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Abstract: A series of novel 4-Hydroxyquinazoline derivatives were designed and synthesized to
enhance sensitivity in primary PARPi-resistant cells. Among them, the compound B1 has been
found to have superior cytotoxicity in primary PARPi-resistant HCT-15 and HCC1937 cell lines,
and dose-dependently suppressed the intracellular PAR formation and enhanced the γH2AX aggre-
gation. Mechanistic study showed that B1 stimulated the formation of intracellular ROS and the
depolarization of the mitochondrial membrane, which could increase apoptosis and cytotoxicity. An
in vivo study showed that B1 significantly suppressed tumor growth at a dose of 25 mg/kg, and
an acute toxicity study confirmed its safety. Molecular docking and dynamics simulations revealed
that hydrogen bonding between B1 and ASP766 may be helpful to enhance anti-drug resistance
ability. This study suggests that B1 is a potent PARP inhibitor that can overcome PARPi resistance
and deserves further investigation.

Keywords: PARPi; 4-Hydroxyquinazoline; anti-tumor; primary drug-resistant

1. Introduction

Poly(ADP-ribose) polymerase (PARP) is a key enzyme located in the nucleus, and
its main functions include repairing single-stranded DNA breaks and maintaining chro-
mosome integrity [1]. PARP can impact the PARylation of different nuclear proteins, such
as histones, RNA polymerases, DNA polymerases, and DNA ligases. Among its 18 sub-
types, PARP1 is responsible for 90% of the PARylation events linked to the repair of DNA
damage [2]. In addition, it is the main substrate of Caspase-3 and plays a key role in cell
apoptosis [3]. PARP can alter its conformation to respond to DNA damage; when DNA
is damaged, the HD and ART domains are progressively detached, then NAD+ enters
the catalytic pocket, resulting in the production of ADP-ribose and modification of the
substrate to attract DNA repair proteins and complete DNA repair [4–6].

Homologous recombination repair (HRR) is a critical mechanism for correcting DNA
double-stranded breaks (DSBs) and is a type of DNA repair that maintains genome in-
tegrity and ensures that genetic information is inherited with high fidelity. BRCA1/2
play a significant role in the HRR pathway. Together with PARP, they provide double
insurance to ensure accurate DNA replication in vivo. But the HRR pathway is defective in
BRCA1/2-mutant cells, where the restriction of PARP function can cause severe genomic
instability, rendering them inviable (Figure 1). The synthetic lethality effects of BRCA
and PARP provide unique opportunities for targeted therapy [7–9]. To date, the FDA has
approved six PARP inhibitors, including Olaparib, Rucaparib, Niraparib, Tarazoparib,
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Fluzoparib, and Pamiparib, for the treatment of BRCA1/2-mutated ovarian, breast, and
pancreatic cancer, and the second-generation drugs entering clinical studies are AZD5305
and AZD9574 developed by AstraZeneca (Figure 1). Additionally, clinical trials of PARPis
for prostate cancer, gastric cancer, and non-small-cell lung cancer have progressed, and
PARPis are also being investigated for the treatment of esophageal, colorectal, endometrial,
and other cancers [10–13].
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Figure 1. The domains of PARP, mechanism of action of PARPi, and chemical structures of represen-
tative PARP inhibitors.

Due to the DNA repair defect, BRCA1/2-deficient tumor cells are more sensitive to
PARP inhibitors (PARPi) through the mechanism of synthetic lethality. However, PARPi
resistance is ubiquitous in the clinic [14–17]. More than 40% BRCA1/2-mutant patients
fail to respond to PARPi, especially Olaparib, causing minimal synthetic lethality in vitro
in BRCA1-mutant human breast cancer HCC1937 and BRCA2-mutant human colorectal
adenocarcinoma HCT-15 cells [18–20]. However, in mouse xenograft models, they were
only moderately effective in reducing tumors. Therefore, HCC1937 and HCT-15 cell lines
can be used as model cell lines for the screening of new compound structures for addressing
drug resistance to existing PARPi drugs [21–23].

