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Abstract: Methanol–gasoline blends have emerged as a promising and environmentally friendly
bio-fuel option, garnering widespread attention and promotion globally. The methanol content within
these blends significantly influences their quality and combustion performance. This study explores
the qualitative and qualitative analysis of methanol–gasoline blends using Raman spectroscopy
coupled with machine learning methods. Experimentally, methanol–gasoline blends with varying
methanol concentrations were artificially configured, commencing with initial market samples. For
qualitative analysis, the partial least squares discriminant analysis (PLS-DA) model was employed
to classify the categories of blends, demonstrating high prediction performance with an accuracy
of nearly 100% classification. For the quantitative analysis, a consensus model was proposed to
accurately predict the methanol content. It integrates member models developed on clustered
variables, using the unsupervised clustering method of the self-organizing mapping neural network
(SOM) to accomplish the regression prediction. The performance of this consensus model was
systemically compared to that of the PLS model and uninformative variable elimination (UVE)–PLS
model. Results revealed that the unsupervised consensus model outperformed other models in
predicting the methanol content across various types of methanol gasoline blends. The correlation
coefficients for prediction sets consistently exceeded 0.98. Consequently, Raman spectroscopy emerges
as a suitable choice for both qualitative and quantitative analysis of methanol–gasoline blend quality.
This study anticipates an increasing role for Raman spectroscopy in analysis of fuel composition.

Keywords: Raman spectroscopy; methanol–gasoline blends; partial least squares discriminant
analysis (PLS-DA); self-organizing mapping (SOM); consensus model

1. Introduction

With the development of automobile manufacturing, transportation, and petrochemi-
cal industries, the demand for fossil fuels such as oil and coal has increased significantly.
This excessive utilization of fossil energy not only contributes to global warming but also
poses a significant threat to our planet’s sustainability. Given that fossil energy resources
are finite and non-renewable, humanity faces the looming dual challenges of an energy
crisis and an environmental crisis in the near future. In response to these pressing issues,
nations worldwide are actively exploring environmentally sustainable and economically
viable alternative energy sources [1], including wind [2], tidal [3], bio-fuels [4,5], etc.

Among bio-fuels, ethanol and methanol stand as the two preferred alcohol-based
bio-fuels. Alcoholic gasoline blends are formulated by mixing gasoline with specialized
additives and either ethanol or methanol. This process not only alleviates the shortage of
gasoline resources, but also effectively reduces the content of toxic substances in automobile
exhaust gas [6,7]. Compared to ethanol–gasoline blends, methanol–gasoline blends have
the advantage of lower prices and a higher octane number of 112 than the motor octane
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number of 106 [7–10]. Therefore, the blend of methanol and gasoline can enhance the
octane number of gasoline, boost its oxygen content, facilitate more complete combustion,
and optimize fuel utilization. Given their excellent quality and suitable economic viability,
methanol–gasoline blends have great development value in the field of new energy.

However, the methanol content in methanol–gasoline blends is strictly regulated.
Typically, the allowed methanol proportion in these blends ranges from 0% to 80%, with
narrower limits for certain specialized applications [11–14]. Deviations from this range,
either excessive or insufficient methanol content, can lead to engine damage and inadequate
heating [14,15]. Additionally, there is growing demand for on-site analysis of methanol
content within methanol–gasoline blends [11,16]. Therefore, it is crucial to develop a rapid
sensing method for accurately detecting methanol content. This approach not only ensures
effective quality control of methanol–gasoline blends, but also prevents unethical traders
from illicitly profiting by selling methanol gasoline.

Numerous methods have been reported for detecting the methanol content in methanol–
gasoline blends, including quality assurance/control approaches [14], physical–chemical
methods [5], chromatographic methods [9] and spectroscopic methods [17–20]. Chromato-
graphic analytical techniques, such as high-performance liquid chromatography (HPLC)
and gas chromatography mass spectrometry (GC-MS) serve as precise and standardized
measurements of methanol content [21]. Nevertheless, they come with certain drawbacks,
including labor-intensive procedures, time consumption, and high costs. Furthermore,
compared to infrared or Raman spectroscopy [9,16,22], their most significant limitation
is the inability to perform timely on-site analysis. In addition, these methods require
complex sample pretreatment and the use of toxic and hazardous reagents, posing health
risks to operators. Fortunately, the advancement and application of infrared/Raman
spectroscopy have effectively overcome many of the limitations associated with gas chro-
matography [19,22,23].

Raman spectroscopy, as an efficient and fast spectral analytical technique, has been widely
utilized in fields such as food, medicine, chemistry, physics, biology, and others [23–26]. Its
non-destructive nature and potential portability, make it suitable for read-time detec-
tion in various situations, providing valuable information on the composition of fuel
components [23,24]. Raman spectroscopy can directly represent the molecular vibration
information of various functional groups, such as olefins and aromatic hydrocarbons in
gasoline fuel [23]. Furthermore, compared to near-infrared or mid-infrared spectroscopy,
Raman spectroscopy has the advantage of being unaffected by moisture. Since some ab-
sorption characteristics of molecules in near-infrared spectroscopy are overlapped by other
alcohols, spectral signals are obscured in methanol gasoline [16,22]. Raman spectroscopy
can avoid these issues, making it particularly suitable for methanol gasoline qualitative or
quantitative analysis, respectively [16,22,27].

