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Abstract: Lumpy Skin Disease (LSD) is a notifiable viral disease caused by Lumpy Skin Disease virus
(LSDV). It is usually associated with high economic losses, including a loss of productivity, infertility,
and death. LSDV shares genetic and antigenic similarities with Sheep pox virus (SPV) and Goat
pox (GPV) virus. Hence, the LSDV traditional diagnostic tools faced many limitations regarding
sensitivity, specificity, and cross-reactivity. Herein, we fabricated a paper-based turn-on fluorescent
Molecularly Imprinted Polymer (MIP) sensor for the rapid detection of LSDV. The LSDV-MIPs sensor
showed strong fluorescent intensity signal enhancement in response to the presence of the virus
within minutes. Our sensor showed a limit of detection of 101 log10 TCID50/mL. Moreover, it showed
significantly higher specificity to LSDV relative to other viruses, especially SPV. To our knowledge,
this is the first record of a paper-based rapid detection test for LSDV depending on fluorescent
turn-on behavior.

Keywords: LSDV; paper-based; fluorescent; MIPs; biosensor

1. Introduction

The virus LSDV, which causes LSD, is a poxvirus homolog that encodes for 30 struc-
tural and nonstructural proteins. LSDV infects a wide range of animals including cattle,
buffalo, and wild ruminants [1–3]. The World Organization for Animal Health (OIE) has
classified LSDV as a notifiable contagious illness because of its potential for rapid dissemi-
nation and economic effects [4]. It causes temporary or permanent loss in milk production
and condition, infertility, abortion, and permanent damage to hides [5,6], resulting in severe
financial losses in the affected countries. Restrictions on animal movement, the expense of
vaccinations, and the price of treating secondary bacterial infections all contribute to the
economic loss [7]. The disease cause morbidity rate can be as severe as 100% [8,9], with
a death rate of less than 10%. The most common hosts for this disease are bovines (Bos
taurus and Bos indicus) and water buffalo (Bubalus bubalis). Some zoo animals are also
susceptible to the infection [10–14], including giraffes, impalas, wildebeest, springboks,
and oryxes. Most of Africa suffered from a widespread LSDV epidemic. It has been spread-
ing swiftly in the Middle East and Southeast Europe since 2013. Additionally, multiple
epidemic reports have been recorded in Southeast Asian nations since 2019 [10,15].

Quarantine restrictions are difficult to implement, as it was reported that LSDV can
be viable for an additional 120 days in infected tissues [16]. To effectively control or
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eradicate LSDV in endemic and non-endemic countries, rapid and reliable diagnostic tools
are required to achieve a presumptive diagnosis. Virus isolation (VI), fluorescent antibody
tests, electron microscopy, polymerase chain reaction (PCR), virus neutralization tests, and
enzyme-linked immunosorbent assays are some of the common laboratory techniques used
to diagnose LSDV, as outlined in the OIE Terrestrial Manual [17]. Cross-reactivity between
Parapoxvirus and Capripoxviridae in serological assays has resulted in limited specificity [18].
The genotyping and phylogenetic study of LSDV and other capripox viruses have been
performed using molecular PCR techniques directed at the P32, RPO30, GPCRs, and
ORF103 genes [19–22].

Recently, biosensors emerged as an attractive solution for quick and accurate infectious
diseases diagnosis due to their simplicity, potential for downsizing, and capability for real-
time analysis [23–28]. The definition of a biosensor that is most frequently used is “an
analytical device that includes a biologically active element (or components) in close
contact with an appropriate physicochemical transducer to generate a measurable signal
directly proportional to the concentration of target substance(s) in the sample” [29–31]. A
standard biosensor is made up of three components: an element for signal amplification
and processing, an element for signal acquisition (electrical, optical, or thermal), and an
element for biological recognition (enzyme, antibody, DNA, etc.) with an affinity for the
target structure. Remarkably, nanotechnology-based biosensors exhibited great potential
with high specificity and sensitivity for the analyzed target [32].