In this study, our in-house compound library was initially screened in primary PARPi-
resistant HCT-15 and HCC1937 cell lines (see Supplementary Materials Tables S1 and
S2). Among them, compared with Olaparib (IC50 = 45.53 ± 3.13 µM, against HCT-15;
IC50 = 37.07 ± 1.89 µM against HCC1937), the compound IN17 (IC50 = 33.45 ± 1.79 µM
against HCT-15; IC50 = 34.29 ± 2.68 µM against HCC1937) with a 4-Hydroxyquinazoline
scaffold displayed the most potent inhibitory activity against both cell lines. IN17 is a
fragment that has been used by previous groups in the design of antioxidant drugs but has
not been the subject of further investigation. IN17 showed potential in resisting PARP1
(IC50 = 0.47 ± 0.0032 µM). Although 4-Hydroxyquinazoline analogues such as PARPi have
been reported [24–27], IN17 is a completely new structure; we expect to obtain a lead
compound that can resist primary resistance and enhance anti-tumor effects by using IN17
as a template molecule for further modification.

2. Results and Discussion
2.1. Design Strategy Based on IN17

We firstly used MOE to perform a molecular docking analysis of IN17. IN17 retained
the Z-shape in the protein and maintained the necessary hydrogen bonding of the PARPi
with the residues GLY863 and SER904 (Figure 2). Importantly, the urea group of IN17
generated a new hydrogen bond with the residue ASP766. To determine the necessity of
the hydrogen bonding between the urea group and the residue ASP766, we designed and
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synthesized five different compounds, IN17(1-5), by replacing the urea group with methy-
lene, acyl, sulfonyl, and thiourea groups as new linkers. However, their anti-proliferative
activities against both cell lines were not as good as those of IN17, or were significantly
reduced (see Supplementary Materials Table S3), suggesting that the urea group was an im-
portant pharmacophore. Therefore, we kept the urea in IN17 and designed three additional
series of compounds.
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Figure 2. The docking of the compound IN17 (PDB:7KK4). (A) IN17 binding sites in proteins.
(B) Hydrogen bonding of IN17. (C) IN17 space conformation.

Firstly, different substituents were introduced on the benzene ring of the AD site of
Series A compounds in search of a compound that could enhance the hydrogen bonding
interaction between urea and ASP766. After screening Series A compounds, our goal was
to design new B- and C-series compounds at the PH and NI sites, which could help to
maintain a better binding mode between the compound and the protein, increase the anti-
proliferative activities on the two cell lines, and identify a new lead compound (Figure 3).
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2.2. Chemistry

The synthetic route for Series A compounds is presented in Scheme 1. The commer-
cially available methyl 2-aminobenzoate (1) was reacted with chloroacetonitrile under
acidic conditions to obtain the intermediate 2. Then, treatment of the compound 2 with
1-Boc-piperazine under basic conditions generated the compound 3. The Boc protective
group was removed from the compound 3 by using HCl/Dioxane, which resulted in the
formation of the compound 4. This compound was reacted directly with various isocyanate
derivatives containing unique substituents and acquired the target compounds A1–A39.
For the isocyanate derivatives Y1–Y5, they were synthesized by reacting aniline derivatives
with triphosgene.
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Scheme 1. Synthesis of the compounds A1–A39. Reagents and conditions: (a) HCl/Dioxane, 80 ◦C,
12 h; (b) K2CO3, 95% Ethanol, rt, 12 h; (c) HCl/Dioxane, rt, 1 h; (d) Et3N, THF, rt, 2–4 h; (e) Toluene,
Et3N, 0 ◦C to 100 ◦C, 2 h.

The synthetic route of Series B compounds was similar with the synthesis of Series
A compounds. As shown in Scheme 2, the compound 2 was reacted with differently
N-Boc-protected N-containing heterocyclics to the corresponding intermediates. Finally,
the target compounds B1–B7 were obtained by reacting intermediates with 5-Chloro-2-
methylphenylisocyanate. The synthetic routes of the compounds C1–C5 were synthesized
in the similar way as the compound B1 except that the reactants were replaced by deriva-
tives of methyl 2-aminobenzoate (Scheme 3).
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rt, 1 h; (d) 5-Chloro-2-methylphenylisocyanate, Et3N, THF, rt, 2–4 h.
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12 h; (b) K2CO3, 95% Ethanol, rt, 12 h; (c) HCl/Dioxane, rt, 1 h; (d) 5-Chloro-2-
methylphenylisocyanate, Et3N, THF, rt, 2–4 h.

