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Abstract: In order to study the synergistic effects of exogenous catalysts and in situ minerals in the
reservoir during heavy oil aquathermolysis, in this paper, a series of simple supported transition
metal complexes were prepared using sodium citrate, chloride salts and bentonite, and their catalytic
viscosity reduction performances for heavy oil were investigated. Bentonite complex catalyst marked
as B@Zn(II)L appears to be the most effective complex. B@Zn(II)L was characterized by scanning
electron microscopy (SEM), Fourier-Transform Infrared (FTIR) spectroscopy, thermo-gravimetric
analysis (TGA) and N2 adsorption–desorption isotherms. Under optimized conditions, the viscosity
of the heavy oil was decreased by 88.3%. The reaction temperature was reduced by about 70 ◦C
compared with the traditional reaction. The results of the group composition analysis and the
elemental content of the heavy oil indicate that the resin and asphaltene content decreases, and the
saturated and aromatic HC content increases. The results of TGA and DSC of the heavy oil show
that the macromolecular substances in the heavy oil were cracked into small molecules with low
boiling points by the reaction. GC-MS examination of water-soluble polar compounds post-reaction
indicates that B@Zn(II)L can diminish the quantity of polar substances in heavy oil and lower the
aromatic nature of these compounds. Thiophene and quinoline were utilized as model compounds
to investigate the reaction mechanism. GC-MS analysis revealed that C-C, C-N and C-S bonds were
cleaved during the reaction, leading to a decrease in the viscosity of heavy oil.

Keywords: heavy oil; catalytic aquathermolysis; viscosity reduction; clay; bentonite complex catalyst;
ethanol

1. Introduction

Heavy oil contains long-chain cyclic fused ring compounds such as resins and as-
phaltenes, which contribute to its high viscosity and low fluidity [1]. Functional groups
like hydroxyl, amino, and carboxyl groups can lead to the creation of hydrogen bonds
in resin and asphaltenes. The high melting and boiling temperatures, as well as the high
viscosity of crude oil, are attributed to the molecular hydrogen bonds formed between
resin and asphaltene molecules [2–5]. In addition, due to the complex environment of
heavy oil reservoirs, great difficulties are encountered in the process of oil exploration and
transportation [6]. Using viscosity reduction technology, heavy oil can be converted into
thin oil, which improves the utilization rate of heavy oil and reduces oil consumption.
As the most promising technology for heavy oil extraction, catalytic hydrothermal crack-
ing technology is currently being developed [7]. According to Hyne in 1982, metals can
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speed up hydrothermal decomposition. This reaction has subsequently been studied in
the context of several catalysts [8–10]. Hyne et al. also used thiophene and tetrahydrothio-
phene as models to study the mechanism of hydrothermal catalytic cracking reaction. The
breakage of C-S bonds is primarily responsible for the heavy oil’s decreased viscosity, and
transition metal compounds can clearly act as catalysts in this process. The complexation
of the metal atoms with organic sulfur can be better influenced by the ligands, which
can result in the breaking of the C-S bond and the beginning of the acid polymerization
and water–gas shift processes. In this approach, the heavy oil’s viscosity is decreased,
enhancing its quality [11–13]. Steam’s energy causes certain large molecules to be py-
rolyzed into smaller molecules throughout the reaction process, and catalysis may remove
some heteroatoms [14,15]. Therefore, the ligand’s presence may increase the catalyst’s
catalytic action. Furthermore, the clay’s surface is abundant in hydroxyl groups (-OH).
When the catalyst is added, the transition metal salt can be adsorbed on the clay surface
via ion exchange, hydrogen bonding, and other supramolecular processes, generating a
complex. The transition metal salt may also decompose under the clay’s catalytic effect to
produce additional active components [16,17]. Furthermore, the presence of clay-loaded
metal complexes can catalyze the production of hydrogen via alcohol reforming: taking
methanol as an example, at a certain temperature and pressure, in the presence of water
and a catalyst, cracking and carbon monoxide conversion reactions occur, generating H2
and CO2 [18,19]. Maintaining a heavy oil–water–alcohol hydrogen-rich reaction system
will improve the viscosity reduction efficiency of heavy oil during hydrothermal cracking.

