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Abstract: The deployment of Li–S batteries in the commercial sector faces obstacles due to their
low electrical conductivity, slow redox reactions, quick fading of capacity, and reduced coulombic
efficiency. These issues stem from the “shuttle effect” associated with lithium polysulfides (LiPSs). In
this work, a haystack-like CeO2 derived from a cerium-based metal-organic framework (Ce-MOF)
is obtained for the modification of a polypropylene separator. The carbon framework and CeO2

coexist in this haystack-like structure and contribute to a synergistic effect on the restriction of LiPSs
shuttling. The carbon network enhances electron transfer in the conversion of LiPSs, improving the
rate performance of the battery. Moreover, CeO2 enhances the redox kinetics of LiPSs, effectively
reducing the “shuttle effect” in Li–S batteries. The Li–S battery with the optimized CeO2 modified
separator shows an initial discharge capacity of 870.7 mAh/g at 2 C, maintaining excellent capacity
over 500 cycles. This research offers insights into designing functional separators to mitigate the
“shuttle effect” in Li–S batteries.

Keywords: lithium–sulfur batteries; metal organic frameworks; cerium oxides; modified separator;
synergistic effect

1. Introduction

Boasting a high theoretical capacity (1675 mAh/g), high energy density (2600 Wh/kg),
abundant availability (260 ppm in the Earth’s crust), low cost, and environmental benefits,
lithium–sulfur (Li–S) batteries are seen as promising candidates for future energy storage
systems [1–4]. Nevertheless, the commercial deployment of Li–S batteries faces challenges
primarily due to the “shuttle effect” [5]. This phenomenon arises as soluble polysulfides
(Li2Sx, 4 ≤ x ≤ 8) migrate from the sulfur cathode to the lithium metal anode during
charge and discharge cycles due to concentration gradients and electric fields, leading to
significant irreversible capacity loss and a diminished cycle life [6–8]. Additionally, the poor
electrical conductivity of elemental sulfur and Li2S/Li2S2 results in low sulfur utilization
and suboptimal rate performance, further constraining the potential applications of Li–S
batteries. To tackle these challenges, numerous researchers have dedicated their efforts
toward the development and implementation of modified separators [1].

Separator-modified materials are classified into nonpolar and polar materials, such as
carbon (porous carbon spheres [9], carbon nanotubes [10], and graphene [11,12], etc.) and
transition metal compounds (metal oxides [13], metal carbides [14], metal nitrides [15], and

Molecules 2024, 29, 1852. https://doi.org/10.3390/molecules29081852 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29081852
https://doi.org/10.3390/molecules29081852
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules29081852
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29081852?type=check_update&version=1


Molecules 2024, 29, 1852 2 of 12

metal sulfides [16], etc.), respectively. Although carbon materials are highly conductive and
enable efficient charge transfer during the conversion of LiPSs, polar materials are more
widely used to suppress the “shuttle effect” due to their strong affinity to polar LiPSs.

Rare earth (RE) elements differ from transition metal elements due to their distinctive
4f shell electronic configurations, which result in unique physical and chemical properties.
Among rare earth materials, rare-earth oxides (REOs) have garnered significant attention
due to their applications in optics, electronics, magnetism, catalysis, and energy conver-
sion [17–19]. In particular, CeO2, a representative REOs, has attracted interest in catalyzing
the conversion of LiPSs. This is because CeO2 possesses exceptional catalytic activity,
which arises from the reversible Ce4+/Ce3+ redox couple facilitated by surface oxygen
vacancies [20]. This redox couple serves as an efficient active site that accelerates the con-
version and decomposition of LiPSs at the interface. Recent research on REOs has focused
on achieving nanometer-scale dimension to enhance the conversion of LiPSs. However,
traditional synthesis methods for cerium oxide hard to avoid particle agglomeration, posing
challenges in obtaining high-activity REOs. In light of this, it is worthwhile to explore
alternative synthesis methods to obtain REOs with improved activity.