In this study, qualitative and quantitative analysis are combined to analyze the quality
of methanol gasoline blends. The three sections are organized as follows: (1) qualitative
classification studies of gasoline types (92#, 95#, 98#) are carried out using partial least
squares–discriminant analysis (PLS-DA); (2) the similar characteristic variables in Raman
spectra of methanol–gasoline blends are clustered by the unsupervised variable clustering
method of the self-organizing mapping neural network (SOM); (3) based on the clustered
units obtained from the SOM analysis, separate quantitative models are established. And
then, a consensus model is integrated from these individual quantitative models to analyze
the methanol content in methanol–gasoline blends, and for comparison, UVE [28,29] is also
used to establish the PLS model. Among these processes, the last two parts for quantitative
analysis are carried out as Figure 1 shows.
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2. Theories and Algorithms
2.1. Classification Model

Partial least squares discriminant analysis (PLS-DA) serves as a variant classifier
derived from the partial least squares (PLS) regression algorithm. Widely adopted as a
classification tool in various applications, PLS-DA is particularly effective in scenarios
involving two classes [30]. This method builds on the foundation of the PLS regression
algorithm, leveraging its capabilities for linear regression in the context of spectral data and
categorical variables. The primary goal of PLS-DA is to extract multiple dependent variables
from the original data in a way that maximizes the covariance between these variables and
the response variable (in this case, the class labels). This process involves identifying the
optimal latent variables (LVs), which are combinations of the original predictor variables
that best explain the variation in the response variable. These LVs are then utilized to
construct a predictive classifier that facilitates the discrimination between distinct classes
within the data set. Notably, sample labels are assigned based on a classification threshold
determined through statistical methods, such as Bayesian theory [30,31]. The strength of
PLS-DA lies in its ability to handle collinearity and noise in the predictor variables, making
it suitable for spectral data analysis where such issues are often encountered. Additionally,
by focusing on the latent variables that best explain the variation in the response variable,
PLS-DA can often achieve better classification performance than traditional discriminant
analysis methods.

Taking the example of classifying two classes labeled as 0 and 1, the classification
criteria are explicitly defined as: (1) If Ypre (categorical variable value of the verification
set) exceeds 0.5 and the deviation is less than 0.5, the sample is determined to belong to a
specific class. (2) Conversely, if Ypre is less than 0.5 and the deviation is less than 0.5, the
sample is deemed not to belong to the other class. (3) An instability in the discriminant
model is indicated when the deviation surpasses 0.5. The capacity of samples in each class
should be appropriate, and imbalanced class sizes can lead to biases in the model. This
approach ensures a robust and reliable classification process that allows for effective sample
categorization based on the classification thresholds determined [31].

2.2. Variables Selected by UVE

Instrumental artificial operations and environmental fluctuations have the potential to
introduce unpredictable noise into spectra data. In the formulation of spectral analytical
models, common strategies involve the utilization of spectral pretreatments and variable
selection techniques. These approaches aim to mitigate the impact of noise factors and
concurrently reduce the number of variables incorporated into the models. To simulta-
neously optimize both calculation speed and model performance, this work introduces
the uninformative variable elimination (UVE), a classical approach that discerns valuable
information based on the stability of variable regression coefficients [29,32]. Within the
UVE process, random noise matrices are systematically introduced to the spectra, and
a series of regression coefficient matrices are constructed through the establishment of
partial least squares (PLS) models, whose latent variables were generally determined by
the minimized RMSECV (root mean squared errors of cross-validation). Employing a
predefined noise threshold, variables displaying stability values of the regression coef-
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ficient below this threshold are excluded, whereas those that exceed it are retained [33].
When Raman spectra profiles of substances such as gasoline, methanol, or their blends are
scrutinized, it becomes apparent that these high-dimensional spectra, frequently exceed-
ing 1000 dimensions, inherently contain a certain level of noise. This inherent noise can
significantly hamper the predictive capabilities of the developed models. During the UVE
optimization process, noise matrices are typically generated with half the dimensions of
the input spectral variables. There are no strict regulations regarding the dimensions of
the noise matrices, and they are usually optimized through exploration. In this work, the
column dimension of the random matrix set to 700.

2.3. Variables Clustered by SOM

In this research, the clustering method was utilized not for grouping similar samples,
but for aggregating analogous features or variables of samples via specific mapping rules
or projection techniques. Unlike methods such as K-means, hierarchical clustering, and
PCA loadings, the self-organizing map (SOM) is a proficient method for illustrating the
connections between individual points in a spectrum. The SOM network comprises a
competitive, iterative and interactive layer, capable of categorizing vectors into multiple
clusters equal in number to the neuron nodes. The SOM not only projects multidimensional
variables into a lower-dimensional space while preserving topological structure, but it also
excels at performing non-linear mappings between input variables [32,34].