2.3. Biological Evaluation
2.3.1. In Vitro Anti-Proliferative Activities against HCT-15 and HCC1937 Cell Lines

The newly synthesized target compounds (Series A–C) were evaluated in vitro using
primary PARPi-resistant cells HCT-15 and HCC1937, with Olaparib as the positive control.
For the Series A compounds, different substitutes, such as halogen, methyl, trifluoromethyl,
and methoxy, were installed on the right benzene ring, and the results are shown in Table 1.
We found that compared with IN17, the anti-proliferative activities of most compounds
were improved in HCT-15 cell lines, but it was found that the existence of substituents at
the 4-position or the introduction of bromine into the benzene ring were not conducive to
improve the anti-proliferation activity in HCC1937 cell lines. When the 2- and 3- positions
were substituted by fluorine, chlorine, and methyl, the compounds A1, A4, and A10 showed
a better anti-proliferation activity compared with IN17.

Table 1. IC50 values of the compounds A1–A39 against HCT-15 and HCC1937 cell lines.
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No. R1
IC50 (µM) a

HCT-15 HCC1937

A1 2-F 18.39 ± 0.91 16.63 ± 1.12
A2 3-F 34.89 ± 2.23 >50
A3 4-F >50 >50
A4 2-Cl 19.12 ± 1.12 14.65 ± 1.67
A5 3-Cl 19.05 ± 0.79 25.89 ± 0.96
A6 4-Cl 21.35 ± 0.86 >50
A7 2-Br 29.61 ± 1.37 40.28 ± 3.32
A8 3-Br 27.65 ± 2.56 47.41 ± 2.96
A9 4-Br >50 >50
A10 2-CH3 15.89 ± 0.85 14.73 ± 1.03
A11 3-CH3 25.57 ± 1.17 >50
A12 4-CH3 >50 >50
A13 2-CF3 20.23 ± 0.78 >50
A14 3-CF3 20.02 ± 1.15 17.67 ± 0.77
A15 4-CF3 15.56 ± 0.56 >50
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Table 1. Cont.
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According to the above results, we fixed fluorine, chlorine, and methyl at the 2- or
3- positions on the benzene ring, and introduced another substituent group at another
position; thus, A19–A39 were designed and synthesized. We found that the inhibitory
activity of the compounds A19–A39 against two cell strains could be maintained when
the 5-position was substituted with methyl, fluorine, and chlorine groups after fixing the
substitution at the 2-position, but the inhibitory activity of A26 against HCC1937 was
significantly reduced when the electronegative trifluoromethyl group was substituted
with a large electronegative substitution at the 5-position. As with the monosubstituted
compounds, the introduction of bromine on the benzene ring significantly reduced the
inhibitory activity against both cell lines. Overall, the double substitution on the benzene
ring still improved the inhibitory activity against both cell lines, especially the compound
A32 (IC50 = 10.93 ± 0.71 µM, against HCT-15; IC50 = 11.35 ± 0.73 µM against HCC1937)
which exhibited better anti-proliferative activity compared with other compounds in both
cell lines.

Subsequently, the compound A32 was used as a template for further structural op-
timization. Replacing the piperazine moiety with spirals, homopiperazine, or hexahy-
dropyrimidine, Series B compounds (B1–B7) were designed and synthesized. As shown
in Table 2, the compounds B1–B6 exhibited potent anti-proliferative activities against two
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cancer cell lines. Specially, the compound B1 (IC50 = 2.89 ± 0.78 µM, against HCT-15;
IC50 = 3.26 ± 0.38 µM against HCC1937) exhibited the highest anti-proliferative activities,
which were superior to Olaparib. Based on the compound B1, we then designed Series C
compounds with some substituent group on the left benzene ring (C1–C5). However, no
compounds showed better anti-proliferative activities than the compound B1 (Table 3).