Metal-organic frameworks (MOFs) are typically composed of metal nodes and organic
linkers, resulting in materials that are porous and possess tunable pore sizes and relatively
large specific surface areas [21,22]. The unique frame structure of MOFs enables the use of
MOFs as sacrifice templates, resulting in superior performance compared to conventional
synthesis methods of REOs. The framework of MOFs enables the even dispersion of MOFs-
derived oxides on its network, preventing the agglomeration of nano oxides. Furthermore,
the large specific surface areas of MOFs promote the exposure of active sites of oxides.
Additionally, the framework of MOFs facilitates channels for electron and ion transport,
thereby accelerating the conversion of LiPSs [23–26].

Drawing inspiration from the aforementioned factors, we developed a novel CeO2
material derived from MOFs, showcasing a haystack-like structure through the use of
MOFs as sacrificial templates. This CeO2 material was utilized for enhancing the separators
within Li–S batteries. The incorporation of a carbon network derived from the organic
framework of Ce-MOF aids in promoting electron transfer during the conversion of LiPSs,
thereby enhancing the rate capability of the Li–S batteries. Additionally, the CeO2 exhibits
remarkable electrocatalytic activity, facilitating the acceleration of redox reactions of LiPSs
and effectively mitigating the shuttle effect within the batteries. The Li–S battery assembled
with a CeO2 modified separator exhibits a high specific capacity of 1260 mAh/g at a rate
of 0.2 C, an excellent rate performance of 662.8 mAh/g at a rate of 5 C, and a capacity
decay of only 0.1% per cycle after 500 cycles at a rate of 2 C, demonstrating significant
cycling stability.

2. Results and Discussion

The progresses of Ce-MOF and CeO2 synthesis are illustrated in Scheme 1. The
Ce-MOF is prepared by a hydrothermal method with Ce(NO3)3·6H2O and 1,3,5-Benzenetri-
carboxylic acid as raw materials. To obtain the CeO2, the Ce-MOF is used as precursor
calcinated at 800 ◦C under an argon atmosphere. Subsequently, the CeO2 separator is
produced by a common Li–S batteries slurry coating method.

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM)
analyses are performed to reveal the appearance differences between Ce-MOF and CeO2,
as depicted in Figure 1. The SEM images (Figure 1a,b) demonstrate that CeO2 retains
a haystack-like morphology reminiscent of the Ce-MOF precursor, indicating that the
calcined CeO2 maintains the structural characteristics of Ce-MOF. Notably, the haystack-
like CeO2 is composed of nanorods with an average diameter ranging from 40 to 80 nm,
as depicted in Figure 1c. Furthermore, the uniform distribution of carbon, oxygen, and
cerium elements depicted in the SEM image (Figure 1d) and the corresponding elemental
mappings (Figure 1e–g) confirms the retention of the carbon component in Ce-MOF-derived
CeO2. The morphological features and size of CeO2 observed in the TEM image (Figure 1h)
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correspond with the findings from the SEM images. Furthermore, the high-resolution TEM
(HRTEM) imagery (seen in Figure 1i) shows lattice fringe spacings of 0.314, 0.271, 0.192, and
0.166 nm, aligning with the (111), (200), (220), and (311) planes of CeO2, respectively [27,28].
The selected area electron diffraction (SAED) pattern in Figure 1j illustrates the (111), (200),
(220), and (311) facets of CeO2, further corroborating the successful synthesis of CeO2
derived from Ce-MOF.
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Figure 2a displays the X-ray diffraction (XRD) patterns of Ce-MOF and CeO2. The
diffraction peaks of Ce-MOF align closely with previous research [27] and the peaks of
the synthesized CeO2 can be indexed well with CeO2 (JCPDS: 43-1002). To study the
bonding features of Ce-MOF and CeO2, FT-IR spectroscopy was performed and the results
are shown in Figure 2b. For Ce-MOF, two peaks at around 1610 cm−1 and 1540 cm−1

can be attributed to stretching vibrations of asymmetric carboxylate, while the peaks at
around 1430 cm−1 and 1370 cm−1 are assigned to symmetric carboxylate anions. The
peak at 3330 cm−1 belongs to water (O–H). After calcination, the peak located at 533 cm−1