In this study, Kohonen SOM was employed to cluster informative wavelengths in
laser-induced breakdown spectra, following the winner-takes-all principle, primarily ad-
justing weights during the training phase. Before initiating the network, the input matrix
was transposed to group similar variables rather than sample categories. Consequently,
spectral points that share similar characteristics are grouped into the same cluster unit.
Although several controlled parameters in the SOM network were systematically exam-
ined, some (for example, neighborhood distance, rate tuning, ordering phase learning
rate, and steps) had a negligible impact on the clustered outcomes [34]. Therefore, default
settings were maintained, with specific optimization for the topology function gridtop and
the distance function mandist. Dimensions (specifically, size q) of the SOM map play a
pivotal role in defining both the number of clustering units and the resultant clustering.
Given that the SOM network operates as an unsupervised clustering technique, the cluster-
ing outcomes require further validation through subsequent supervised classification or
regression methodologies.

2.4. Steps of Consensual Quantitative Modeling

The fundamental concept underlying the consensus fusion model is to amalgamate
the prediction capabilities of multiple member models to establish the final prediction
performance, characterized by minimal prediction errors and heightened accuracy. By inte-
grating the predictive strengths of all member models, as opposed to relying on any single
individual model, the consensus fusion model mitigates dependence on specific member
models [35,36]. This not only diminishes the risk of overfitting, but also enhances overall
robustness. Consequently, the consensus fusion model presents a significant advantage,
particularly when faced with datasets characterized by a limited number of samples but
high dimensions.

The unsupervised consensus model cleverly combines the strengths of both the SOM
algorithm and the foundational consensus fusion model. In this approach, the N2 clusters
generated by the SOM algorithm serve as basic member models. Ultimately, the predic-
tion performance of these N2 member models is weighted to formulate the predictive
performance of the unsupervised consensus model. This integration allows for a compre-
hensive and synergistic utilization of the SOM algorithm’s clustering capabilities and the
consensus fusion model’s prowess in synthesizing diverse predictions. The basic steps are
the following.
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(1) Take the sample matrix X as the input of Kohonen SOM network, the variables are
clustered as Equation (1), which shows a union X of each kth cluster subset Xi. If q = 2, the
Kohonen SOM generates q2 clusters.

X = {x1, x2, x3, · · · , xk}, k = 1, 2, · · · , q2 (1)

(2) Construct PLS models based on the set of clustered variables xk, k = 1, 2, · · · , q2,
respectively, and obtain the prediction result yk = fk(xk), k = 1, 2, · · · , q2.

(3) Develop a consensus model as Equation (2)

F(x) = c1· f1(x1) + c1· f2(x2) + . . . + cn· fn(xn) =
n

∑
i=1

ci·ŷi (2)

where ci is weightings and can be determined using non-negative least squares constraints,
and it can also be used to solve generalization and relevance issue.

(4) Combine the predicted results of the constructed member models with the weight-
ings as the prediction result of the unsupervised consensus model, and the constraints of ci
are shown in Equation (3). More theoretical calculations on the consensus fusion model
can be found in our previous work [35].

ARGmin
{

4
∑

i=1
(c i(yn − yi(xi)))

2
}

0 ≤ |ci| ≤ 1
4
∑

i=1
ci = 1

(3)

3. Results and Discussion
3.1. Analysis of the Raman Spectral Feature

To delineate the distinctive features between methanol, gasoline, and methanol–
gasoline blends, we computed average spectra within the range of 0~3500 cm−1. Figure 2a
shows the average spectrum for three different types of gasoline. The observed variations
in gasoline types are primarily attributed to their octane ratings, where higher grades
exhibit elevated octane numbers, resulting in intensified peaks within their respective
Raman spectra. The composition of gasoline is intricate, characterized by a diverse array of
components, each corresponding to distinct Raman spectral characteristic peaks. Even for
components sharing the same structure and displaying uniform Raman shifts, variations in
peak intensity arise as a result of differing proportions.

