Applications of Olefination Reactions to Cassiol Synthesis

María I. Colombo, Jose A. Bacigaluppo, Mirta P. Mischne, Juán Zinczuk and Edmundo A. Rúveda

Instituto de Química Orgánica de Síntesis (IQUIOS-UNR) Casilla de Correo 991, 2000 Rosario, Argentina
E-mail: iquiosra@citynet.net.ar

Abstract: Olefination reactions directed to the synthesis of cassiol from compounds 2-5 will be discussed.

Introduction

Cassiol (1), which exhibits a potent antiulcer activity, contains a functionalized cyclohexenone moiety with a quaternary stereogenic center at C-4 and a 2-vinyl-1,3-diol chain, which is connected at the C-3 position. Because of its structural features and pharmacological activity, a number of synthesis have been recorded [1]. Our approach toward the synthesis of 1 involves the C-1’- C-2’ double bond disconnection through a carbonyl olefination procedure [2]. This sequence allow us to explore the olefination reaction in two different ways, switching the polarity of the coupling partners as shown in the following scheme.

G= Protecting group, Z= Ph3P; MBTSO2- (2-mercaptobenzothiazolysulfone)

By following approach a, a precursor of cassiol (1) was obtained in our laboratory, but unfortunately in an unsatisfactory low yield [3]. In order to improve the yield of the coupling reaction, compounds 2-5 were then selected for study.
Experimental

Compounds 2-5 were prepared according to standard methods.

Discussion

Due to lack of success in the coupling of 4-5 with 2 and 3 by using different conditions of solvents and bases we turned our attention to approach b. Starting with compound 4, the diol 6 has been obtained. Treatment of 6 with mercaptobenzothiazole provided the corresponding sulfide 7. Starting with 7 and through the corresponding sulfone 8 we hope to improve the yield of the coupling product, on the basis of the recent report of Hart and Kozikowski et al [4].

Acknowledgements: UNR, CONICET, Agencia Nacional de Promoción Científica.
References and Notes