in the spectrum of CeO2 is classified as to the Ce–O vibration that is in accord with the
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Ce-MOF. The specific surface areas of Ce-MOF and CeO2 are explored using Brunauer–
Emmett–Teller (BET) analysis through N2 adsorption–desorption isotherms, as presented
in Figure 2c. Compared to the Ce-MOF, the specific surface areas of CeO2 are increased
from 21.20 m2/g to 147.84 m2/g, leading to stronger adsorption ability to LiPSs. The pore
size distributions in Figure S2 reveal that CeO2 has a porous structure.
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The chemical states of the elements present on the CeO2 surface are examined us-
ing X-ray photoelectron spectroscopy (XPS). Figure 2d shows three peaks in the C 1s
spectrum, which is assigned to C–C, C–O, and O–C=O (284.7, 285.4, and 289.3 eV), re-
spectively [19]. The O 1s spectrum (Figure 2e) displays three peaks at 529.9, 530.3, and
532.2 eV, which could be indexed to lattice oxygen (OL), O2− ions in surface oxygen vacan-
cies (OV), and chemisorbed oxygen species (OC), respectively [29]. As depicted in Figure 2f,
the high-resolution Ce 3d spectrum is fitted into eight peaks as follows: V (882.8 eV), V′

(885.2 eV), V′′ (889.6 eV), V′′′ (898.5 eV), U (901.2 eV), U′ (902.9 eV), U′′ (908.1 eV), U′′′

(917.2 eV) [29,30]. The binding energies of the peaks V/U, V′′/U′′, and V′′′/U′′′ correspond
to the standard spectra of Ce4+, while the binding energies of V′ and U′ correspond to Ce3+.
This demonstrates the presence of Ce4+/Ce3+ redox couples in the CeO2 material.

The SEM images displayed in Figure S3 reveal the even distribution of Ce-MOF and
CeO2 on the PP separator in a 3D structure, which functions as a physical barrier against
LiPSs. The cyclic voltammetry (CV) curves provided in Figure 3a show the performance
of Li–S batteries utilizing PP, Ce-MOF, and CeO2 modified separators under a scan rate
of 0.1 mV/s within a voltage window of 1.8 to 2.8 V (vs. Li+/Li). The reduction peaks
at 2.3 and 2.05 V signify the reduction of sulfur (S8) to long-chain soluble LiPSs (Li2Sx,
where 4 ≤ x ≤ 8), transitioning into short-chain insoluble Li2S2/Li2S for both Ce-MOF
and CeO2 [31,32]. On the contrary, the oxidation peaks at approximately 2.3 and 2.4 V
correspond to the reverse process of Li2S/Li2S2 conversion back to S8 [33]. Notably, bat-
teries with CeO2 modified separators demonstrate higher peak currents, reaching around
2 A/g, and a smaller polarization. These outcomes suggest that the incorporation of CeO2
enhances the redox reactions of polysulfides and diminishes polarization.
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rate of 0.1 mV/s, (b) Cycling performances at 0.2 C and (c) rate performances of Li–S batteries with
PP, Ce-MOF, and CeO2 modified separators; (d) charge–discharge profiles of cells with PP, Ce-MOF,
and CeO2 modified separators at 0.2 C; (e) discharge capacity of cells with PP, Ce-MOF, and CeO2

modified separators for plateau I and plateau II at various current densities; (f) EIS spectra of cells
with PP, Ce-MOF, and CeO2 modified separators; (g) long-term performance of the Li–S battery with
a CeO2 modified separator at a current density of 2 C for 500 cycles; (h) the areal capacity of the Li–S
battery with high sulfur loading at the current density of 2 C and 1 C, respectively.

