Chemical Modifications of 1,2,5-Oxadiazole N-Oxide System Searching for Cytotoxic Selective Hypoxic Drugs

M. Boiani², H. Cerecetto¹, M. González¹,², M. Risso¹, G. Seoane¹, G. Sagrera², O. Ezpeleta³, A. López de Cerán³ and A. Monge³

¹Cátedra de Química Orgánica, Facultad de Química
²Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, CC 1157, CP 11800, Montevideo, Uruguay
E-mail: mrisso@bilbo.edu.uy
³C.I.F.A., Universidad de Navarra, Pamplona, España

Abstract: New analogues of 3-Formyl-4-phenyl-1,2,5-oxadiazole N-oxide (1) are prepared and evaluated as cytotoxic selective agents in hypoxia.

Introduction

As part of our research project on biorreducible drugs in hypoxia conditions, we have developed a series of compound derivatives of N-oxide of 1,2,5-oxadiazoles system. They were evaluated as cytotoxic agents against V79 cells in oxia and hypoxic conditions. None of them showed selectivity in hypoxic conditions, but the derivative 1 presented a good profile of Cytotoxicity (Figure 1). In order to gain insight the mechanism of action and to obtain a selective compound, we designed the following modifications.

![Figure 1](image-url)

Experimental

Following, we showed the modifications outlined.
All the products were characterized by 1H RMN, 13C RMN, (1D, 2D), EM, IR and in some cases elemental microanalysis. The cytotoxicity of the synthesized products was tested against V79 cells in oxia and hipoxia conditions at a concentration of 20 µM, following a protocol previously described [1].

Results and Discussion

All the synthetic procedures conducted to the products of interest with variable yields. As the drug-modulations previously described [2], the new ones may asseverate that the substituent at the 3 position of the 1,2,5-oxadiazol N-oxide plays an important role in the cytotoxic activity of this kind of compounds.

Acknowledgment: C.H.L.C.C., CYTED, PEDECIBA.

References and Notes

2. Cerecetto, H.; González, M.; Risso, M.; Seoane, G.; Ezpeleta, O.; López de Cérrain; Monge, A. *Derivados del Sistema N-Óxido de 1,2,5-oxadia