Nano-biosensors usually exploit the chemical, electrical, optical, and magnetic proper-
ties of materials, in the best interest of the target to be detected, with a high accuracy and
in a time-efficient manner [33,34]. To achieve this goal, nanomaterials and nanostructures,
including carbon nanotubes, graphene quantum dots (GQDs), metal oxide nanoparti-
cles (NPs), metal nanoclusters, plasmonic nanomaterials, polymer nanocomposites, and
nanogels, were studied and evaluated [35,36] for various viral agents, such as Avian
influenza virus [37], orbivirus [38], foot-and-mouth disease viruses [39], and bovine respi-
ratory syncytial viruses [40]. Owing to their biocompatibility, structural compatibility, and
high adsorption capacity, nanomaterials have proven to be useful in biosensing applications,
improving performance with higher sensitivities and lower detection limits [41].

To achieve highly selective recognition sites within a polymeric network, molecular
imprinting has proven to be a reliable and attractive method because of its longevity and
cost-effectiveness [42]. Although molecularly imprinted polymers (MIPs) have several
potential uses, their use in sensing devices has caught researchers’ attention. The selec-
tivity and low cost of biomimetic recognition elements are two of MIPs’ most impressive
features [42]. There have been significant advances in the MIP field due to the urgent need
to enhance disease diagnostics and therapeutics. While challenges remain, imprinting
methods for viral recognition hold great promise as potential novel sensing materials.
This thought originates from the highly stable binding phenomena that occur naturally
at the molecular level in biological systems [42]. MIPs can be integrated with numerous
transducer techniques in a wide range of sensor platforms. MIP-based biosensors could be
used for sensitive, rapid, and low-cost point-of-care diagnosis [43].

There are several interesting cases of MIPs synthesized by using whole viruses as
templates, and then incorporating those MIPs into various devices. MIP nanoparticles
coupled to surface plasmon resonance detection has been reported as a novel MIP tech-
nology for the selective and sensitive recognition of Adenovirus [44]. Another group of
researchers used MIPs for the diagnosis of each influenza A subtype and evaluated sensor
characteristics using a QCM [45]; others developed an intriguing work that used a molecu-
lar imprinting strategy as a screening protocol for various influenza A subtypes (H5N1,
H5N3, H1N1, H3N2, and H6N1) [46]. Also, the electrochemical polymerization of the
oxidized o-aminophenol film was utilized with FMDV serotype O on a gold screen-printed
electrode [47].

Paper material is a great carrier for developing quick detection technology in different
fields [48] due to its low cost, simple transportation, good capillary force, environmentally
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benign nature, and good biocompatibility. In addition, the coffee ring phenomenon occurs
when a liquid is dropped on paper, depending on the capillary force and liquid evapora-
tion [49], and this property can be exploited for target enrichment to enhance detection
sensitivity [50].

Herein, we present a nitrocellulose paper-based fluorescent MIPs sensor for the rapid
detection of LSDV with high selectivity, sensitivity, and specificity. To the best of our
knowledge, a turn-on fluorescence assay using an MIP paper-based system has not been
reported before for any animal virus.

2. Results and Discussion

MIPs are a category of synthetic polymers that have been engineered with the pur-
pose of exhibiting selective recognition and binding capabilities towards particular target
molecules. The synthesis of these polymers occurs by a technique referred to as molecular
imprinting, wherein template molecules are integrated into the polymer matrix during
a process called polymerization. The polymerization protocols utilized in molecular im-
printing require the precise choice of monomers, cross-linkers, and template molecules.
The procedure commonly starts with the establishment of a complex between the template
and functional monomers, followed by polymerization to create the final product of a
specific imprinted polymer. After the removal of the template molecules, the polymer
retains cavities that possess binding sites with molecular specificity. The inclusion of neg-
ative controls is crucial in order to ascertain that the selectivity seen in the final MIP is
solely attributable to the molecular imprinting process, rather than being influenced by the
polymer matrix itself, hence playing a crucial role in confirming the specificity of molecular
recognition towards the template molecule, while ensuring that any observed interactions
are not due to nonspecific binding or inherent characteristics of the polymer structure. The
inclusion of negative controls enables researchers to assess and confirm the efficacy and
dependability of molecularly imprinted polymers across diverse applications. Molecular
imprinting methods have countless potential uses and have already been implemented in a
variety of contexts, such as molecular sensing, antibody screening, drug administration,
and protein/virus classification [46,51]. The templates to be imprinted could be anything
from a single molecule to a complex mixture, or a simple protein to a complex structure
such as viruses or bacteria [52]. The significance of MIPs lies in their capacity to emulate
the molecular recognition mechanisms observed in natural systems. Moreover, they pro-
vide several advantageous characteristics, including rapid synthesis, enhanced stability,
durability, high selectivity, and cost-effectiveness. Furthermore, they can distinguish and
differentiate between very similar molecular systems [53].