Figure 3b depicts the rate performance of cells with PP and modified separators across
current densities from 0.1 to 5 C. The cell equipped with a CeO2 modified separator exhibits
remarkable specific capacities of 1256.2, 1017.7, 890.1, 806.4, 745.9, and 662.8 mAh/g at
0.1, 0.2, 0.5, 1, 2, and 5 C, respectively, outperforming cells with PP and Ce-MOF modified
separators. Conversely, the PP and MOF separators demonstrate poor stability at current
densities of 2 C and 5 C. Interestingly, upon reducing the current density from 5 C to
0.2 C, the cell with a CeO2 modified separator displays outstanding reversibility and
stability, rebounding to 990.9 mAh/g, equivalent to approximately 97.4% of the initial
value. Furthermore, Figure 3c illustrates the cycling performances of cells utilizing various
separators at a current density of 0.2 C. Notably, the cell featuring a CeO2 modified separator
showcases superior cycling capability, initiating with a specific capacity of 1260 mAh/g
and the highest coulombic efficiency. Even after 100 cycles, the specific capacity of the cell
with a CeO2 modified separator remains at 926.9 mAh/g, significantly exceeding those
with Ce-MOF modified (709.2 mAh/g) and PP (513.2 mAh/g) separators.
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The galvanostatic discharge/charge (GDC) profiles for cells incorporating various
separators at current densities from 0.1 C to 2 C are detailed in Figures 3d and S4. Notably,
Figure 3d shows two distinct discharge plateaus at a current density of 0.2 C. The initial
plateau relates to the conversion of S8 to long-chain soluble LiPSs (Li2Sx, 4 ≤ x ≤ 8)
(I), followed by the conversion of these long-chain LiPSs to short-chain Li2S2/Li2S (II).
Subsequently, Figure 3e and Table S1 present a summary of the specific capacities associated
with plateaus I and II and the ratio between plateau II and the discharge capacity at
current densities ranging from 0.1 C to 2 C. Notably, despite capacity fade with increasing
current rate due to an insufficient reduction of LiPSs, cells with PP, Ce-MOF, and CeO2
separators exhibit around 60.5%, 67.6%, and 64.4% of the discharge capacity corresponding
to plateau II at a current density of 2 C, respectively. This observation suggests that
the modified separators facilitate the conversion of long-chain Li2S4 to Li2S2/Li2S [34].
Furthermore, the electrochemical impedance spectra (EIS) of cells with different separators
are depicted in Figure 3f. Of particular interest is the cell with a CeO2 modified separator,
which demonstrates the lowest charge transfer resistance (Rct). This outcome indicates the
enhanced charge transfer kinetics of CeO2, potentially attributed to the carbon component
within CeO2 derived from Ce-MOF.

For Li–S batteries to reach commercialization and large-scale application, parameters
like long-term cycling stability and high areal capacity are essential. Demonstrated in
Figure 3g, the cell employing a CeO2 modified separator showed remarkable long-term
cycling stability during tests at a current density of 2 C with a sulfur loading of 2 mg/cm2.
Initially, it delivered a specific capacity of 870.7 mAh/g at 2 C and experienced a capacity
decay of only 0.1% per cycle after 500 cycles, all while maintaining a stable coulombic effi-
ciency exceeding 95%. In addition, to investigate the high areal capacity of cell with a CeO2
modified separator, the areal sulfur mass loading is increased to 4 mg/cm2 (Figure 3h).
High initial areal capacity of 1.75 and 2.89 mAh/cm2 are achieved at the current den-
sity of 2 C and 1 C, and retained the areal capacities of 1.30 and 2.05 mAh/cm2 after
200 cycles, demonstrating that the CeO2 modified separator possesses the potential in Li–S
batteries applications.

To investigate the influence of CeO2 modified separator thickness on the performance
of Li–S batteries, cells with varying thicknesses of CeO2 modified separators (referred to
as CeO2-25, 50, 75, and 100) were prepared using a doctor’s blade. The actual coating
thicknesses of CeO2-25, CeO2-50, CeO2-75, and CeO2-100 were measured as 12.84, 14.33,
16.19, and 18.42 µm, respectively, as shown in Figure S5 and Table S2. The rate performances
of cells with different thicknesses of CeO2 modified separators are illustrated in Figure 4a,
highlighting that the cell with the CeO2-75 modified separator exhibited the highest specific
capacity of 1256.2 mAh/g at 0.1 C and 662.8 mAh/g at 5 C. Upon reducing the current
density to 0.2 C, the specific capacity of the cell with the CeO2-75 modified separator
increased to 990.9 mAh/g, surpassing those of cells with CeO2-25, 50, and 100.