In this study, we used the reservoir material clay bentonite as a substrate to produce
a variety of supported complex catalysts. The core metal ions were provided by seven
transition metal chlorides, and sodium citrate functioned as a ligand and calcium ben-
tonite as a carrier. The hydrogen-rich reaction employed the bentonite-supported metal
complex catalysts to successfully lower the viscosity of the oil, water, and ethanol mixture.
Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and elemental
analysis (EL) were used to examine the heavy oil both before and after the procedure. Gas
chromatography (GC) was used to determine the concentration of saturated hydrocarbons
(HC) both before and after the reaction. Additionally, the polar chemicals dissolved in the
water following the heavy oil reaction were assessed using Gas Chromatography–Mass
Spectrometry (GC-MS).

2. Results and Discussion
2.1. Aquathermolysis Reaction Condition Screening

Reaction temperature is the most important factor in the process of aquathermolysis
of heavy oil, so this was investigated first, with a reaction duration of 2 h. The results
are shown in Figure 1a, and the blank is the oil sample without any treatment. From
Figure 1a, it is clear that the viscosity drops significantly for all the temperatures tested
(ranging from 160 to 250 ◦C), with the greatest decrease at 180–200 ◦C. The decrease is
less at 160 and 250 ◦C—the former is due to the reaction proceeding to a lesser extent at
lower temperatures, while the latter is attributed to polymerization reactions occurring
to a greater extent at high temperatures, causing an increase in the viscosity of the heavy
oil and formation of solid coke. Obviously, the reaction temperature of 180 ◦C is lower
than that of conventional reactions [20]. After this, the influence of the reaction time on the
hydrothermal cracking reaction of the oil sample was investigated at a reaction temperature
of 180 ◦C, and the results are shown in Figure 1b. It seems that the reaction time of 2 h is
enough to reduce the viscosity of the heavy oil; the long reaction time does not result in
significant changes in viscosity. However, in specifying optimal reaction conditions, we
chose 4 h as the reaction duration to be on the safe side. In addition, in order to determine
the effect on hydrothermal decomposition of the amount of water added, the mass ratio of
water to oil was investigated at the optimal reaction temperature of 180 ◦C and optimal
reaction time of 4 h, and the results are shown in Figure 1c. Figure 1c shows that the
viscosity decreased most effectively with the addition of an amount of water equal to 20%
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of the mass of the heavy oil. Therefore, we chose 20% as the optimal amount of water to be
added to the oil sample. Calcium-based bentonite was used as the carrier of the catalyst; the
amount of catalyst to be added was determined by investigating the addition of variable
amounts of calcium soil under the optimal reaction conditions already derived (180 ◦C, 4 h,
20% water). The viscosity after the hydrothermal cracking reaction is shown in Figure 1d.
Figure 1d demonstrated that addition of calcium soil in an amount of 0.2% of the mass
of the heavy oil led to the highest viscosity reduction for the oil sample. Therefore, the
amount of catalyst to be added was set at 0.2%. With the reaction conditions thus specified,
the catalytic aquathermolysis of the crude oil was investigated with the addition of the
seven transition-metal-based catalysts (in 0.2% amounts), and the results are exhibited in
Figure 1e.
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Figure 1. Effects of reaction temperature (a), reaction duration (b), mass ratio of water to oil (c), 
calcium soil addition (d), different catalysts (e), and addition of ethanol (f) on the temperature-de-
pendent viscosity of heavy oil after thermolysis. 

Figure 1. Effects of reaction temperature (a), reaction duration (b), mass ratio of water to oil (c),
calcium soil addition (d), different catalysts (e), and addition of ethanol (f) on the temperature-
dependent viscosity of heavy oil after thermolysis.

