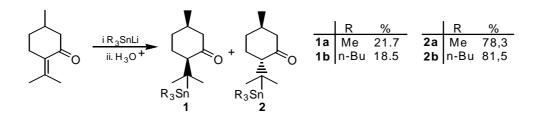
Stereoselective Synthesis of 8-Trialkylstannylmenthols

Sandra D. Mandolesi, Nelda N. Giagante, Verónica Dodero and Julio C. Podestá

Instituto de Investigaciones en Química Orgánica, Departamento de Química e Ing.Qca., Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina E-mail: jpodesta@criba.edu.ar

Abstract: Trialkyltin menthones of type **2** are obtained selectively by 1,4-addition of trialkylstannyl lithium to (-)-pulegone. Reduction of **2** with borane in THF using as catalyst the reagent prepared from borane and (S)-valinol gave a mixture of the corresponding trialkyltin alcohols **3** (Me: 84%; n-Bu: 90,6%) and **4** (Me: 16% and n-Bu: 9,4%).

Introduction

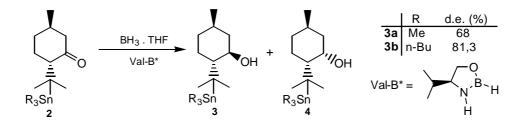

Taking into account the excellent results obtained with the (-)-8-phenylmenthyl group as a chiral auxiliary, we considered of interest the synthesis of some organotin analogues. The 8-triorganotinmenthyl moiety might affect the stereoselectivity due to its bulk and also to electronic effects. The stereoselective synthesis of these compounds was carried out according to Schemes 1 and 2.

Experimental

The 1,4-addition of trimethyl- and tri-n-butyl lithium to (-)-pulegone led to menthones of type **1** and **2** with an average yield of 72% following standard techniques [1]. Compounds **1** and **2** were separated by column chromatography (silica gel 60). The reduction of type **2** ketones with borane in THF using (S)-valinol as a catalyst was carried out according to known procedures [2].

Results and Discussion

The reduction of (-)-menthone carried out with the reagent prepared from borane and (S)-valinol in THF in order to determine the degree of asymmetric induction which can be achieved with this reagent, yielded quantitatively a mixture of (-)-menthol (80%) and (+)-neo-menthol (20%), i.e., 60% of diastereoisomeric excess (d.e.).



Scheme 1. 1,4-Addition of trialkylstannyl lithium to (-)-pulegone.

Table 1. ¹¹⁹Sn- and some selected ¹³C NMR values of the new organotin compounds 2a and 2b^a.

	N°	$\delta C_1(^3J)$	$\delta C_2(^2J)$	$\delta C_3(^3J)$	$\delta C_8(^1J)$	¹¹⁹ Sn	$[\alpha]_{D}^{20}(\text{conc.})^{b}$
	2a	213.42 (17.8)	61.25 (7.7)	28.41 (31.0)	32.59 (243,0)	12.7	-35.6° (0,874)
R ₃ Sn	2b	213.16 (16.1)	61,40 (6.8)	27.94 (NO)	26.47 (388.2)	-8.3	-22.2° (1,94)

a) in CDCl₃; ⁿJ(Sn,C) in Hertz; NO = Not Observed. b) In CHCl₃.

Scheme 2. Stereoselective reduction of trialkylstannylmenthones of type 2.

Under the same reaction conditions, the reduction of 2a (d.e. 68%) and 2b (d.e. 81,3%) led to the corresponding 8-trialkylstannylmenthols with better diastereoisomeric excesses.

Acknowledgements: This work was supported by CONICET (Buenos Aires), CIC (Provincia de Buenos Aires) and Universidad Nacional del Sur (Bahía Blanca, Argentina).

References and Notes

- 1. Radivoy, G.E.; Doctor in Chemistry Thesis; Universidad Nacional del Sur 1997.
- Itsuno, S.; Nakano, M.; Miyazaky, K; Masuda, H.; Ito, K.; Hirao, A; Nakahama, S. Asymmetric Synthesis Using Chirally Modified Borohydrides. Part 3. Enantioselective Reduction of Ketones and Oxime Ethers with Reagents Prepared from Borane and Chiral Amino Alcohols. *J. Chem. Soc. Perkin Trans. I*, 1985, 2039.