By counting, gasoline characterized over 30 distinctive Raman peaks, as depicted
in Figure 2a, which highlights the positions of some prominent standard peaks. Among
these, the 219 cm−1 peak is associated with C-H twisting, the 525 cm−1 peak signifies
C−C skeleton deformation, the 731 cm−1 peak relates to symmetric expansion of the
heterogeneous C-C skeleton, and the 793 cm−1 peak corresponds to the breathing vibration
of naphthenes. Notably, the pronounced Raman spectral peak observed at 1004 cm−1 likely
associates with the aromatic carbon–carbon double bonds (C=C). Gasoline contains several
aromatic hydrocarbon compounds, which typically include aromatic rings containing
carbon–carbon double bonds. In Raman spectra, the aromatic C=C bonds often exhibit
distinctive Raman peaks, typically occurring around 1000 cm−1. Therefore, the significant
Raman spectral peak observed at 1004 cm−1 may reflect the vibrational mode of aromatic
carbon–carbon double bonds present in gasoline. In addition, the peak at 1031 cm−1 is likely
associated with carbon–hydrogen bonds (C−H), owing to gasoline’s composition primarily
comprising hydrocarbons, which are predominantly carbon–hydrogen compounds.
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3. Results and Discussion 
3.1. Analysis of the Raman Spectral Feature 

To delineate the distinctive features between methanol, gasoline, and methanol–gas-
oline blends, we computed average spectra within the range of 0~3500 cm−1. Figure 2a 
shows the average spectrum for three different types of gasoline. The observed variations 
in gasoline types are primarily attributed to their octane ratings, where higher grades ex-
hibit elevated octane numbers, resulting in intensified peaks within their respective Ra-
man spectra. The composition of gasoline is intricate, characterized by a diverse array of 
components, each corresponding to distinct Raman spectral characteristic peaks. Even for 
components sharing the same structure and displaying uniform Raman shifts, variations 
in peak intensity arise as a result of differing proportions. 
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Furthermore, the 1154 cm−1 peak represents the antisymmetric vibration of C−C,
the 1211 cm−1 peak corresponds to the stretching of the phenyl benzene and metaxylene
skeletons, the 1383 cm−1 peak pertains to diphenyl, the 1455 cm−1 peak represents H-
C−H, and the 1612 cm−1 peak corresponds to toluene and olefin C=C. Additionally,
the Raman peak occurring between 2978 cm−1 and 2912 cm−1 is widely recognized as a
characteristic peak of the methylene hydrocarbon group. For a more in-depth exploration of
Raman characteristic peaks of gasoline, detailed information can be found in the referenced
literature [7,20,23,37,38].

Figure 2b exhibits the Raman spectrum of methanol. In contrast to the complex
composition of gasoline, methanol demonstrates relative purity, resulting in a less intricate
set of characteristic peaks. The key peak positions for standard samples include: the
1031 cm−1 peak, corresponding to the symmetric expansion of the C−H group such as
stretching or whirling vibrations; the 1463 cm−1 peak, correlating with the CH2 torsion +
δ (COH); the 2842 cm−1 peak, reflecting the symmetric expansion of CH3 group; and the
2959 cm−1 peak, pertaining to the asymmetric expansion of CH3 group [23].

Figure 2c displays the Raman spectrum of methanol–gasoline blends, exhibiting
distinct differences in Raman peaks compared to pure gasoline. After mixing methanol with
gasoline, we observed a shift in the positions of some spectroscopic peaks, particularly the
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Raman spectroscopic peaks at 767 and 825 cm−1. These peaks shifted with about 32 nm, and
this is indicative of the presence of methanol in the blend and provides valuable information
about its concentration and interaction with gasoline. At these positions, the intensity of
the corresponding peak gradually increases with a rising methanol concentration. From a
whole perspective, the peak intensity of methanol–gasoline blends is significantly lower
than that of pure gasoline. This is primarily due to the decreasing content of specific
gasoline components as the concentration of methanol increases.

3.2. Qualitative Analysis of Gasoline

In this section, the principal aim of utilizing the supervised classification method
PLS-DA is to evaluate its efficacy in discriminating between methanol–gasoline blend
samples and pure gasoline samples. Prior to establishing the PLS-DA model, 96 samples of
each type of methanol–gasoline blend model were systematically divided into calibration
and prediction sets in a ratio of 2:1. This division resulted in 64 samples for the calibration
set and 32 samples for the prediction set. Due to the significant disparity in the number of
methanol–gasoline samples compared to pure gasoline samples in the training set, resulting
in an imbalance in inter-class sample volumes, the use of PLS-DA classifiers can lead to
biased predictions. To address this issue, we employed a simple sample augmentation
method, which involved duplicating the spectral data of pure gasoline samples by a factor,
thereby equalizing the sample volumes within the two categories.

The classification process unfolds in two key steps: (1) The PLS-DA models were
constructed, respectively, utilizing the calibration set for each methanol–gasoline blend. To
determine the optimal number of LVs that optimizes the model, a 5-fold cross-validation
process was employed. (2) Subsequently, the prediction set was input into the established
PLS-DA classification model for prediction, thereby validating the model’s feasibility
and assessing its performance on unseen data. This two-step approach ensures a robust
evaluation of the ability of the PLS-DA model to effectively classify methanol–gasoline
blend samples against pure gasoline samples.