All seven catalysts were found to be effective in the process, with B@Zn(II)L being the
most effective, resulting in a viscosity drop from 375,000 to 148,000 mPa·s. This amounts
to a viscosity reduction rate of 60.53%. Therefore, B@Zn(II)L was used in the rest of this
study. Figure 1f shows that the viscosity reduction rate reaches 88.3% after the addition of
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ethanol (in an amount equal to 30% of the heavy oil mass), which suggests that ethanol, as
a hydrogen source, is effective for reducing the viscosity of heavy oil.

The viscosity of the crude oil was assessed following its reaction with water, B@Zn(II)L,
and ethanol and subsequent storage at 50 ◦C for a period ranging from 0 to 32 days. The
results are displayed in Figure 2. The oil’s viscosity marginally improves after 1 day and
then remains quite stable. These data suggest that the alteration in viscosity is mostly
caused by chemical reactions rather than a physical process. The chemical alterations and
reaction mechanism will be examined and analyzed in the upcoming study.
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Figure 2. Dependence of heavy oil viscosity on time after reaction with B@Zn(II)L. 
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2.2. Characterization of the Crude Oil

Table 1 shows the chemical makeup of the heavy oil before and after the process. It is
evident that the quantity of resin and asphaltene dropped, while the quantity of saturated
hydrocarbons and aromatic hydrocarbons increased following the reaction. The decrease in
asphaltene means that this component was depolymerized to give other components [21–23].

Table 1. The group composition of the oil sample before and after reaction.

Sample Saturated HC % Aromatic HC, % Resin % Asphaltene %

Blank 24.76 31.28 25.39 18.57
Oil + water 32.01 33.27 19.13 15.59

Oil + water + B@Zn(II)L 38.76 39.24 12.31 9.69
Oil + water + B@Zn(II)L + ethanol 39.97 40.06 11.03 8.94

Table 2 shows the elemental analysis findings of oil samples in different reaction
conditions. The analysis shows decreases in the levels of nitrogen and sulfur in the oil
samples after the reaction. During aquathermolysis, the cleavage of C-R (R = S, N, O)
bonds generates numerous free radicals. Free radicals can react with water and/or ethanol
molecules, resulting in a decrease in asphaltene content and improving the quality of heavy
oil [24].

Table 2. Chemical composition of heavy oil pre- and post-reaction.

Group
Composition, %

C H N S O H/C

Blank 75.93 9.05 1.54 1.48 12.00 0.12
Oil + water 77.45 9.12 1.37 0.89 11.17 0.12

Oil + water + B@Zn(II)L 79.11 10.05 1.04 0.53 9.27 0.13
Oil + water + B@Zn(II)L + ethanol 81.18 11.04 0.99 0.46 6.19 0.14
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Gas chromatography was employed to assess the carbon number distribution in
saturated hydrocarbons, as shown in Figure 3. This can reveal changes in the carbon
number distribution of saturated hydrocarbons in oil samples under different reaction
conditions. Figure 3 demonstrates that the addition of a catalyst and the reaction with
ethanol lead to a decrease in the quantity of high-carbon-number chains, while the carbon
numbers C7–C16 increase, aligning with the findings of the group composition analysis.
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Thermogravimetric analysis (TGA) indicates alterations in the volatility of the com-
ponents due to the reaction, as illustrated in Figure 4. Similar patterns are shown by the
curves of crude oil treated with different reaction settings. Introducing B@Zn(II)L and
ethanol considerably shifts the weight loss curve to the left and increases the weight loss
rate of the oil sample. The results show that the large molecules in the heavy oil were
broken down into smaller molecules with a lower boiling point during the reaction.
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Differential scanning calorimeter (DSC) analysis was used to investigate the wax
production process in the crude oil under various reaction circumstances (Figure 5). The
wax precipitation peak of the crude oil occurs at 19.07 ◦C. The utilization of B@Zn(II)L and
ethanol in the reaction resulted in a decrease in the wax precipitation temperature from
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19.07 ◦C to 15.06 ◦C, indicating the breakdown of heavier components in the oil sample
into lighter components. Furthermore, certain dense components were dissolved in the less
dense components. The alteration in the components’ balance decelerated the wax crystal
precipitation and lowered the wax precipitation temperature of the oil sample.
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2.3. Analysis of Polar Substances Dissolved in Water after Heavy Oil Reaction

