use atom charges
%%end of autoAtomCharge

%%atomAutoHond
default: atomAutoAll
property: h-bond use extended property h-bond
%%end of autoAtomHbond

%%atomAutoAll
parallel: 1
machine: computeServerSGI
range: 5 20 20 calculate 20 autocorrelation coefficients
 for distances between 5 and 20 angstroems)
%%end of autoAtomAll

***** susi *****
%%susi

Molecules 2002, 7

226

machine: local
dataset number: 3 (use the 3. data set in maff file)

 use the first 15 molecules as reference:
reference: 1 2 3 4 5 6 7 8 9 10 \
 11 12 13 14 15
scaling: 0.5
score function: linear
%%end of susi

***** print susi results *****
%%printSusi
machine: computeServerSGI
default: GnuPlot
title string: susi of similarity dataset
set title: yes setname owner name date
printer: ps001
%%end of printSusi
end of marvin input file
ADo.

Listing 3

marvin setup file local.defaults. Pathnames and specific settings of the local marvin installation and
remote host information are given in this file.

**
* marvin.defaults *
**

%%local
local host: myWorkstation
marvin dir: /usr1/local/Soft/marvin
tables dir: /usr1/local/Soft/marvin/tables
compress: compress -f
uncompress: uncompress -f
remove: rm -rf
remote execute: rsh
remote copy: rcp

jobfile shell: /sbin/csh

system applications: setup cpuTime wait

maff version: maff by ADo: Version 4.20
read maff versions: maff by ADo: Version 4.x
%%end of local

%%setup
machine: local
execute: $MARVIN_DIR/bin/setup
launch:
arguments:
parallel: 1

maff status line: marvin application manager
maff history line: setup: marvin application manager, 0.1v4.0
%%end of setup

Molecules 2002, 7

227

%%computeServerSGI
work dir: $MARVIN_DIR/tmp/NetWork
login script: .login
network log: computeServerSGI.netlog
login name: sgi1 -l dominik -n
rcp adress: dominik@sgi1
remove: rm -rf
%%end of computeServerSGI

%%molIn
machine: local
execute: $MARVIN_DIR/bin/molIn
launch:
arguments:
parallel: 1

table for Sybyl atom types: $MARVIN_DIR/tables/molIn/AtomTypesSybyl.table
table for Sybyl bond types: $MARVIN_DIR/tables/molIn/BondTypesSybyl.table

maff status line: molecular dataset imported
maff history line: molIn: marvin input interface, 0.11v3.1
%%end of molIn

%%autoAtom
machine: local
execute: $MARVIN_DIR/bin/autoAtom
launch:
arguments:
parallel: 1

maff status line: atom based autocorrelation function
maff history line: autoAtom: autocorrelation, 0.31v1.2
%%end of autoAtom

%%marvinMOPAC
machine: computeServerSGI
execute: $MARVIN_DIR/bin/marvinMOPAC
launch: queue
arguments: -q long
parallel: 8

maff status line: MOPAC V6.0 interface
maff history line: marvinMOPAC: interface to MOPAC V6.0, 0.12v4.1
%%end of marvinMOPAC

 ...

Listing 4

The marvin setup file application.defaults. Default settings for all marvin applications are defined in
this file.

**
* application.defaults *
**

%%setup
echo to stdout: yes
logfile size: big
system logfile: none
hold temp files: yes

Molecules 2002, 7

228

compress: yes
handle existing files: new
owner name: Andreas Dominik
project: unknown
%%end of setup

%%wait
interval: 1 sec
%%end of wait

%%molIn
run mode: files
remove:
format: detect
need all molecules: yes
comment: imported molecule!
%%end of molIn

%%atomAtuo
run mode: files
remove:
range: 5 15 20 range and grid spacing of
 autocorrelation (20 coefficients in a
 distance of 5 – 20 A)
dataset: 1 number of data set in data file
autocorrelation function: product
%%end of autoAtom

 ...