In addition, the cycling performances of the cell with CeO2 modified separators with
different thicknesses are investigated in Figure 4b. The maintained discharging capacity
of the cell with the CeO2-75 modified separator after 100 cycles at current density 0.2 C is
926.9 mAh/g, much higher than those of cells with the CeO2-25 (698.8 mAh/g), CeO2-50
(776.6 mAh/g), and CeO2-100 (851.0 mAh/g) modified separator. As shown in Figure 4c,
the CV curves of batteries using CeO2-75 modified separators demonstrate the highest
current intensity, and among all samples, CeO2-75 has the highest reduction peak potential
and the lowest oxidation peak potential, with a polarization value of about 250 mV, further
indicating its fastest reaction kinetics. As depicted in Figure S6, the CV curves from the first
to fifth cycles of the cell with CeO2-75 at a scan rate of 0.1 mV/s are measured, showing that
there is no significant change in the potential of redox peaks, thereby suggesting superior
electrochemical stability [35].
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As illustrated in Figure 4d, the electrochemical impedance spectra of cells with various
thicknesses of CeO2 modified separators are investigated. Among them, the cell with the
CeO2-75 modified separator shows the smallest Rct, revealing the fast kinetics of LiPSs
redox. The value of Rct varies in a trend in which CeO2-75 > CeO2-100 > CeO2-50 > CeO2-25.
Based on all electrochemical results of cells with various thicknesses of CeO2 modified
separators, we found that increasing the thicknesses of CeO2 coatings can restrain the
“shuttle effect” and accelerate the conversion of LiPSs to some extent. However, when the
coating is too thick, the transmission of electrons and ions will be inhibited, leading to
worse electrochemical performances. Therefore, the thicknesses of modified separators
would be worth further attention in future research.

As shown in Figure 5a, the polysulfide adsorption experiment is conducted to verify
the chemical binding ability of Ce-MOF and CeO2 [36]. Samples of 10 mg were added into
3 mL of 5 mM Li2S9 solution. The Li2S9 solution with CeO2 become complete colorless while
the Li2S9 solution with Ce-MOF is light yellow after 24 h, demonstrating that CeO2 exhibits
much stronger chemical interactions with LiPSs than Ce-MOF. The formation mechanism
of Li2S is investigated by Li2S nucleation experiments as shown in Figure 5b,c. The peak
areas in red, blue, and green represent the precipitation of Li2S, the reduction of Li2S8,
and the reduction of Li2S6, respectively. Compared to the cell with the Ce-MOF modified
separator, a sharp nucleation peak for the cell with the CeO2 modified separator appears
earlier, demonstrating a faster nucleation ability of the Li2S [37,38]. The capacities of the
precipitated Li2S on the cell with Ce-MOF and CeO2 modified separators are calculated as
250.52 and 252.78 mAh/g, respectively.
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Figure 5. (a) Digital images of the polysulfide (Li2S9) adsorption test of Ce-MOF and CeO2; potentio-
static discharge profiles of Li2S8 solution on (b) Ce-MOF and (c) CeO2 at 2.05 V, the peak areas in red,
blue, and green represent the precipitation of Li2S, the reduction of Li2S8, and the reduction of Li2S6,
respectively; (d) adsorption energy for Li2S8, Li2S4, and Li2S on CeO2. Herein, purple, red, green,
and yellow balls represent cerium, oxygen, lithium, and sulfur, respectively.

Furthermore, density functional theory (DFT) simulations are conducted to certify
the chemical interaction between CeO2 and LiPSs. Figure 5d infers that the intermediate
Li2S8, Li2S4, and Li2S are chosen as the computational models to calculate the adsorption
energy. The relaxed configurations of Li2S8, Li2S4, and Li2S adsorbed on the surface of CeO2
deliver the binding energies of −4.76, −4.30, and −3.00 eV, respectively. These values are
comparable or superior to other materials as reported elsewhere [7,9], indicating a strong
chemical adsorption. Additionally, compared to Li2S, CeO2 has lower binding energy to the
long-chain LiPSs, demonstrating the stronger the polar–polar interactions between CeO2
and LiPSs [39]. Overall, the DFT calculation results suggest that the CeO2 can effectively
capture LiPSs.