Table 2. IC50 values of the compounds B1–B7 against HCT-15 and HCC1937 cell lines.
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The IC50 values with drug treatment for 7 days against two cell lines were also tested
(Table 4). Compared with Olaparib, B1 showed the most potent time-dependent anti-
proliferative activity. Meanwhile, the anti-proliferative activities were also tested in normal
human breast cancer cells (MDA-MB-231), human normal hepatocytes (LO2), and human
normal colonic epithelial cells (NCM460). The results indicated that B1 exhibited more
potent inhibitory activity than Olaparib in MDA-MB-231 cell lines, while showing no
significant toxicity to normal cells, and had a good selectivity in normal and cancer cell
lines (Table 4). We finally evaluated the ability of the compound B1 to inhibit PARP1
activity in vitro, and the results are shown in Table 4. B1 exhibited better inhibitory effects
against PARP1 with IC50 values of 63.81 ± 2.12 nM. Although the IC50 values of B1 were
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weaker than those of Olaparib, the inhibitory activity of less than 100 nM also proved that
the compound B1 can effectively inhibit PARP1 in vitro and bind efficiently to the enzymes.

Table 3. IC50 values of the compounds C1–C5 against HCT-15 and HCC1937 cell lines.
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HCT-15 HCC1937

C1 3-F 24.12 ± 2.25 9.22 ± 1.19
C2 3-Cl 23.01 ± 1.93 32.38 ± 2.66
C3 3-CH3 28.36 ± 2.87 30.14 ± 3.12
C4 4-F 9.84 ± 0.63 8.49 ± 0.71
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positive control.

Table 4. IC50 values of the compound B1 against cell lines and PARP1.

No.

IC50 (µM) a

PARP1
IC50 (nM) aHCT-15 HCC1937 MDA-MB-231 LO2 NCM460

3-Days 7-Days 3-Days 7-Days 3-Days 7-Days 3-Days 3-Days

B1 2.89 ± 0.78 0.13 ± 0.03 3.26 ± 0.38 0.17 ± 0.04 11.29 ± 1.93 1.33 ± 0.51 >100 >100 63.81 ± 2.12
Olaparib b 45.53 ± 3.13 19.25 ± 0.75 37.07 ± 1.89 15.25 ± 0.87 33.93 ± 2.57 9.22 ± 1.12 90.83 ± 2.61 >100 7.30 ± 1.43

a IC50: Each experiment was performed at least three times. b Olaparib served as the positive control.

Therefore, it is necessary to conduct comprehensive in vitro and in vivo anti-tumor
research on the compound B1. This will provide a crucial foundation for the development
of new drug-resistant PARP inhibitors.

2.3.2. The Influence of B1 on the Expression of PAR in HCT-15 and HCC1937 Cell Lines

The effects of the compound B1 on PAR aggregation in H2O2-treated HCT-15 and
HCC1937 cell lines were investigated through immunofluorescence experiments [28,29];
PAR was denoted by green fluorescence. Figure 4 illustrates that in the absence of inhibitors,
a large amount of green fluorescence was produced in two cell lines, and with an increase
in B1 concentration, the green fluorescence gradually decreased, Especially, when the
concentration of B1 was 1.25 µM, the green fluorescence obviously weakened, and when
the concentration of B1 reached 5 µM, the green fluorescence almost disappeared in two
cell lines. This demonstrated that B1 can effectively target and inhibit the function of PARP
at low concentrations and interfere with DNA repair.
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Figure 4. Immunofluorescence analysis of the changes in the formation of PAR in H2O2-treated
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2.3.3. The Influence of B1 on the Expression of γH2AX in HCT-15 and HCC1937 Cell Lines

γH2AX is closely related to DSBs, and quantitative detection of the γH2AX expres-
sion level can be used to evaluate the degree of DNA damage [30,31]. After treatment
with five different concentrations of B1 (1.25, 2.5, 5, 10, and 20 µM), the expression of
γH2AX was studied in the HCT-15 and HCC1937 cell lines. As shown in Figure 5, B1 can
dose-dependently increase the expression of γH2AX, as indicated by the presence of green
fluorescence. Particularly, the expression of γH2AX was significantly increased in both cell
lines with the concentration of 10 µM. These data demonstrated that B1 effectively induced
the accumulation of cytotoxic DSBs and exerted synthetic lethality in BRCA1/2 mutant cells.
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2.3.4. Effects of B1 on Apoptosis in HCT-15 and HCC1937 Cell Lines

We explored the potential of B1 to induce apoptosis in HCT-15 and HCC1937 cell
lines using flow cytometry. As illustrated in Figure 6, B1 can induce the cell apoptosis in
a concentration dependent manner in both cell lines. This effect was more pronounced
in HCT-15 cell lines compared with HCC1937 cell lines. In detail, B1 can increase the
apoptosis rate to 73.58% at a concentration of 20 µM in HCT-15 cell lines. In HCC1937 cells,
the apoptosis rate of cells reached 53.14% after treatment with B1 at a concentration of
20 µM.
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experiments, ** p < 0.01, *** p < 0.001 as compared with control. Scale bar, 50 µm.

