$(+)-(1 R)-\mathrm{N}^{1}-\{[(1 R, 1 S)-2-O x o c y c l o h e x y l] m e t h y l\}-1-p h e n y l-1-e t h a n a m i n i u m ~ C h l o r i d e ~$

Edmont V. Stoyanov* and Ivo C. Ivanov

Faculty of Pharmacy, Medical University of Sofia, Dunav 2, BG-1000 Sofia, Bulgaria
Tel. (+359 2) 988 3142; Fax (+359 2) 987 9874; E-mail: estoyanov@goody.cablebg.net
Received: 20 January 2001 / Accepted: 15 May 2001 / Published: 25 May 2001
Keywords: Mannich base, cyclohexanone, aminoketones, aminomethylation, primary amine

The Mannich bases of cyclohexanone with benzylamine and 3,4-methylenedioxybenzylamine hydrochlorides have been prepared in moderate yields using aqueous formaldehyde solution [1]. We report now the synthesis of an analogous product from $(\mathrm{R})-(+)-1$-phenylethylamine. A mixture of cyclohexanone ($2.00 \mathrm{~g}, 0.02 \mathrm{~mol}$), paraformaldehyde $(1.20 \mathrm{~g}, 0.04 \mathrm{~mol})$ and $(+)-(R)$-1-phenylethylamine hydrochloride ($3.18 \mathrm{~g}, 0.02 \mathrm{~mol}$) was refluxed under stirring in anhydrous ethanol (15 ml) for 5 h (TLC monitoring). The reaction mixture gradually turned into a solution. The solvent was then removed under reduced pressure and the residue was triturated with ice-cooled acetone (20 ml). The separated crystals were filtered, washed with cold acetone, recrystallized from n-butanol and air-dried. Yield: 3.45 g (60%) of the title compound as colorless crystals. TLC homogeneous, optically active mixture of (R, R) - and (R, S)-diastereomers (TLC: silica gel Merck GF254 Al-sheets, eluted by chloroform-ethanol 3:1).

Mp. 175-176 ${ }^{\circ} \mathrm{C}\left(n\right.$-butanol); [a] ${ }_{\mathrm{D}}=+10.0^{\circ}\left(c=1.00, \mathrm{CH}_{3} \mathrm{OH}\right)$.
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): 1.12-1.30 (m, 1H), 1.40-1.60 (m, 2H), 1.62 (d, $J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.65-1.79 (m, 1H), 1.87-2.03 (m, 1H), 2.12-2.46 (m, 4H), 2.85-3.00 (m, 1H), 3.00-3.13 (m, 1H), 4.36 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 7.33-7.47\left(\mathrm{~m}, 3 \mathrm{H}_{\text {arom. }}\right), 7.60-7.69\left(\mathrm{~m}, 2 \mathrm{H}_{\text {arom. }}\right), 9.46$ and 9.67 (br. d, $\left.\mathrm{N}^{+} \mathrm{H} 2\right)$.

FT IR (neat): 3100-3500, 3030-3080, 3027, 2930, 2859, 1705 (C=O), 1493, 1449, 1368, 1352, 1312, 1196, 1127, 1076, 762, 702.

FAB MS [glycerol; $m / z(\%)]: 499\left(6 ; 2 \mathrm{M}+2 \mathrm{H}^{+}+\mathrm{Cl}^{-}\right), 232\left(100 ; \mathrm{MH}^{+}=\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}^{+}\right), 155$ (5), 134 (5), 105 (25), 55 (3).

Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NOCl}$ (267.80): C 67.28, H 8.28, N 5.23, Cl 13.24; found C 66.97, H $8.22, \mathrm{~N}$ 5.23, Cl 13.46.

Reference

1. Mannich C.; Hieronimus O. Ber. Dtsch. Chem. Ges. 1942, 75, 49-53.

Sample Availability: Available from the authors and from MDPI.
© 2001 MDPI. All rights reserved. Molecules website http://www.mdpi.org/molecules/