3. Materials and Methods
3.1. Synthesis of the MOF

The Ce-MOF was synthesized by a conventional hydrothermal method as reported
elsewhere [27]. A solution of Ce(NO3)3·6H2O at 0.5 M concentration was initially prepared.
A mixture of deionized water and ethanol (99%) was used as the solvent, with PVP (10 wt%)
and 0.5 mmol of 1,3,5-Benzenetricarboxylic acid dissolved in it. The Ce(NO3)3·6H2O
solution was then gradually mixed into this solvent under vigorous stirring at ambient
temperature for 30 min. After stirring, the mixture underwent filtration and was washed
with deionized water and ethanol to obtain the Ce-MOF powder.

3.2. Synthesis of the CeO2

The CeO2 powder was synthesized through a high-temperature calcination process.
The preobtained Ce-MOF powder was placed in a tube furnace and calcined at 800 ◦C for
5 h under an argon gas flow, with the heating rate set at 5 ◦C/min, as determined by the
TG curve (Figure S1).



Molecules 2024, 29, 1852 9 of 12

3.3. Synthesis of CeO2 Coating Separator

A mixture containing CeO2 powder, Super P, and PVDF in an 8:1:1 weight ratio was
prepared as a slurry and coated onto a polypropylene (PP) separator using a doctor blade
technique. This coated separator was then dried in a vacuum oven at 50 ◦C overnight. The
resultant modified separator was cut into circles for cell assembly.

3.4. Sulfur Cathode Preparation

The sulfur mass loading of the cathodes is 1.0–1.5 mg/cm2. The sulfur cathodes were
crafted by spreading a slurry mixture of sulfur powder, Super P, CMC, and SBR (55:35:5:5
weight ratio) onto an aluminum substrate. This mixture was dried in a vacuum oven at
80 ◦C for 12 h, resulting in cathodes with a sulfur mass loading between 1.0–1.5 mg/cm2,
ready for cell assembly.

3.5. Electrochemical Measurements

For assessing the electrochemical performance of the modified separators, type CR2025
coin cells were constructed with lithium metal serving as the anode. The electrolyte, freshly
prepared with lithium bis((trifluoromethyl)sulfonyl) imide (1 M) in 1,3-dioxolane (DOL)
and 1,2-dimethoxyethane (DME) containing LiNO3 (1 wt%) with a volume ratio of 1:1, was
carefully manipulated in an argon-filled glove box. Subsequently, LAND battery systems
were employed for galvanostatic charge/discharge testing and rate performance evaluation.
Cyclic voltammetry (CV) curves within a 1.8–2.8 V window and electrochemical impedance
spectroscopy (EIS) measurements were conducted at a 0.1 mV/s scan rate and a 10 mHz to
100 kHz frequency range on an electrochemical workstation (MULTI AUTOLAB M204).

3.6. Materials Characterization

To certify the structure of the obtained samples, X-ray powder diffraction (XRD, Mini-
flex 600, Rigaku, Tokyo, Japan) patterns were measured with the Cu-Kα radiation at a scan
rate of 5◦/min. The calcined temperature range, essential for this study, was determined
using thermogravimetric analysis (TAG, TGA/DSC) in an Ar atmosphere, spanning from
30 to 1000 ◦C. Fourier-transformed infrared spectra (FT-IR, Nicolet iS 50, Thermo Scientific,
Waltham, MA, USA) were then employed for a more comprehensive analysis of the chemi-
cal bonds. N2 adsorption isotherms (Autosorb-iQ, Anton Paar, Boynton Beach, FL, USA)
were utilized to determine the Brunauer–Emmett–Teller (BET) surface area. The sample
morphology was further analyzed using a field-emission scanning electron microscope
(FESEM, Apreo S LoVac, Thermo Scientific, Waltham, MA, USA) at a 5.0 kV acceleration
voltage, equipped with an Energy Dispersive Spectrometer (EDS), and a transmission
electron microscope (TEM, FEI Talos F200s, FEI, Hillsboro, OR, USA). Finally, to gain in-
sights into the chemical compositions, X-ray photoelectron spectroscopy (XPS, Axis Supra,
Shimadzu, Tokyo, Japan) was conducted.

3.7. Polysulfides Adsorption Experiment

Li2S9 solution was prepared by sulfur reaction with Li2S (n:n = 8:1) in DOL/DME (1:1)
under 50 ◦C overnight. Appropriate MOF and CeO2 powder were added into 3 mL Li2S9
solution. A blank group without any powder was measured. All processes are carried out
in an argon-filled glove box.