The relationship between the sample labels and the calculated responses is vividly
depicted in Figure 3. In this representation, “class 1” signifies pure gasoline, while “class 2”
represents a methanol–gasoline blend. Specifically, for the 92# methanol–gasoline blend, the
optimal number of LVs was determined to be three, resulting in a calibration set prediction
accuracy of 98.4% (63/64). There was one misclassification, where the No. 57 methanol–
gasoline sample (containing 28% methanol) was classified erroneously as pure gasoline. It is
inferred that the acquired spectrum of this sample was caused by manual errors, which led
to the error label of prediction. The prediction set achieved a precision of 96.8% (32/33) with
one misclassification, wherein the methanol–gasoline sample T8 (with 8% methanol) was
mistakenly classified as pure gasoline. Generally, a lower methanol content in methanol–
gasoline blends may contribute to classification errors. However, in the cases of No. 57
and T8 samples, where the methanol content is not extremely low, classification errors
could potentially be influenced by human factors affecting the Raman spectral results.
This nuanced understanding of classification accuracy and potential influencing factors
adds depth to the assessment of the performance of the PLS-DA model in distinguishing
between pure gasoline and methanol–gasoline blend samples.

For the 95# and 98# methanol–gasoline blends, both the calibration and prediction sets
achieved 100% accuracy. The optimal number of LVs for these blends was found to be five
and four, respectively, as illustrated in Figure 3b,c. This high accuracy in both calibration
and prediction sets underscores the effectiveness of the PLS-DA models for these types of
methanol–gasoline blends. The models, with their respective LVs, demonstrate remarkable
ability to accurately distinguish between methanol–gasoline blends and pure gasoline
samples. This robust performance further emphasizes the reliability and discriminatory
power of the PLS-DA approach in the context of different methanol–gasoline blends.
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3.3. Quantitative Analysis of Methanol in Methanol Gasoline Blends
3.3.1. Variable Selection to Optimize the Model

In order to quantitatively analyze the methanol content in methanol–gasoline blends,
the PLS model was initially constructed without selecting useful variables. As shown in
Table 1, the correlation coefficients (Rcv and Rp) for both the calibration and prediction
sets of the PLS model exceed 0.95. Although the PLS model demonstrates good accuracy,
meeting the requirements of daily industrial production, it inherently contains redundant
or useless variable information. This surplus information may lead to a decline in model
accuracy and robustness. To address this issue, the UVE method was employed to eliminate
redundant variable information and enhance the model performance.

Table 1. Quantitative analysis of the methanol content in methanol gasoline blends.

Sample Modeling
Methods N LVs

Calibration Set Prediction Set

RMSECV Rcv Bias RMSEP Rp Bias

92# PLS 1509 3 1.100 0.993 0.020 1.366 0.990 −0.274
95# PLS 1509 3 1.296 0.990 0.004 1.158 0.993 −0.142
98# PLS 1509 5 2.299 0.969 0.018 2.662 0.959 0.287
92# UVE-PLS 20 4 1.080 0.993 0.004 1.320 0.991 −0.359
95# UVE-PLS 28 4 1.092 0.993 −0.010 1.125 0.992 −0.130
98# UVE-PLS 46 5 2.139 0.973 0.037 2.211 0.971 0.222

Note: N: the number of involving wavelengths; LVs: latent variables in PLS model; PLS: partial least squares
regression model; UVE: uninformative variable elimination.

The essence of the UVE algorithm is to select the characteristic variables within the
spectrum itself by leveraging the statistical insights derived from irrelevant noise variables.
A key aspect involves the incorporation or inclusion of random variables, which inherently
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represent noise. The length of the added noise can be fine-tuned through manual parameter
adjustment, with an initial setting typically at half the length of the spectra. Following the
addition of noise, the UVE makes a stability judgment on the statistical distribution of the
regression coefficient of the target matrix based on the independent variable matrix, which
was composed of spectral variables and random noise. The statistical distribution of the
regression coefficient is expressed by the ratio of the mean value to the standard deviation.
The characteristic variables are finally identified by determining the upper and lower limits
and selecting variables falling within the corresponding range.

Due to the random addition of noises in the UVE-PLS procedure, the process was
executed 10 times consecutively, and the model yielding the best prediction performance
was retained. Among these executions, the number of the remaining variables exhibited
some variability, consistently totaling less than 100. Notably, the UVE-PLS effectively
discarded the most unstable wavelengths, but the predictive capacity was still close to that
of the full-spectra-based PLS model. The selected wavelengths mainly located around the
pulse peaks, where there were some organic functional groups [19,23]. Table 1 outlines the
number of variables in the multivariate selection model. Through the application of the
UVE method for variable selection, the model’s variable count was significantly reduced to
less than 5% of that in the PLS model, thereby enhancing operational efficiency. Moreover,
the prediction performance of the UVE-PLS model has also shown improvement for all
types of methanol–gasoline blends, making it a more efficient and effective tool compared
to the traditional PLS model.