In our study, this assay depended on imprinting all surface characters, not only
size with high selectivity and binding affinity to the template molecule, with specific
recognition cavities. MIPs were prepared by the polymerization assay using a co-polymer
mixture consisting of acrylamide, N-Fluorescien acrylamide, methacrylic acid, and N-vinyl
pyrrolidone as monomers, and N,N-(1,2-dihydroxyethylene) bisacrylamide as a crosslinker
with an adjusted ratio, which directly affect the sensitivity and specificity of the developing
sensor [46]. Three methods exist for the preparation of fluorescent MIPs: (1) the addition of
fluorescent monomers or crosslinkers by one-pot polymerization, which necessitates the
synthesis of special fluorescent molecules for different templates; (2) the introduction of
fluorescent molecules by post-imprinting modification, using, e.g., click chemistry due to
its mild reaction conditions, high yield, and high reaction selectivity; and (3) the creation of
recognition sites on fluorescent nanomaterials [54].

2.1. Structure Characterization of LSDV and SPV

LSDV and SPV were morphologically investigated using TEM (Figure 1A,B) to com-
pare the morphological characters of both viruses. The results showed that the shape
and size of the two viruses are highly similar, presenting a typical enveloped brick-like
shape with rounded ends and sizes of 290 and 260 nm, respectively, as reported by the
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authors of reference [55]. The fluorescence absorption of LSDV was detected at different
Excitation/Emission wavelengths (360/40-460/40, 360/40-528/20, 360/40-590/20, 485/20-
528/20, 485/20-590/20, respectively). The highest fluorescence intensity was recorded at
Excitation/Emission wavelength (360/40-460/40) (Figure 1C).
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Figure 1. TEM imaging of LSDV (A) and SPV (B) showing a typical “brick-shaped” morphology
with rounded ends and sizes of 290 and 260 nm, respectively. (C) Fluorescence spectra of LSDV at
different Excitation/Emission wavelengths.

2.2. Characterization of the NIP and MIP-NCM

After successfully synthesizing the MIP, the chemical composition and involved func-
tional groups in the establishment of the LSDV–MIP complex was evaluated using ATR-
FTIR at a scanning range of 4000–400 cm−1 [45]. Hence, the FTIR spectra were recorded to
inspect the chemical functional groups on the surface of LSDV and MIPs before and after
binding. The LSDV FTIR results showed characteristic peaks at 3420 cm−1 and 1644 cm−1,
corresponding to the stretching vibrations of the O-H and C=N groups, while the recog-
nized peaks at 1524 cm−1 and 1407 cm−1 were attributed to the stretching vibrations of the
N-O and S=O groups. In addition, the peaks at 1052 cm−1 and 553 cm−1 were attributed to
the stretching vibration of the C-O and C-Cl groups. For MIPs, the FTIR revealed peaks
located at 3413 cm−1, 2132 cm−1, 1666 cm−1, and 1539 cm−1, which refer to the stretching
vibrations of O-H, N=N=N, C=O, and N-O, respectively. Also, peaks were detected at
1420 cm−1 and 1318 cm−1, indicating the bending vibration of the O-H group. While the
peaks detected at 1231 cm−1 and 1020 cm−1 correspond to the stretching vibration of the
C-N groups, likewise, the peak detected at 960 cm−1 refers to the bending vibration of the
C=C group and the stretching vibration peak of the C-Br group at 665 cm−1. The FTIR
spectra of the LSDV–MIP complex revealed the shifting of all functional groups of O-H,
N=N=N, C=O, and N-O, represented by peaks at 3409 cm−1, 2128 cm−1, 1668 cm−1, and
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1540 cm−1 with stretching mode, respectively. Also, the shifting of the O-H group, which
was detected at 1419 cm−1 and 1317 cm−1 with bending mode; the peaks at 1232 cm−1

and 1021 cm−1, which refer to the C-N group with stretching vibration mode; the bend-
ing vibration peak of the C=C group, which was detected at 962 cm−1; and the bending
vibration peak of the C=C group, which was observed at 705 cm−1 are shown in Figure 2
and Table 1. The shifted peaks in the FTIR spectra presented in our study prove the success
of the formation of the LSDV–MIP complex and the involvement of different functional
groups in strengthening the bond between the synthesized MIP and LSDV.
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Figure 2. FT-IR spectra of the LSDV, MIPs, and MIPs with LSDV.