The viscosity reduction mechanism of heavy oil was further elucidated by analyzing
the polar components dissolved in water after reaction using GC-MS. Figures 6–8 display
the outcomes of the reaction using water, water and B@Zn(II)L, and water, B@Zn(II)L,
and ethanol, respectively. Figures 6–8 show that a significant quantity of polar organic
matter is dissolved in the water after the reaction. Aromatic ring-containing compounds
are removed from heavy oil, leading to a decrease in the heavy oil’s viscosity. Comparing
the figures reveals that Figure 6 contains fewer polar compounds, whereas Figure 8 has the
most polar chemicals. The presence of the catalyst and ethanol can decrease the quantity of
polar compounds in heavy oil. In particular, this includes the removal of aromatic polar
substances; as these make a significant contribution to the viscosity of the heavy oil, their
removal also contributes to viscosity reduction.
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2.4. Characterizations of Catalyst

Scanning electron microscopy (SEM) was used to analyze the morphology of bentonite
(B) and B@Zn(II)L. Figure 9a illustrates that bentonite has bigger particles, approximately
5 µm in size, and a compact interlayer distribution. Figure 9b displays the lamellar and
petal-like morphology of B@Zn(II)L, with a particle size of around 600 nm. The size of
the B@Zn(II)L particle has decreased, resulting in enhanced dispersibility and a larger
surface area. This increases the contact area between the crude oil and the metal by firmly
adsorbing it onto the surface and inner wall of the pore.

Furthermore, B and B@Zn(II)L were analyzed via infrared spectroscopy; the results are
shown in Figure 10. The new band occurring at 2910.1 cm−1 is attributed to the stretching
vibrations of the C-H groups. B@Zn(II)L also has bands at 1261.0, 1356.8, 1398.8, and
1441.1 cm−1, which are attributed to -CH2 deformation vibrations [25].
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Figure 10. FT-IR spectra of B and B@Zn(II)L.

The presence of these hydrocarbon signals confirms the presence of the Zn(II)L com-
plex in the bentonite.

N2 adsorption–desorption isotherms of B and B@Zn(II)L were analyzed using the
Brunauer–Emmett–Teller (BET) method. The parameters are presented in Table 3, and the
N2 adsorption–desorption isotherm of the supported catalyst exhibits a type IV isotherm,
as shown in Figure 11. Table 3 shows that the pore volume and pore size of B@Zn(II)L
increased compared to the original bentonite, resulting in the enhanced absorption capacity
of the supported catalyst B@Zn(II)L [26].
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Table 3. Characteristics of pores in B and B@Zn(II)L.

Name Pore Size (nm) Pore Volume (cm3/g) Surface Area (cm2/g)

B 4.60 0.08 68.24
B@Zn(II)L 6.53 0.12 68.45

The catalyst’s thermal stability was examined using thermogravimetric measurement
of B@Zn(II)L (Figure 12). Figure 12 displays a notable decrease in the mass of B@Zn(II)L
from 30 ◦C to 100 ◦C as a result of water loss. The mass loss rate of B@Zn(II)L dropped
at higher temperatures but remained higher than that of B, suggesting that the thermal
stability of the supported catalyst B@Zn(II)L is lower than that of the unmodified clay.
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2.5. Reaction Mechanism