Listing 5

marvin job file for the example algorithm. This shell script is automatically gerenated by the
application manager. It runs all applications for the molecules of the study. In the example the
application molIn is executed on a single CPU of the local host. The application PropertyHbonds runs
on eight molecules in parallel and the example application atomAuto is executed on the remote host
“sgi1” that is configured as computeServerSGI (see file local.defaults, Listing 3).

#!/sbin/csh
#**
*
*
marvin - job - file *
*
*
#**

run molIn:

uncompress -f diclofenac.mol2.Z
$MARVIN_DIR/bin/molIn molIn diclofenac similarity 1
compress -f diclofenac.mol2
compress -f diclofenac.molecule

run molIn:

uncompress -f flufenamic_acid.mol2.Z

Molecules 2002, 7

229

$MARVIN_DIR/bin/molIn molIn flufenamic_acid similarity 1
compress -f flufenamic_acid.mol2
compress -f flufenamic_acid.molecule

run molIn:

uncompress -f flurbibrofen.mol2.Z
$MARVIN_DIR/bin/molIn molIn flurbibrofen similarity 1
compress -f flurbibrofen.mol2
compress -f flurbibrofen.molecule

 ...

run PropertyHbonds:

uncompress -f diclofenac.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds diclofenac similarity 1 &

uncompress -f flufenamic_acid.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds flufenamic_acid similarity 2 &

uncompress -f flurbibrofen.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds flurbibrofen similarity 3 &

uncompress -f ibuprofen.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds ibuprofen similarity 4 &

uncompress -f indometacin.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds indometacin similarity 5 &

uncompress -f ketoprofen.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds ketoprofen similarity 6 &

uncompress -f meclofenamic_acid.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds meclofenamic_acid similarity 7 &

uncompress -f mefenamic_acid.molecule.Z
$MARVIN_DIR/bin/atomProperty PropertyHbonds mefenamic_acid similarity 8 &

$MARVIN_DIR/bin/wait wait similarity similarity diclofenac.hb
compress -f diclofenac.hb
rm -f diclofenac.molecule
$MARVIN_DIR/bin/wait wait similarity similarity flufenamic_acid.hb
compress -f flufenamic_acid.hb
rm -f flufenamic_acid.molecule
$MARVIN_DIR/bin/wait wait similarity similarity flurbibrofen.hb
compress -f flurbibrofen.hb
rm -f flurbibrofen.molecule
$MARVIN_DIR/bin/wait wait similarity similarity ibuprofen.hb
compress -f ibuprofen.hb
rm -f ibuprofen.molecule
$MARVIN_DIR/bin/wait wait similarity similarity indometacin.hb
compress -f indometacin.hb
rm -f indometacin.molecule
$MARVIN_DIR/bin/wait wait similarity similarity ketoprofen.hb
compress -f ketoprofen.hb
rm -f ketoprofen.molecule
$MARVIN_DIR/bin/wait wait similarity similarity meclofenamic_acid.hb
compress -f meclofenamic_acid.hb
rm -f meclofenamic_acid.molecule
$MARVIN_DIR/bin/wait wait similarity similarity mefenamic_acid.hb

Molecules 2002, 7

230

compress -f mefenamic_acid.hb
rm -f mefenamic_acid.molecule

cat similarity.log similarity.log.1 similarity.log.2 similarity.log.3 similarity.log.4 similarity.log.5 similarity.log.6 similarity.log.7
similarity.log.8 > marvin_tmp_logfile.log

mv marvin_tmp_logfile.log similarity.log
rm -f similarity.log.1 similarity.log.2 similarity.log.3 similarity.log.4 similarity.log.5 similarity.log.6 similarity.log.7 similarity.log.8

 ...

