Here, numerous winners of the Wolf prize from all chemical disciplines provide an overview of the new ideas and approaches that will shape this dynamic science over the forthcoming decades and so will have a decisive influence on our living conditions. This glimpse of the future is naturally based on the findings granted us by the rapid increase in chemical research during the 20th century. It may be said that a silent "revolution" took place, the positive results of which are still not fully predicted.

For example, chemists in research laboratories nowadays are able to develop drugs in increasingly short times to treat diseases once thought incurable. They can design new materials that withstand extreme conditions, and predict the properties of compounds that no one has even seen yet. In this exceptional book those breakthroughs of modern chemistry are illustrated and explained by leading scientists.

It stems from the high-quality papers given at the prestigious ceremony to accompany the presentation of the 20th Wolf Prize. It is an extraordinary source for every chemist in industry and academia to get an overview of the highlights of modern chemistry.

Main topics:

Some Reflections on Chemistry: Molecular, Supramolecular and Beyond.

Chemical Synthesis and Biological Studies of the Epothilones: Microtubule Stabilizing Agents with Enhanced
Activity Against Multidrug-Resistant Cell Lines and Tumors.

The Spirotetrahydrofuran Motif: Its Role in Enhancing Ligation in Belted Ionophores, Biasing Cyclohexane Conformation, and Restricting Nucleoside/Nucleotide Conformation.

Heterogeneous catalysis: From 'black art' to atomic understanding.

Drugs for a New Millennium.

Protein folding and beyond.

The Enzymology of Biological Nitrogen Fixation.

The Chemistry of Nitrogen in Soils.

Spherical Molecular Assemblies: A class of Hosts for the Next Millennium.

The Combinatorial Approach to Materials Discovery.

On One Hand but Not the Other: The Challenge of the Origin and Survival of Homochirality in Prebiotic Chemistry.

Chemical Reaction Dynamics Looks to the understanding of Complex Systems.

The Past, Present, and Future of Quantum Chemistry.

Quantum Alchemy.

Quantum Chemistry in the Next Millennium: The Next step.

Table of Contents:

1 Some Reflections on Chemistry - Molecular, Supramolecular and Beyond 1
1.1 From Structure to Information. The Challenge of Instructed Chemistry 1
1.2 Steps Towards Complexity 3
1.3 Chemistry and Biology, Creativity and Art 5
2 Chemical Synthesis and Biological Studies of the Epothilones - Microtubule Stabilizing Agents with Enhanced Activity Against Multidrug-Resistant Cell Lines and Tumors 8
2.1 Introduction 8
2.2 Total Synthesis of Epothilones 9
2.3 First Generation Syntheses of Epothilones A and B 9
2.4 First Generation Synthesis of the Acyl Domain 10
2.5 Investigation of C9-C10 Bond Construction Through Ring Closing Metathesis 12
2.6 B-Alkyl Suzuki Strategy 12
2.7 Macrolactonization and Macroaldolization Approaches 16
2.8 A New and More Efficient Synthesis of Epothilone B 18
2.9 Dianion Equivalents Corresponding to the Polypropionate Domain of Epothilone B 19
2.10 B-Alkyl Suzuki Merger 20
2.11 Stereoselective Noyori Reduction 21
2.12 Discovery of a Remarkable Long-Range Effect on the Double Diastereoface Selectivity in an Aldol Condensation 22
2.13 Preparation of Other Epothilone Analogs 25
2.14 Biological Evaluation of Epothilones 26
2.15 SAR Analysis of Epothilones: The Zone Approach 26
2.16 In Vitro Analysis Comparison to Paclitaxel and Related Agents 28
2.17 In Vivo Analysis: Comparisons to Paclitaxel 30
2.18 Conclusions 33
2.19 Acknowledgements 33
3 The Spirotetrahydrofuran Motif: its Role in Enhancing Ligation in Belted Ionophores, Biasing Cyclohexane Conformation, and Restricting Nucleoside/Nucleotide Conformation 37
3.1 Introduction 37
3.2 syn-1,3,5-Orientation on a Cyclohexane Core 40
3.3 Maximally Substituted Hexa(spirotetrahydrofuranyl)-cyclohexanes 43
3.4 Spirocyclic Restriction of Nucleosides/Nucleotides 49
3.5 Acknowledgement 51
4 Heterogeneous Catalysis: from "Black Art" to Atomic Understanding 54
4.1 Introduction 54
4.2 A Case Study: Ammonia Synthesis 55
4.3 The Surface Science Approach 57
4.4 The Atomic Mechanism of a Catalytic Reaction: Oxidation of Carbon Monoxide 62
4.5 Further Aspects 66
5 Drugs for a New Millennium 70
5.1 Introduction 70
5.2 Cell Death 70
5.3 Stroke and Myocardial Infarct 71
5.4 Schizophrenia 75
5.4.1 Neuroleptic Drug Development 76
5.4.2 Drug Psychoses 79
5.5 Drugs of Abuse 81
5.5.1 Definitions and Varieties 81
5.5.2 Approaches to Treatment: Focus on Cocaine 83
5.6 Conclusions and New Directions 85
5.7 Acknowledgements 87
6 Protein Folding and Beyond 89
6.1 Introduction 89
6.1.1 Computational Protein Folding 91
6.1.2 All-atom Simulations of Protein Unfolding and Short Peptide Folding 92
6.2 All-Atom Simulations of Folding of Small Proteins 93
6.2.1 Concomitant Hydrophobic Collapse and Partial Helix Formation 93
6.2.2 A Marginally Stable Intermediate State 94
6.3 A Perspective View 96
7 The Enzymology of Biological Nitrogen Fixation 102
7.1 Early History 102
7.2 Practical Applications 103
7.3 Biochemistry of N₂ Fixation 104
7.4 First Product of N₂ Fixation 105
7.5 Studies with ¹⁵N as a Tracer 105
7.6 N₂ Fixation with Cell-Free Preparations 106
7.7 Nitrogenase Consists of Two Proteins 107
7.8 ATP Furnishes Energy for Fixation 108
7.9 H₂ an Obligatory Product of the Nitrogenase Reaction 108
7.10 N₂ and HD Formation 109
7.11 Electron Transfer Sequence 109
7.12 Alternative Substrates 110
7.13 N₂ Fixation in Non-Leguminous Plants 110
7.14 Control of Nitrogenase 111
7.15 Magnitude of Chemical and Biological N₂ Fixation 111
7.16 Associative Biological N₂ Fixation 112
7.17 Genetics of Biological N₂ Fixation 112
7.18 Composition and Structure of Nitrogenases 113
7.19 Selection of N₂ Fixers 113
8 The Chemistry of Nitrogen in Soils 117
8.1 Introduction 117
8.2 Nitrogen Fixation and Ensuing Reactions 117
8.3 Amino Acids, Amino Sugars, and Ammonia in Soils 118
8.4 Nucleic Acid Bases in Soils 121