Resin and asphaltene have many functional groups that can create hydrogen bonds.
Figure 13 illustrates the composition of resin and asphaltene model compounds. Hydrother-
mal cracking can induce hydrogenation, bond breakage, ring opening reactions, and other
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chemical transformations. Adding B@Zn(II)L and ethanol to the crude oil phase decreases
the hydrogen bonds between the resin and the asphaltene [27]. In this investigation, we
used a solution containing 0.2% B@Zn(II)L and 30% ethanol, heated at 180 ◦C for 4 h. Our
hypothesis is that metal ions facilitate acid polymerization and water–gas shift reactions
through interactions with sulfur atoms. These reactions are triggered by breaking the C-S
bond, leading to the creation of free radicals. This inhibits the clumping together of resin
and asphaltene molecules in the crude oil and the creation of interconnected structures,
leading to a decrease in the viscosity of the crude oil; the viscosity reduction process is seen
in Figure 14.
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To investigate the catalytic viscosity reduction mechanism of B@Zn(II)L, two model
compounds, thiophene and quinoline, were employed to mimic the reaction of common
heavy oil compounds. The solutions post-reaction under various circumstances were
examined using GC-MS. Figure 15 shows that phenol was detected in the products resulting
from the reaction of thiophene with water, B@Zn(II)L, and ethanol [28,29]. The catalyst
undergoes an oxidation–reduction reaction, resulting in the production of CO and H2S,
as depicted in Figure 16. The reaction resulted in the cleavage of the C-S bond, leading
to a decrease in the viscosity of the heavy oil [18,19]. Figure 17 displays the results of
the reaction of quinoline with water, B@Zn(II)L, and ethanol, resulting in the presence of
methylcyclohexane and pyridine.

Hydrogen breaking the C-C and C-N bonds in quinoline produces benzene, toluene,
and propylamine. Methylcyclohexane is produced by hydrogenating toluene, while pyri-
dine is made through the cyclization and deamination of two propylamine molecules, as
shown in Figure 18. The reaction with B@Zn(II)L and ethanol cleaves the C-C, C-N, and
C-S bonds, resulting in a significant reduction in the viscosity of the heavy oil.
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3. Materials and Methods
3.1. Materials

Petroleum ether, toluene, n-heptane, and 100% ethanol were obtained from Xi’an
Chemical Reagent Co., Ltd, Xi’an City, Shaanxi Province, China. at analytical reagent grade.
All reagents in this study were purchased and used without further purification. The
crude oil originated from Tanghe Oilfield in China. The oil sample’s principal elemental
composition was determined using an elemental analyzer (Vario EL cube, Elementar
Analysensyteme GmbH, Berlin, Germany). The calcium bentonite was obtained from
Fengyun Chemical Co., Ltd. in Xi’an, China.

3.2. Synthesis and Characterization of the Catalyst

Zinc chloride (ZnCl2) and sodium citrate were dissolved in distilled water at a 1:1
molar ratio and heated under reflux for 4 h to generate Zn(II)L. Subsequently, 4 g of
calcium bentonite was introduced into the mixture, followed by a 4-h reflux, centrifugation
at 4000 revolutions per minute, and rinsing with distilled water. The goods were then
dried for a long time at 70 ◦C. Figure 19 shows the schematic diagram of the B@Zn(II)L
synthesis process. The B@Zn(II)L was examined via scanning electron microscopy (SEM,
JSM-6390A, JEOL, Showima City, Tokyo, Japan), Fourier-Transform Infrared spectroscopy
(FTIR, Nicolet 5700, Waltham, MA, USA), thermogravimetric analysis (TGA), and N2
adsorption–desorption isotherms. The manufacture of the additional catalysts (B@Cr(III)L,
B@Mn(II)L, B@Fe(III)L, B@Co(II)L, B@Ni(II)L, B@Cu(II)L, B@Zn(II)L) followed the same
procedure, but with varying chloride salts.
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3.3. Catalysis of Complex Used in Aquathermolysis Reaction of the Heavy Oil