run atomAutoCharge:

uncompress -f diclofenac.logp.Z

rsh sgi1 -l dominik -n 'source .login ; mkdir $MARVIN_DIR/tmp/NetWork' >>& computeServerSGI.netlog

rsh sgi1 -l dominik -n 'source .login ; rm –rf $MARVIN_DIR/tmp/NetWork/similarity' >>& computServerSGI.netlog

rsh sgi1 -l dominik -n 'source .login ; mkdir $MARVIN_DIR/tmp/NetWork/similarity ' >>& computeServerSGI.netlog

rcp 'diclofenac.logp' 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/'

rcp 'similarity.marvIn' 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/'

rcp 'similarity.log' 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/'

rcp 'similarity.phone' 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/'

rcp '$MARVIN_DIR/tables/marvin/application.defaults' 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/home.defaults'

echo "application is running on remote host computeServerSGI " >> similarity.log

rsh sgi1 -l dominik -n 'source .login ; cd $MARVIN_DIR/tmp/NetWork/similarity; $MARVIN_DIR/bin/atomAuto atomAutoCharge
diclofenac similarity 1 ' >>& computeServerSGI.netlog

rsh sgi1 -l dominik -n 'source .login ; cd $MARVIN_DIR/tmp/NetWork/similarity; $MARVIN_DIR/bin/wait wait similarity similarity
diclofenac.aac >>& computeServerSGI.netlog

rcp 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/ diclofenac.aac' '.'
rcp 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/similarity.log_1' '.'
rcp 'dominik@sgi1:$MARVIN_DIR/tmp/NetWork/similarity/similarity.phone' '.'
compress -f diclofenac.aac
rm -rf diclofenac.logp
cat similarity.log similarity.log.1 > marvin_tmp_logfile.log
mv marvin_tmp_logfile.log similarity.log
rm -f similarity.log.1

 ...

write end logfile

$MARVIN_DIR/bin/cpuTime cpuTime similarity similarity

echo "marvin job similarity finished on host local" |
 mail -s "similarity.marvIn" $USER

Molecules 2002, 7

231

Listing 6

marvin data file from the example study. The file header includes a brief documentation of status
and history of the data. Header information (%%comment and %%history sections) is generated
automatically by the library functions. The file holds four data sets in total, including molecular
structure (data type mol), clogP value (data type table, one row and one column only) and the
autocorrelation coefficients (data type grid) from hydrogen bond properties and atomic charges.

%%maff by ADo: Version 3.x
%%diclofenac.aac2
%%autocorrelation coefficients calculated
%%begin of comment
molecule from db.list
reference molecule for susi similarity scores
%%end of comment
%%begin of history
diclofenac.molecule: molIn: import molecule: 0.11v2.1
 Mon May 31 15:00:22 1999
diclofenac.hb: atomProperty: calculate extended atom property: 0.33v1.0
 Mon May 31 15:04:13 1999
diclofenac.logp: marvinLogP: calculate clogP value: 0.34v0.9
 Mon May 31 15:48:34 1999
diclofenac.aac: atomAuto: atom based autocorrelation: 0.32v1.6
 Mon May 31 16:03:41 1999
diclofenac.aac2: atomAuto: atom based autocorrelation: 0.32v1.6
 Mon May 31 17:35:13 1999
%%end of history
dataset type: mxgg
number of datasets: 4
%%begin of dataset
dataset number: 1
dataset type: m
dataset name: diclofenac with extended properties
energy type: none
energy: 0
charges type: GASTEIGER
extended properties: 1
number of atoms: 30
number of bonds: 31
%%begin of atoms:
num type X Y Z charge name
1 604 4.0891 -2.4130 0.5652 0.0636 C1
2 604 2.7608 -2.0925 0.2349 0.0002 C2
3 706 5.0994 -1.5224 0.3778 -0.2766 N1
4 604 4.3840 -3.6761 1.0970 -0.0456 C3
5 604 1.7701 -3.0763 0.3662 -0.0678 C4
6 601 2.3982 -0.6806 -0.2673 0.0791 C5
7 604 6.3556 -1.9372 0.0813 0.0852 C6
8 604 3.3920 -4.6493 1.2238 -0.0789 C7
9 604 2.0830 -4.3516 0.8417 -0.0804 C8
10 602 0.9569 -0.5015 -0.6750 0.2409 C9
11 604 7.4428 -1.4508 0.8180 0.0613 C10
...
%%end of atoms
%%begin of bonds
number from to type
1 1 2 16
2 1 3 10
3 1 4 16