The LSDV template, NIP, MIP, and MIP–LSDV complex were investigated using
AFM to visualize and analyze the topographical features, including the structure, pore
size, roughness, and the distribution of imprinted sites on the imprinted polymer layer.
AFM (3D) images were recorded for the LSDV template (Figure 3A), MIP (Figure 3B),
and MIP–LSDV complex after template removal (Figure 3C). Significantly, the LSDV layer
demonstrated a uniform distribution across the surface, exhibiting a roughness of 19.9 nm
and diameters ranging between 290 and 295 nm. These dimensions were compatible
with those observed via TEM. MIP, following polymerization, resembles the size of the
virus template, proving the success of the molecular imprinting process with a height of
8.23 nm. The ability of LSDV to rebind in specific sites on the bare MIP after template
removal showed increases in the height of the surface from 8.23 nm and roughness of
0.6 nm, in case of bare MIPs, to 14.8 nm and 1.2 nm, respectively, with grey-colored heights
of binding sites in the case of the MIP–LSDV complex, which indicates the success of the
binding process. Finally, NIPs formed without LSDV template virus, as shown in Figure 3D,
and with a smooth surface. FE-SEM images show the topographical morphology of the
bare NCM, and the MIPs after washing with empty cavities, before and after binding
with LSDV on the NCM surface, compared with NIPs (Figure 4A–D). MIPs’ thin film
arranged homogeneously on the surface of NCM (Figure 4(B1,B2)) with an average size
of 841.8–868.7 nm. MIPs, directly after washing with HCL, showed holes which were
well distributed on the surface of the MIP film, with an average size of 449.7 nm–2.34 µm
(Figure 4(C1,C2)), which may be related to the virus clusters’ agglomerate imprint sites.
After rebinding with the LSDV template, the holes appeared to be blocked with viral
particles, specifically in binding sites (Figure 4(D1,D2)). AFM and FE-SEM images proved
the success of the imprinting process.
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Table 1. FT-IR spectra data of the LSDV, NIPs, and MIPs.

Material Absorption (cm−1) Chemical Bond Vibration Mode Functional Group

LSDV

• 3420
• 1644
• 1524
• 1407
• 1052
• 553

• O-H
• C=N
• N-O
• S=O
• C-O
• C-Cl

• stretching
• stretching
• stretching
• stretching
• stretching
• stretching

• Alcohol
• Imine
• Nitro compound
• Sulfonyl chloride
• Primary alcohol
• Halo compound

MIPs

• 3413
• 2132
• 1666
• 1539
• 1420
• 1318
• 1231
• 1020
• 960
• 665

• O-H
• N=N=N
• C=O
• N-O
• O-H
• O-H
• C-N
• C-N
• C=C
• C-Br

• stretching
• stretching
• stretching
• stretching
• bending
• bending
• stretching
• stretching
• bending
• stretching

• Alcohol
• Azide
• Conjugated ketone
• Nitro compound
• Alcohol
• Phenol
• Amine
• Amine
• Alkyne
• Halo compound

MIPs and LSDV

• 3409
• 2128
• 1668
• 1540
• 1419
• 1317
• 1232
• 1021
• 962
• 705

• O-H
• N=N=N
• C=O
• N-O
• O-H
• O-H
• C-N
• C-N
• C=C
• C=C

• stretching
• stretching
• stretching
• stretching
• bending
• bending
• stretching
• stretching
• bending
• bending