The experiments were conducted by introducing 35 g of heavy oil sample, along with
varying quantities of water, catalyst, and ethanol, into the high-temperature reactor to
study the impact of reaction temperature, reaction time, catalyst dosage, and the amount of
water and ethanol added. The liquid was then heated to start the aquathermolysis reaction.
Upon the completion of the experiment, the heating process was halted, and the mixture
was then cooled down to 40 ◦C for testing and analysis.
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3.4. Evaluation and Analysis of the Heavy Oil

The viscosity of the heavy oil was recorded using a BROOKFIELD DV-II+ pro-
grammable viscometer at different temperatures. The viscosity reduction ratio ∆η (in
%) was calculated as follows [10]:

∆η = [(η0 − η1)/η0] × 100 (1)

The symbol ∆η represents the viscosity reduction, η0 represents the initial viscosity of
the oil (mPa·s), and η1 represents the viscosity of the oil after the reaction (mPa·s) [10,30].

Furthermore, the heavy oil underwent additional analysis to examine any structural
modifications and group composition. Four categories of chemicals, saturated hydrocar-
bons, aromatic hydrocarbons, resins, and asphaltenes (SARA), were isolated using column
chromatography following the China Petroleum industry standard SY/T 5119 [31]. We
analyzed the heavy oil’s elemental composition before and after the reaction using an EL-2
elemental analyzer. GC analysis of the saturated hydrocarbon was performed before and
after the reaction using an HP-GC6890 GC analyzer [32]. The oil sample was mixed with
water, reservoir minerals, external catalysts, and a hydrogen donor in a reactor operating
at high temperature and pressure. The reaction occurred at a temperature of 200 ◦C for a
duration of 4 h.

3.5. Thermogravimetric Analysis (TGA)

In order to determine the temperature resistance of the synthesized catalyst, a ther-
mogravimetric analysis (TGA) was conducted with a TGA/SDTA851 instrument from
METTLERTOLEDO, covering a temperature range extending from 25 to 600 ◦C, with a
heating rate of 10 ◦C/min. The tests were conducted in a nitrogen (N2) atmosphere with a
flow rate of 20 mL/min, using silicon dioxide (SiO2) crucibles [24].

3.6. Differential Scanning Calorimetry (DSC) Analysis

The wax appearance temperature in the crude oil with each flow improver was de-
termined using DSC analysis following standard SY/T 0545-2012. The DSC test was
performed with a Mettler-Toledo DSC822e instrument from Switzerland under a N2 atmo-
sphere with a flow rate of 70 mL/min. The test encompassed a temperature range spanning
from −20 to 50 ◦C, with a heating speed of 10 ◦C/min [25].

3.7. GC-MS Analysis

After hydrothermally cracking the heavy oil under various conditions, the solid
impurities in the water phase were isolated and moved to a round-bottomed flask. The
polar compounds remaining after removing the water were dissolved in 100% ethanol
to prepare them for GC-MS analysis. The solution was analyzed using a 7890A-5975C
apparatus with hydrogen as the carrier gas flowing at a rate of 25 mL/min. The material
was analyzed using the DRS chemical database. K. Chao provides a detailed description of
the measurement technique [33].

4. Conclusions

A basic catalyst was created and utilized for catalyzing the aquathermolysis of heavy
oil in this study. The viscosity of heavy oil was reduced by 88.3% using 0.2% B@Zn(II)L and
30% ethanol at 180 ◦C for 4 h. The heavy oil’s group composition was examined using GC,
TGA, and DSC. The findings show that the reaction decreases the viscosity of the heavy
oil and eliminates some heteroatoms from its molecules, enhancing flow characteristics
and increasing quality. The GC-MS study shows that B@Zn(II)L can diminish the polar
compounds in heavy oil and lower the aromaticity of these chemicals when dissolved in
water. The GC-MS study of the thiophene and quinoline model compounds shows that the
C-C, C-N, and C-S bonds are cleaved by the catalyst, resulting in the decreased viscosity of
heavy oil.
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