Molecules 2002, 7

232

4 2 5 16
5 2 6 10
6 3 7 10
7 4 8 16
8 5 9 16
9 6 10 10
10 7 11 16
11 7 12 16
12 10 13 10
13 10 14 20
14 11 15 16
...
%%end of bonds
%%begin of property:
property type: h-bond
property name: h-bond
0
0
-1
0
0
0
0
0
0
0
0
0
-1
-1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
%%end of property
%%end of dataset
%%begin of dataset
dataset number: 2
dataset type: x
dataset name: clogP
number of columns: 1
%%X1
min: 4.711
max: 4.711
number of points: 1
%%begin of data
4.711
%%end of data
%%end of dataset
%%begin of dataset
dataset number: 3
dataset type: g

Molecules 2002, 7

233

dataset name: autocorrelation coefficients
number of axis: 2
%%X1:
min: 5
max: 20
grid points: 20
%%X2 (values):
min values: -0.350815
max values: 0.837681
number of points: 20
%%begin of data
0.837681
0.767013
0.599279
0.34065
-0.0288451
-0.280594
-0.350815
-0.33142
-0.277938
-0.21335
-0.149994
-0.0906098
-0.0420099
-0.0112209
0.00534179
0.0108576
0.0108935
0.00837755
0.00577135
0.00371506
%%end of data
%%end of dataset
%%begin of dataset
dataset number: 4
dataset type: g
dataset name: autocorrelation coefficients
number of axis: 2
%%X1:
min: 5
max: 20
grid points: 20
%%X2 (values):
min values: -0.0833
max values: 1.0000
number of points: 20
%%begin of data
0.7083
1.0000
0.7500
0.4166
-0.1667
-0.0833
-0.0833
-0.0416
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Molecules 2002, 7

234

0.0000
0.0000
0.0000
0.0000
%%end of data
%%end of dataset
%%end of file

Listing 7

Clippings from the marvin status output file of the example study recorded with log mode small.
Log mode small is the default for running studies with a validated and tested algorithm.

filename: similarity.log

* *
* marvin - logfile *
* *

* job: similarity
* owner: dominik
* project: similarity selection

* files in fileset:
* diclofenac
* flufenamic_acid
...
* programs of the job:
* molIn
* PropertyHbonds
* marvinLogP
* atomAutoCharge
* atomAutoHbond
* susi
* printSusi

 application: molIn
 host: myWorkstation
 file: diclofenac
 at: Mon May 31 15:00:21 1999
molecule diclofenac imported!
CPU-time used by Marvin: 0.01 sec

 application: molIn
 host: myWorkstation
 file: flufenamic_acid
 at: Mon May 31 15:00:21 1999
molecule flufenamic_acid imported!
CPU-time used by Marvin: 0.01 sec

...

 application: PropertyHbonds
 host: myWorkstation
 file: diclofenac
 at: Mon May 31 15:04:13 1999
extended property hb calculated for molecule diclofenac!
CPU-time used by Marvin: 0.04 sec

...

Molecules 2002, 7

235

application: susi
 host: myWorkstation
 file: similarity
 at: Mon May 31 18:09:23 1999
susis calculated for 5015 structures:

rank name susi
 1 flufenamic_acid 1.0000 (ref)
 2 ibuprofen 1.0000 (ref)
 3 naproxen 1.0000 (ref)
 4 nabumeton 1.0000 (ref)
 5 piroxicam 1.0000 (ref)
 6 tenoxicam 1.0000 (ref)
 7 meloxicam 1.0000 (ref)
 8 6-mna 1.0000 (ref)
 9 flurbiprofen 0.9986 (ref)
 10 ketoprofen 0.9865 (ref)
 11 diclofenac 0.9855 (ref)
 12 meclofenamic_acid 0.9531 (ref)
 13 mefenamic_acid 0.9145 (ref)
 14 indometacin 0.8722 (ref)
 15 sulindac_sulfide 0.8548 (ref)
 16 db567 1.0000
 17 db571 1.0000
 18 db572 1.0000
 19 db573 1.0000
 20 db586 1.0000
...
 5013 db4998 0.0000
 5014 db4999 0.0000
 5015 db5000 0.0000
CPU-time used by Marvin: 32.40 sec

...