8.5 Bioavailability of the NH-N Fraction 121
8.6 Chemistry of the UH-N Fraction 122
8.7 Chemistry of the NH-N Fraction 122
8.8 Pyrolysis-field ionization mass spectrometry (Py-FIMS) and Curie-point pyrolysis-gas chromatography/mass spectrometry (CpPy-GC/MS) of soils 124
8.9 Origins of Major N Compounds Identified 125
8.10 ¹⁵N MR analysis of soils 126
8.11 Distribution of N in Soils 127
8.12 Concluding Comments 127
9 Spherical Molecular Assemblies: A Class of Hosts for the Next Millennium 130
9.1 Introduction 130
9.1.1 Supramolecular Chemistry 130
9.1.2 Towards Supramolecular Synthesis 131
9.1.3 Self-Assembly 131
9.2 Overview 132
9.3 A Spherical Molecular Assembly Held Together by 60 Hydrogen Bonds 132
9.3.1 Polyhedron Model - Snub Cube 133
9.4 General Principles for Spherical Host Design 134
9.4.1 Spheroid Design 134
9.4.2 Self-Assembly 134
9.4.3 Subunits for Spheroid Design and Self-Assembly 135
9.4.4 Platonic Solids 137
9.4.5 Archimedean Solids 138
9.4.6 Models for Spheroid Design 139
9.5 Examples from the Laboratory and from Nature 140
9.5.1 Platonic Solids 140
9.5.1.1 Tetrahedral Systems (T_d, T_h, T) 140
9.5.1.2 Octahedral Systems (O_h, O) 141
9.5.1.3 Icosahedral Systems (I_h, I) 142
9.5.2 Archimedean Solids 143
9.5.2.1 Truncated Tetrahedron (1) 143
9.5.2.2 Cuboctahedron (2) 144
9.5.2.3 Truncated Octahedron (4) 144
9.5.2.4 Rhombicuboctahedron (5) 145
9.5.2.5 Snub Cube (6) 145
9.5.2.6 Truncated Icosahedron (10) 145
9.5.3 Archimedean Duals and Irregular Polygons 146
9.5.3.1 Rhombic Dodecahedron (2) 146
9.5.4 Irregular Polygons 147
9.6 Why the Platonic and Archimedean Solids? 147
9.7 Conclusion 148
10 The Combinatorial Approach to Materials Discovery 151
10.1 Introduction 151
10.2 History of Rapid Synthesis Approaches in Materials Research 152
10.2.1 Early Work 152
10.2.3 Recent Innovations 154
10.2.4 The Continuous Compositional Spread (CCS) Approach 156
10.3 Systematized Search for a New High-Dielectric Material 158
10.3.1 General Considerations for Investigating New Materials Systems 158
10.3.2 The Problem: Finding New High Dielectric-Constant Materials 159
10.3.3 Measurement Strategy and Figure of Merit 161
10.3.4 Electrical and Compositional Evaluation 162
10.4 Identification of a Promising Candidate and Discussion of Trends 164
10.4.1 Initial Survey 164
10.4.2 The Zr-Sn-Ti-O System 164
10.4.3 Single-Target Synthesis and Detailed Electrical Characterization 167
10.4.4 HfTT Analog 168
10.4.5 Other Systems 168
10.4.6 Other Problems for Which a Combinatorial Approach is Well Suited 171
13.3 The Future of Quantum Chemistry 231
13.3.1 Extensions to Large Systems 232
13.3.2 Pursuit of Spectroscopic Accuracy 235
13.3.3 Potential Energy Surfaces for Reaction Dynamics 238
13.4 Conclusions 241
13.5 Acknowledgements 242
13.6 Appendix: Nomenclature 242
14 Quantum Alchemy 247
14.1 From Alchemy to Quantum Theory 247
14.2 Applying Quantum Theory 248
14.3 Total Energy Calculations 256
14.4 Novel Materials 262
14.5 The Future 266
 Acknowledgements 268
15 Quantum Theory Project 271
15.1 Introduction 271
15.2 Background 271
15.3 Wave Function Theory 274
15.4 Density Functional Theory 278
15.5 Ab Initio Density Functional Theory 281
 15.5.1 Exact Exchange 281
 15.5.2 Exact Correlation 283
Acknowledgements 284
Index 287

*Editor's Note: The brief summary and the contents of the books are reported as provided by the author or the publishers. Authors and publishers are encouraged to send review copies of their recent books of potential interest to readers of *Molecules* to the Editor-in-Chief (Dr. Shu-Kun Lin, MDPI, Saengergasse 25, CH-4054 Basel, Switzerland. Tel. +41 79 322 3379, Fax +41 61 302 8918, E-mail: molinfo@mdpi.org). Some books will be offered to the scholarly community for the purpose of preparing full-length reviews.