3.8. Measurement of the Li2S Nucleation

In the cell configuration, two pieces of carbon cloth served as electrodes, which were
isolated by a separator modified with either Ce-MOF or CeO2. Specifically, on the cathode,
20 µL of Li2S8 (2.5 mM) was introduced, whereas on the anode, 20 µL of blank electrolyte
was dispensed. The cell underwent a galvanostatic discharge process at a current of
0.112 mA until reaching a voltage of 2.06 V. Subsequently, it was maintained at 2.05 V until
the current dwindled to 10−5 A.
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3.9. Computational Method

The first-principles computations in this study were conducted using density func-
tional theory (DFT) within the Vienna Ab Initio Simulation Package (VASP 5.4) [40]. To
ensure accurate results, the Perdew–Burke–Ernzerhof (PBE) parametrization of the gen-
eralized gradient approximation (GGA) and projector-augmented wave (PAW) were em-
ployed [41,42]. A 2 × 2 × 1 Γ-centered k-mesh was chosen to represent the Brillouin zone,
with a plane-wave energy cutoff of 520 eV. Energy convergence criteria were set at less than
10−5 eV per atom, and force convergence calculations were set at 0.03 eV/Å. Furthermore,
the van der Waals interaction (vdWs) between CeO2 and LiPSs was accurately evaluated
through the use of the DFT-D3 method for geometry optimization and energy calcula-
tions [43]. A vacuum space of 20 Å was set to avoid the interaction between layers. The
calculation of GGA+U was performed by using a model based on the previously proposed
model, where the value of Ueff (Ueff = Coulomb U − exchange J) for Ce is 6.3 eV. Spin
polarization was factored into all calculations. In addition, the structure drawing and
charge density visualization were generated using VESTA 3.9 [44].

The binding energy (Ead) of LiPSs on the CeO2 surface was defined as

Ead = Ehost+guest − Ehost − Eguest

where Ehost+guest represents the total energy of CeO2 with an adsorbed LiPSs molecule, Ehost
is the total energy of the CeO2, and Eguest is the total energy of the LiPSs.

4. Conclusions

This work successfully synthesized a Ce-MOF-derived CeO2 modified separator for
the Li–S battery, which has a synergistic effect on the restriction of LiPSs migration. The
carbon framework derived from Ce-MOF provides enhanced charge transfer dynamics
and the polar CeO2 exhibits a strong chemical adsorption to LiPSs during the charging–
discharging progress, effectively accelerating the conversion of LiPSs. In summary, the
battery featuring a separator augmented with CeO2 derived from Ce-MOF delivers a
remarkable specific capacity of 1260 mAh/g at a current density of 0.2 C, demonstrates
outstanding rate performance of 662.8 mAh/g at 5 C, and a low capacity decay of 0.1% per
cycle over 500 cycles at 2 C. This study introduces an innovative approach to designing
functional separators that effectively mitigate the “shuttle effect,” significantly boosting the
performance of Li–S batteries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29081852/s1, Figure S1: Thermogravimetric analysis
curve of Ce-MOF to determine the calcination temperature for the synthesis of CeO2; Figure S2: Pore
size distributions of Ce-MOF and CeO2, respectively; Figure S3: SEM images of (a,d) pristine
polypropylene (PP) separator, (b,e) Ce-MOF modified separator and (c,f) CeO2 modified separator;
Figure S4: Charge-discharge profiles of Li–S batteries with (a) PP separator, (b) Ce-MOF, and (c) CeO2
modified separators at different current densities of 0.1, 0.2, 0.5, 1, 2 C; Figure S5: Cross-sectional SEM
images of (a) CeO2-25, (b) CeO2-50, (c) CeO2-75 and (d) CeO2-100 modified separators; Figure S6: The
first, third and fifth cycled CV curves of Li–S batteries with CeO2-75 modified separators at a scan
rate of 0.1 mV/s; Table S1: The ratio between the second plateau (II) and discharge capacity of the
cells with various separators; Table S2: Thicknesses of coating in CeO2-25, CeO2-50, CeO2-75 and
CeO2-100 modified separators.
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