**
* Total CPU time used by marvin: 10713.36 sec
* no error in marvin job!
* marvin done.

Listing 8

Clippings from the marvin status output file of the example study recorded with log mode medium.
Log mode medium and log mode large are used for validating an algorithm or a single application. All
parameters read by the marvin library functions are echoed to the log file.

 application: molIn
 host: myWorkstation
 file: diclofenac
 at: Mon May 31 20:10:01 1999
read: input(2) = .mol2
read: output(2) = .molecule
read: format(1) = detect
read: table for Sybyl atom types(1) = $MARVIN_DIR/tables/molIn/AtomTypesSybyl.table
read: table for Sybyl bond types(1) = $MARVIN_DIRmarvin/tables/molIn/BondTypesSybyl.table
Reading molecule from Sybyl-.mol2 file: diclofenac.mol2
writing maff-file diclofenac.molecule

Molecules 2002, 7

236

Molecule imported: diclofenac.molecule
CPU-time used by Marvin: 0.090000 sec

...

 application: PropertyHbonds
 host: myWorkstation
 file: diclofenac
 at: Mon May 31 20:34:35 1999
read: input(2) = .lipo
read: output(2) = .hbond
read: molecule(1) = 1
read: property(1) = h-bonds
reading maff-file diclofenac.lipo

Property calculated for molecule diclofenac

writing maff-file diclofenac.hbond
CPU-time used by Marvin: 0.080000 sec

...

 application: autoAtomHbond
 host: computeServerSGI
 file: diclofenac
 at: Thu Apr 20 16:01:16 2000
read: input(2) = .hbond
read: output(2) = .aac
read: dataset(1) = 1
read: replace(1) = n
read: range(1) = 5
read: range(2) = 20
read: range(3) = 20
read: autocorrelation function(1) = product
read: property(1) = 1
read: scaling(1) = y
read: scaling(2) = 1.0
reading maff-file diclofenac.hbond
Calculate autokorrelation
 input name: diclofenac, (30 atoms) based on property hbond profile
 output: 5.000000 A - 20.000000 A, (20 points, 20 total)
Default autokorrelation
...

Listing 9

Example marvin phone file for communication between individual applications.

filename: similarity.phone

*
* marvin - phone-file
*

%%signal
from: marvinInput
to: all
signal: exclude tenoxicam
%%end of signal
%%signal
...

Molecules 2002, 7

237

References and Notes

1. Mueller, K. On the paradigm shift from rational to random design. THEOCHEM 1997, 467, 398-
399

2. Oldenburg, K. R. Current and future trends in high throughput screening for drug discovery. Annu.
Rep. Med. Chem. 1998, 33, 301-311

3. Bevan, P.; Ryder, H.; Shaw, I. Identifying small-molecule lead compounds: The screening
approach to drug discovery. Trends Biotechnol. 1995, 13, 115-121

4. Antel J. Integration of combinatorial chemistry and structure-based design. Curr. Opin. Drug
Discovery Dev. 1999, 2, 224-233

5. Li, J.; Murray, C. W.; Waszkowycz, B.; Young, S. C. Targeted molecular diversity in drug
discocvery: Integration of structure-based design and combinatorial chemistry. Drug Discovery
Today 1998, 3, 105-112

6. Eichler, U.; Gobbi, P.; Ertl, A.; Poppinger, D. Addressing the problem of molecular diversity.
Drugs Fut. 1999, 24, 177-190

7. Poetter, T.; Matter, H. Random or rational design? Evaluation of diverse compound subsets from
chemical structure databases. J. Med. Chem. 1998, 41, 478-488