• Alcohol
• Azide
• Conjugated ketone
• Nitro compound
• Alcohol
• Phenol
• Amine
• Amine
• Alkyne
• Alkyne
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Figure 3. AFM images (3D) of (A) the LSD virus used as a template at a scale of 1 µm with sizes
ranging from 290 to 295 nm; (B) the imprinted bare MIPs following polymerization at a scale of
200 nm; (C) LSDV can rebind in the specific sites on the bare MIPs after template removal at a scale of
200 nm. (D) NIPs formed without LSDV template virus with smooth surface at scale of 200 nm.
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Figure 4. FE-SEM images of (A1,A2) the bare nitrocellulose membrane, (B1,B2) NIPs formed
without LSDV template virus with homogenous MIPs particles with average size 841.8–868.7 nm,
(C1,C2) MIPs directly after washing with HCL showed holes which were well distributed on the
surface of the MIP film with an average size of 449.7 nm–2.34 µm. (D1,D2) MIPs after rebinding with
the LSDV template; the holes appear to be blocked with viral particles, specifically in binding sites.
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2.3. LSDV-MIP Sensor Validation

To study the sensitivity and recognition ability of the LSDV-MIP sensor, the change
in fluorescence intensity in response to the addition of different concentrations of LSDV
(101–106 log10 TCID50/mL) was measured. Our results revealed a significant enhancement
in the fluorescence intensity compared to the negative control (Figure 5A). Moreover,
the fluorescence signal increased in direct proportion to the LSDV concentration. The
detection limit of the LSDV-MIP sensor was detected to be 1 log10 copies/mL under optimal
conditions, which is similar to the Real-Time PCR results at CT of 37. Our developed assay
was able to detect LSDV with high fluorescence intensity in a short period of time (30 min).
This rapid response may occur due to the presence of sufficient empty cavities where
LSDV could specifically bind to it. Furthermore, our sensor was able to detect LSDV with
the same sensitivity in a complex matrix, whether in spiked or real samples (Figure 5C),
representing the fluorescent intensities before (F0) and after (F) the addition of the LSDV
template, respectively (Figure 5D).

Furthermore, the specificity of the LSDV-MIP sensor was evaluated by measuring the
change in fluorescence intensity in response to the presence of SPV, FMDV, and BVDV at
a concentration of 105 log10 TCID50/mL (Figure 5B). We observed a significant decrease
in the fluorescence intensity recorded after the samples’ addition, resulting in a turn-off
activity. This action may be due to the inability of these viruses to fit precisely into the
empty imprinted cavities because of the absence of the specific functional groups necessary
to specifically bind to the selective recognition site on the MIP surface, resulting in weaker
or no binding. These results endorse the ability of the sensor developed in this study to be
used as a detection and diagnostic tool for LSDV. An MIP sensor can be used as an effective
quantitative method for analyzing viral samples [46]. Additionally, it can differentiate
between capripoxviridae family members that attain similar morphological characters.

Herein, we employed turn-on fluorescence technology to enhance the sensitivity of
our developed sensor. Fluorescence quenching “turn-off” or enhancement “turn-on”, upon
template binding, can be employed for template detection in biosensors. However, for
turn-off fluorescence sensors, the detection limit and sensitivity may be diminished due to
the presence of high background signals. On the other hand, turn-on fluorescence sensors
result in a higher signal-to-background ratio, reducing the interference from background
fluorescence and leading to sensitivity enhancement. This technique can be improved
with a well-designed FRET (Förster resonance energy transfer) system [56,57]. In a turn-on
fluorescence assay using MIPs, to prepare the MIPs, the fluorescent molecules must be
positioned close to the material surface; otherwise, the distance between the donor and
the acceptor would be too long to give an effective FRET [58,59]. Our LSDV-MIP sensor
employs the Förster Resonance Energy Transfer (FRET) mechanism. FRET involves the
transfer of energy from an excited donor fluorophore to an acceptor fluorophore through
dipole–dipole coupling. This occurs when the emission and absorption spectra of the
donor and acceptor molecules overlap within a critical distance of, typically, 1–10 nm.
In our system, the N-Fluorescien acrylamide, along with the alkyne and azide groups
embedded within the MIP structure, act as the acceptor molecules, while the LSDV acts
as the donor molecule. Perfect LSDV binding in the specific MIP grooves causes a spatial
rearrangement whereby donor and acceptor molecules move into close proximity, initiating
FRET. The “turn-on” mechanism usually demonstrates an increase in test sensitivity due
to the lower background and higher signal-to-noise ratio compared to the “turn-off”-
dependent techniques [45,60]. Further studies should be performed to study the effect of
pH conditions or other factors on sensor performance.
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Figure 5. (A) Sensitivity test of the developed LSDV-MIPs assay at different concentrations of LSDV
(101–106 log10 TCID50/mL), (B) selectivity test of the LSDV-MIPs assay on SPV, BVDV, and FMDV
viruses at a concentration of 105 log10 TCID50/mL. (C) Application of the LSDV-MIPs assay on
real blood, skin nodules, and serum samples spiked with different concentrations of the LSDV
template. (D) F0 and F represent the fluorescent intensities before and after the addition of the LSDV
template, respectively.
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3. Materials and Methods
3.1. Chemicals, Supplies and Biological Materials