3.3.2. Unsupervised Consensus Model

In the development of the unsupervised variable consensus model, the initial step
involves applying the SOM algorithm to cluster wavelengths and construct member models.
Here, we utilize the SOM algorithm to cluster different types of methanol–gasoline into
four clusters based on variable similarity. Wavelengths with similar features were mapped
into the same cluster, while those with distinct features were classified into other clusters
by the unsupervised SOM network [32]. Consequently, all wavelengths were clustered into
q2 subsets based on their similarities. In the case where q = 2, the four generated clusters
are shown in Figure 4. Labels were numbered (from 1 to 1509) to represent the order of
wavelength within the spectral range of 0–3500 cm−1. Each clustering unit is considered
as Cq×q(i,j), where i indicates the row and j the column. C2×2(1,2) had the most variables,
while C2×2(2,1) had the fewest variables. The selected variables in each cluster unit can
be visualized in the original Raman spectrum to observe the distribution of clustered
wavelengths. The specific SOM calculation parameters are set as follows: the epoch is
two, the neural network comprises two layers, the initial learning rate is one, and the final
learning rate is 0.01. Following this clustering, the multi-dimensional spectral variables
obtained from these four clusters are individually used to construct corresponding four
PLS models (f1, f2, f3, f4), which serve as the member models for the consensus model. The
predictive performance of these member models is presented in Table 2. Parameter q can
be set to various values, allowing for the generation of additional clustering units tailored
to the desired regression precision. For illustrative purposes, here we have chosen q = 2 as
an example.

It is noteworthy that the clusters of multi-dimensional spectral variables generated
by the SOM algorithm exhibit significant disparities in the number of variables within
clusters, leading to variations in modeling performances. Among these four cluster units,
one cluster unit contains more than 200 spectral variables, while another contains nearly
1000 spectral variables, specifically C2×2(1,2) for 92# methanol–gasoline blends, C2×2(2,2)
for 95# methanol–gasoline blends, and C2×2(1,1) for 98# methanol–gasoline blends. The
other two cluster units contain more than 100 spectral variables each. Their clustering
characteristics appear similar, indicating either identical or closely similar spectral profiles.
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Table 2. Prediction performances of PLS models based on clustered variables.

Sample Modeling
Methods N LVs

Calibration Set Prediction Set

RMSECV Rcv Bias RMSEP Rp Bias

92# f 1 132 7 1.099 0.993 0.050 1.214 0.992 −0.205
92# f 2 1010 7 1.298 0.990 0.093 1.457 0.988 0.408
92# f 3 107 5 1.131 0.993 0.014 1.275 0.991 0.342
92# f 4 260 8 1.183 0.992 0.145 1.271 0.991 0.311

95# f 1 242 6 1.191 0.992 −0.035 1.154 0.992 0.086
95# f 2 110 4 1.269 0.991 −0.017 1.391 0.989 0.008
95# f 3 162 4 1.233 0.991 −0.021 1.090 0.994 0.001
95# f 4 995 5 1.642 0.984 0.027 1.317 0.991 −0.042

98# f 1 1008 8 2.385 0.965 0.040 2.411 0.966 −0.035
98# f 2 244 10 1.659 0.984 0.116 2.160 0.974 0.301
98# f 3 145 4 2.357 0.967 0.012 2.404 0.966 0.001
98# f 4 112 4 2.187 0.972 −0.002 2.331 0.969 0.260

Note: N is the number of variables included in the member model. LVs is the number of latent variables in PLS
model. fi is the PLS member model developed with the ith clustered spectral variables. The bold one is the best
among developed four member models.

Once the PLS member models are constructed, the unsupervised consensus model
is developed by applying the consensus methods outlined in Section 2.4. The weight
assigned to each member model can be determined using the Lagrange multiplier method,
and this weight value is closely linked to the valuable information contained within each
member model. The greater the utility of the variable information, the higher the weight
assigned to the member models. As illustrated in Figure 5, the RMSECV value is the
smallest for the member model with the highest weight. Consequently, the higher the
weight value, the more influential the member model becomes within the unsupervised
consensus model. Finally, the unsupervised consensus model is constructed by multiplying
the weightings and member models, and its prediction performance is evaluated according
to their multiplied values and the measured values. This approach ensures that the most
informative member models contribute more significantly to the overall performance of
the unsupervised consensus model.
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Table 3 presents the performance of the unsupervised consensus model, showing
varying prediction performances for different models of methanol–gasoline blends. These
three consensus models demonstrate better prediction performances for methanol–gasoline
blends than the original PLS or UVE-PLS models, with both Rcv and Rp exceeding 0.993
for 92# and 95# methanol–gasoline blends. Figure 6 shows the scatter plot of the predicted
versus the measured methanol content for 95# methanol–gasoline blends. However, the
performance for 98# methanol–gasoline blends is slightly inferior to that of the other
two types of blends, although the Rcv and Rp of consensus model are high, reaching 0.984,
outperforming the PLS or UVE-PLS models. Further observation finds that the difference
between RMSECV and RMSEP in the 98# blends is larger than in others, indicating a risk
of overfitting associated with the selection of modeling parameters or the imbalance of
the spectral variation between the calibration set and the prediction set. In contrast, the
RMSECV/RMSEP ratios for 92# and 95# methanol–gasoline are close to one, respectively,
indicating satisfactory modeling results. Therefore, there is still room for improvement in
the unsupervised consensus model established for 98# methanol–gasoline blends. Further
refinement may enhance its predictive accuracy and mitigate the risk of overfitting.