8. Brown, F. K. Chemoinformatics: What is it and how does it impact drug discovery. Annu. Rep.
Med. Chem. 1998, 33, 375-384

9. Hann, M.; Green, R. Chemoinformatics - a new name for an old problem? Current Opin. Chem.
Biol. 1999, 3, 379-383

10. Pearlman, R. S.; Smith, K. M. Software for chemical diversity in the context of accelerated drug
discovery. Drugs Fut. 1998, 23, 885-895

11. Calvert, S.; Stewart, F. P.; Swarna, K.; Wiseman, J. S. The use of informatics to remove
bottlenecks in drug discovery. Curr. Opin. Drug. Discovery Dev. 1999, 2, 234-238

12. Venkatesh, S.; Lipper, R. A. Role of the development scientist in compound lead selection and
optimization. J. Pharm. Sci. 2000, 89, 145-154

13. Tropsha, A. Recent trends in computer-aided drug discovery. Curr. Opin. Drug Discovery Dev.
2000, 3, 310-313

14. Hertzberg, R. P.; Pope, A. J. High-throughput screening: New technology for the 21st century.
Current Opin. Chem. Biol. 2000, 4, 445-451

15. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science
2000, 287, 1964-1969

16. Polinsky, A. Combichem and chemoinformatics. Curr. Opin. Drug Discovery Dev. 1999, 2, 197-
203

17. Livingstone, D. L. The characterization of chemical structures using molecular properties. A
survey. J. Chem. Inf. Comput. Sci. 2000, 40, 195-209

18. Clark, D. E.; Pickett, S. D. Computational methods for the prediction of "drug-likeness". Drug
Discovery Today 2000, 5, 49-58

Molecules 2002, 7

238

19. Dominik, A. Computer-Assisted Library Design. In Methods and Principles in Medicinal
Chemistry, Vol. 9: Combinatorial Chemistry - A Practical Approach; Bannwarth, W.; Felder, E.
Eds.; WILEY-VCH: Weinheim, Berlin, New York, 2000; Vol. 9, Chapter 7, p 277

20. Pickett, S. D.; Mason, J. S.; McLay, I. M. Diversity profiling and design using 3D
pharmacophores: Pharmacophore-derived queries (PDQ). J. Chem. Inf. Comput. Sci. 1996, 36,
1214-1232

21. Dominik, A. marvin Chemoinformatics Platform, version 4.3; University of Tuebingen; 1996-2000
22. Dominik, A. Implementation and Application of a New Concept for Automated Computer-Aided

Drug Design. PhD-Thesis; University of Tuebingen, Germany, 1996
23. Stewart, J. J. P. MOPAC Quantum chemistry software package, version 6.0, QCPE #455; United

States Air Force Academy, Colorado Springs; 1990
24. Dominik, A. cmdLine - a generic marvin application that executes series of commands on a shell,

version 1.1; University of Tuebingen, Germay; 1995
25. Walters, P.; Stahl, M. babel: Molecule file format conversion program, version 1.6; University of

Arizona, Tucson; 1992-1996
26. clogp: Program for calculation of logP values, version 4.0; BioByte Corp.; 2000
27. Broto, P.; Moreau, G.; Vandycke, C. Molecular structures: perception, autocorrelation descriptor

and sar studies. Eur. Med. Chem. - Chim. Ther. 1984, 19, 66-70
28. Wagener, M.; Sadowski, J.; Gasteiger, J. Autocorrelation of molecular surface properties for

modeling of corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks.
J. Am. Chem. Soc. 1995, 117, 7769-7775

29. Gancia, E.; Bravi, G.; Mascagni, P.; Zaliani, A. Global 3D-QSAR methods: MS-WHIM and
autocorrelation. J. Comput.-Aided Mol. Des. 2000, 14, 293-306

30. Williams, T.; Kelley, C. Gnuplot visualization software, version 3.5; 1986-1993
31. Willett, P. Chemoinformatics - similarity and diversity of chemical libraries Curr. Opin. Biotech.

2000, 11, 85-88

Source code and data availability: Available from the authors.

© 2002 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