Acrylamide (CAS No.: 79-06-1), methacrylic acid (CAS No.: 79-41-4), methyl methacrylate
(CAS No.: 80-62-6), N-vinyl pyrrolidone (CAS No.: 88-12-0), N,N-(1,2-dihydroxyethylene)
bisacrylamide (CAS No.: 868-63-3), dimethyl sulfoxide (DMSO) (CAS No.: 67-68-5), 2, 5-BIS
(tert-butylperoxy)-2,5-dimethylhexane (CAS No.: 78-63-7), and hydrochloric acid (HCL)
(CAS No.: 7647-01-0) were purchased from Sigma-Aldrish (Gillingham, UK). N-Fluorescien
acrylamide was prepared according to reference [61]. Deionized water with a resistivity
of 18.2 MΩcm was obtained using a Millipore (MilliQ, Burlington, MA, USA) purification
system. Chemicals were HPLC-grade and used without more purification. Madin Darby
Bovine Kidney (MDBK) cells was obtained from The Egyptian Organization for Biological
Products and Vaccine Production (VACSERA), Egypt. Fetal Bovine Serum (FBS), penicillin,
streptomycin, and Dulbecco’s Modified Eagle Medium (DMEM) were purchased from
Sigma-Aldrish (Saint Louis, MO, USA). LSDV Neethling strain was provided by Vaccine
and Serum Research Institute (VSRI), Egypt, while Foot-and-Mouth-Disease Virus (FMDV)
serotype O, Bovine Viral Diarrhea Virus (BVDV), and Sheep Pox virus (SPV) were obtained
from virology department, Animal Health Research Institute (AHRI), Egypt. Nitrocellulose
membrane (HF180MC100- HIFLOW 180 6X30 Membrane) was purchased from Merck
Millipore, Darmstadt, Germany. QIAamp DNA Extraction Kit (Qiagen, Catalog# 51306)
was purchased from Qiagen (Germantown, MD, USA) and GPS kits for genetic detection
of LSDV were purchased from GPS (Madrid, Spain).

3.2. Equipment

Attenuated total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR)
(Perkin Elmer, Seer Green, UK), Atomic force microscope by a Nanosurf C 3000 Atomic force
microscope (AFM) (Liestal, Switzerland), and all AFM images were operated in contact
mode using a Nanosurf SNL-10 silicon tip, Field emission scanning electron Microscope
(FE-SEM) (Quanta FEG250, Brno, Czech Republic), transmission electron Microscope (TEM)
(JEOL JEM-1400, Peabody, MA, USA), and BioTek Synergy HTX Multimode Reader (Agilent,
Santa Clara, CA, USA).

3.3. Virus Propagation

In this experiment, the LSDV Neethling strain served as a template virus. Plaque-
purified virus was used to infect MDBK cells at a multiplicity of infection (MOI) of 0.1,
and the resulting viral stock was then titrated using MDBK cell cultures. Then, 10% FBS
100 U/mL penicillin and 100 g/mL streptomycin were added to DMEM to cultivate and
sustain the MDBK cells. The produced virus was purified and precipitated by high-speed
centrifugation at 50,000 rpm/min for 15 min, then lyophilized by freeze drying. The titer of
the virus was expressed in log10 TCID50 [62]. Morphological characters of LSDV, compared
to that of SPV, were detected by TEM.