Table 3. Predicted performance of the unsupervised consensus model.

Sample Relation
Calibration Set Prediction Set

RMSECV Rcv Bias RMSEP Rp Bias

92# methanol gasoline a 1.052 0.994 −0.043 1.194 0.994 0.283
95# methanol gasoline b 1.101 0.993 0.025 1.050 0.993 −0.037
98# methanol gasoline c 1.653 0.984 −0.107 2.144 0.984 −0.298

Note: a = 0.4959 × f 1 + 0.1332 × f 2 + 0.3708 × f 3 + 0.0001 × f 4; b = 0.4066 × f 1 + 0.2225 × f 2 + 0.3709 × f 3 + 0.0000
× f 4; c = 0.0000 × f 1 + 0.9241 × f 2 + 0.0000 × f 3 + 0.0759 × f 4.
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3.4. Discussions

In this work, Raman spectroscopy coupled with the PLS-DA model was employed to
qualitatively analyze various types of methanol–gasoline blends and gasoline. According
to the model evaluation criteria, the PLS-DA models developed for different methanol–
gasoline blends have exhibited satisfactory performances. In particular, the accuracy
achieved for 95# and 98# ethanol–gasoline blends reached 100%. This high level of accuracy
underscores the practical and promotional potential of the PLS-DA model in qualitative
analysis of methanol–gasoline blends.

For the quantitative analysis of methanol–gasoline blends, we systematically de-
veloped the unsupervised consensus model, the full-spectral-based PLS model, and the
supervised multivariate selection model (UVE-PLS), aiming to determine the best predic-
tion model through comparative analysis of their performances. The results, as presented
in Table 1, demonstrate the improvements in the prediction performance of the UVE-PLS
model compared to the PLS model. Through the comprehensive comparison and analysis,
it was observed that the prediction performance of the UVE-PLS model can be effectively
enhanced by employing the multivariate selection method to extract valuable information
from the entire spectrum. Moreover, utilizing UVE to select useful variable information
significantly reduces the number of variables required for model development, thereby
enhancing model robustness and operational efficiency. Thus, it can be concluded that
the multivariate selection method effectively simplifies the computational complexity of
the model. Compared to the supervised UVE-PLS modeling approach, the unsupervised
consensus model integrates the member model developed using the SOM algorithm based
on variable similarity. Each member model contributes to the unsupervised consensus
model according to its weight, reducing the reliance on any single member model. Despite
the poorer prediction performance of individual member models compared to the UVE-PLS
model, the unsupervised consensus model outperforms the UVE-PLS model, leveraging
the useful variable information from member models while mitigating the interference of
irrelevant variable information. As evident from Tables 2 and 3, the prediction performance
of the unsupervised consensus model is more robust and stable compared to its member
models, effectively addressing overfitting issues. Thus, it can be inferred that the consensus
modeling strategy enhances the prediction performance of the unsupervised clustering
SOM-assisted model.

Methanol–gasoline blends, recognized as a globally promoted biofuel, require com-
prehensive qualitative and quantitative analysis for quality control and monitoring. In
this study, we successfully devised PLS-DA and unsupervised consensus models based on
Raman technology for the analysis of methanol–gasoline blends. These models provide an
efficient detection strategy and serve as valuable references for future detection methodolo-
gies. However, it is essential to note that the models developed in this study have certain
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limitations, such as relatively high RMSECV and RMSEP values, and the potential risk of
overfitting in some methanol–gasoline models. Following a comprehensive comparison,
it was determined that the unsupervised consensus model, specifically constructed using
95# methanol–gasoline, exhibited the most favorable prediction performance, as evidenced
by the scatter plot depicted in Figure 6. In future studies, we can further increase the
number of SOM clustering units and then employ consensus modeling to screen effective
member models. This approach aims to reduce spectral variables and optimize the model,
ultimately enhancing its performance and predictive accuracy.

4. Materials and Methods
4.1. Sample Preparation

In this study, the methanol–gasoline blends were meticulously prepared through arti-
ficial means, beginning with the initial market samples. Commercially available methanol–
gasoline blends were served as the reference base mixture. This base was then combined
with three different types of gasoline (92#, 95#, and 98# sourced from six local gas stations
in Hefei City, China) and anhydrous methanol (supplied Aladdin Reagent Inc., Product
No. M116122) within a laboratory setting. The blending process involved varying the
volume percentages of methanol, ranging from 2% to 30%, with 2% intervals (comprising
a total of 16 gradients within the 0% to 30% methanol range). This systematic approach
resulted in the formulation of 288 unique blends (=16 gradients × 6 stations × 3 gasolines),
derived from the combination of three gasoline types, six gas stations, and 16 methanol
gradients. To ensure homogeneity and prevent liquid desalination, the mixtures underwent
thorough oscillation. Subsequently, the configured methanol–gasoline blends were trans-
ferred into centrifuge tubes in preparation for the subsequent spectral scanning process.

4.2. Collection of Raman Spectra

Spectral data for three distinct methanol–gasoline blends were obtained using a RK785-
III Raman spectrometer (Shanghai Ruhai Optoelectronics Technology Co., Ltd., Shanghai,
China). Spectra were collected in a spectral range spanning from 0 cm−1 to 3500 cm−1, with
a resolution set at 3 cm−1. Each blend, contained within a centrifuge tube, was subjected
to three repetitive scans with minor positional adjustments. The resulting spectra from
these scans were then averaged to yield the final spectral representation of each blend
sample. This meticulous process ensured a reliable and representative characterization of
the Raman spectra for the methanol–gasoline blends under investigation.

As depicted in Figure 7, this experiment utilized a Raman spectroscopy acquisition
system. The system comprises two primary components: the Raman probe and the Raman
acquisition host, which encompasses a dispersion fiber spectrometer and a 785 nm semicon-
ductor laser. The configured sample, a mixture of methanol and gasoline, was placed within
a 1.5 mm quartz cuvette. The semiconductor laser transmitted the laser beam to the Raman
probe via the optical fiber. Upon irradiation of the methanol–gasoline mixture by the laser,
a Raman signal was generated and captured by the Raman probe. The acquired signal then
traversed across the transmission fiber to reach the dispersive fiber spectrometer. Within
the spectrometer, the Raman scattered light was separated and sampled. Subsequent to
analog-to-digital (A/D) conversion, the spectral information became accessible and was
transmitted to the computer through the I/O data port. This integrated system facilitated
the efficient acquisition and analysis of Raman spectra from the methanol–gasoline sample.
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4.3. Evaluation of Models Performance

In qualitative analysis, the PLS-DA model commonly employs “accuracy” as a key
indicator to assess its classification performance. In the realm of quantitative analysis,
whether utilizing a multivariate selection model or an unsupervised consensus model,
various metrics such as root mean square error of cross-validation (RMSECV), root mean
square error of prediction (RMSEP), correlation coefficients (Rcv, Rp), Bias, etc., serve as
indicators for evaluating the quality of the model. Generally, a good calibration model
should have small parameters of RMSE and bias (tends to 0), and a big R (left tends to
1), but a small difference between the RMSECV and the RMSEP, as well as the Rcv and
Rp, which indicate the performance of the model in the calibration stage and prediction
stage, respectively.

In the consensus model, RMSECV is calculated by actual y and consensual F(x), which
is a linear combination of the predictor yi in the cross-validation stage from the member
model fi(xi), as well as Rcv. These calculations were executed using MATLAB 2018a (The
Math Works, Natick, MA, USA), providing a robust computational environment for the
evaluation of model performance in both qualitative and quantitative analyses.

4.4. Spectral Pretreatments

During the collection of Raman spectra for methanol–gasoline blends, susceptibility to
external factors introduces potential interference. The acquired spectrum may encompass
extraneous information unrelated to the tested sample, such as random noise arising from
human operation of the detection instrument and fluorescence generated by fluorescent
substances within the sample. Consequently, preprocessing of the original spectrum
becomes imperative with the primary goal of mitigating the impact of these interference
factors. Commonly employed preprocessing methods for Raman spectral data include
smoothing, derivation, and normalization, among others. This method was chosen to
effectively treat the Raman spectra, enhancing the signal-to-noise ratio and facilitating a
more accurate representation of the sample-specific information by reducing the impact of
undesired interference factors.

5. Conclusions

In this study, we utilized Raman spectroscopy for both qualitative and quantitative
analyses of methanol content in methanol–gasoline blends. Our calculations yielded highly
precise and reliable results, validating the efficacy of Raman spectroscopy in this context.
In our qualitative analysis, PLS-DA was employed to model and analyze various methanol–
gasoline blends, achieving notably high accuracy levels. Particularly, both the calibration
and prediction sets for 95# and 98# methanol–gasoline blends achieved 100% accuracy.

In the realm of quantitative analysis, we constructed the unsupervised consensus
model along with its reference model, the supervised multivariate selection model (UVE-
PLS). Compared to the UVE-PLS model, the unsupervised consensus model optimally
leveraged valuable information within its member models, resulting in superior final
prediction performance. This research underscores the vast potential of Raman technology
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in fuel–oil composition analysis and emphasizes the need for the robust development of
Raman spectroscopy’s application value in this domain. The combination of qualitative
and quantitative approaches shows the versatility and efficacy of Raman spectroscopy in
understanding and predicting the composition of complex fuel–oil mixtures.
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