3.4. Fabrication of the Paper-Based Fluorescent MIP Sensor

Molecular imprinting polymers (MIPs) were synthesized according to reference [46]
with minor modifications. Briefly, the polymeric mixture was prepared as follows: 9.0 mg
of acrylamide and 4.0 mg of N-Fluorescien acrylamide, 10.4 µL of methacrylic acid,
6.4 µL of methyl methacrylate, and 6 µL of N-vinyl pyrrolidone monomer were mixed
with 48 mg of N,N-(1,2-dihydroxyethylene) bisacrylamide as a crosslinker. The pre-
pared mixture was dissolved in 300 µL of DMSO containing 2.4 µL of 2, 5-BIS (tert-
butylperoxy)-2, 5-dimethylhexane as an initiator. Afterwards, the mixture was subjected
to pre-polymerization at 80 ◦C for 1 h under stirring, then 1 h at room temperature. For
LSDV template preparation, the lyophilized LSDV (7 µL of 0.25 mg/µL) was dropped on a
sterile glass slide surface and left to dry at room temperature in a clean sterile laminar flow
cabinet. A standard sterile paper puncher was used to cut the Nitrocellulose membrane
(NCM) into circular pieces with a diameter of 5.5 mm. The prepared NCM pieces were
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dipped into the prepared pre-polymerization solution, pressed directly onto the dried virus
drop, and incubated under UV light with a wave length of 254 nm overnight until a thin
polymerized film was observed on the surface of the NCM. For the preparation of the
negative control, NCM was dipped in the pre-polymerization solution but pressed onto
an empty sterile glass slide. The NCM pressed against the template is called MIPs-NCM,
while that pressed against an empty space are called NIPs-NCM. NIPs and MIPs-NCM
pieces were washed by immersion in 10% HCL for 10 s to denature and remove the viral
molecules, then incubated in deionized water at 45 ◦C for 2 h under shaking followed by
drying on filter paper.

The chemical composition and binding of the functional groups between LSDV and
MIPs were evaluated using ATR-FTIR at a scanning range of 4000–400 cm−1. The surface
morphologies of the NIPs and MIPs NCM were examined using AFM and FE-SEM.

3.5. LSDV-MIP Sensor Validation

The sensitivity of the LSDV-MIP sensor was evaluated based on the fluorescent inten-
sity detected for different LSDV concentrations (101–106 log10 TCID50/mL). Briefly, the
NIPs and MIPs-NCM were placed into a 96-well black fluorescence microplate followed
by the addition of 20 µL of LSDV dilution. The reaction was incubated for 15 min under
shaking conditions to allow for the good distribution of the viral particles on the NCM,
followed by an extra 15 min incubation without shaking. The fluorescence intensity was
measured using a filter-based microplate reader at excitation and emission wavelengths of
485/20 nm and 528/20 nm, respectively. The specificity of this assay was evaluated in the
same manner, except for the type of the virus, SPV, FMDV, and BVDV, at a concentration
of 105 log10 TCID50/mL. For evaluating the efficiency of the sensor to detect LSDV in the
complex matrix of real samples, different LSDV concentrations (101–106 log10 TCID50/mL)
were spiked into the 15 samples of viral free blood buffy coat, serum, and skin nodule
lesions. The samples were tested using Real-Time PCR, where the virus DNA was extracted
by using the commercial DNA extraction kits. Thermo-cycling of the extracted DNA was
performed in a qPCR master mix solution, and the reaction was run for 40 cycles. The
measurement was carried out in the same manner as described above. All experiments
were carried out in triplicate.

4. Conclusions

MIPs might be thought of as “plastic antibodies” due to their durability and selectivity
in rebinding to their target rather than others, including closely related ones; the quality
of the interactions between the components of a MIP (template, monomers, cross linker,
polymerization initiator, and solvent) strongly affects the efficiency, affinity, and selectivity
of the recognition sites. As a result, it is essential to choose the right components for the
MIP during its design in order to ensure that it has the necessary characteristics for a certain
application. Using fluorescent MIP technology, we have disclosed a new approach to
develop a paper-based turn-on fluorescence sensor for the efficient and rapid diagnosis of
LSDV. Our sensor exhibited high specificity for LSDV, with a limit of detection of 101 log10
TCID50/mL under optimal conditions. The advantages of the turn-on fluorescence test are
its high selectivity, rapid response time, and easy manipulation. The findings presented in
this study may pave the way for developing a novel, affordable, and economic MIP-based
turn-on fluorescence sensor for the detection of other viral and bacterial agents.
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