2.3.5. Effects of B1 on the Expression of Apoptosis-Related Proteins in HCT-15 and
HCC1937 Cell Lines

To further probe the mechanism of apoptosis induced by B1, Western blot analysis was
performed to evaluate the expression of apoptosis-related proteins, including Caspase-3,
cleaved Caspase-3, Bax, and Bcl-2, at the different concentrations. As shown in Figure 7, B1
considerably increased Bax expression, decreased Bcl-2 expression, and activated Caspase-3
in both HCT-15 and HCC1937 cell lines. These results further substantiated the ability of
B1 to induce apoptosis in primary PARPi-resistant HCT-15 and HCC1937 cell lines, even at
low concentrations.
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2.3.6. Effects of B1 on Intracellular ROS Levels in HCT-15 and HCC1937 Cell Lines

ROS are often produced in the process of DNA damage and it is important to consider
their potential role [32,33]. To further study the mechanisms of B1 sensitizing drug-resistant
cells, the level of ROS in HCT-15 and HCC1937 cell lines was analyzed by the fluorescence
probe DCFH-DA and flow cytometry. As shown in Figures 8 and 9, B1 can significantly
increase ROS levels in both cell lines at a concentration of 2.5 µM, and under the intervention
of B1 with the concentration of 20µM, green fluorescence increased significantly, and ROS
ratios reached 54.10% and 36.12% in the two cell lines, respectively. These findings provided
a possibility that B1 enhances the cytotoxic efficacy against resistant cells by inducing
cytotoxic ROS generation and accelerating cell apoptosis.
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Molecules 2024, 29, x FOR PEER REVIEW 12 of 32 
 

 

 
Figure 8. Effects of different concentrations (1.25, 2.5, 5, 10, and 20 µM) of B1 on ROS generation in 
HCT-15 and HCC1937 cell lines by flow cytometry. Data are expressed as the mean ± SD of three 
independent experiments, ** p < 0.01, *** p < 0.001 as compared with the control. 

 
Figure 9. Immunofluorescence analysis of the ability of different concentrations (1.25, 2.5, 5, 10, and 
20 µM) of B1 to induce ROS in HCT-15 and HCC1937 cell lines. Scale bar, 50 µm. 

2.3.7. Effects of B1 on Mitochondrial Membrane Potential in HCT-15 and HCC1937 Cell 
Lines 

The accumulation of ROS in cells induces oxidative stress, leading to changes in mi-
tochondrial membrane permeability. We used the JC-1 probe to detect the changes in mi-
tochondrial membrane potential of two cell lines under the intervention of different con-
centrations of B1. According to Figure 10, JC-1 mainly existed in the mitochondrial matrix 
in the form of aggregation and emitted strong red fluorescence without any chemical in-
terference, and the intensity of the green fluorescence was extremely weakened. 

With increasing concentrations of B1, the mitochondrial membrane potential de-
creased, resulting in a marked decrease in red fluorescence and a concomitant increase in 
green fluorescence in the cytoplasm. Importantly, at a concentration of 5 µM, green fluo-
rescence began to change significantly in both cell lines, and at 20 µM the intensity of red 
fluorescence was hardly visible, indicating that B1 not only accelerated the accumulation 
of ROS, but also effectively stimulated the depolarization of the mitochondrial membrane, 
expediting cellular apoptosis. 

Figure 9. Immunofluorescence analysis of the ability of different concentrations (1.25, 2.5, 5, 10, and
20 µM) of B1 to induce ROS in HCT-15 and HCC1937 cell lines. Scale bar, 50 µm.

2.3.7. Effects of B1 on Mitochondrial Membrane Potential in HCT-15 and HCC1937
Cell Lines

The accumulation of ROS in cells induces oxidative stress, leading to changes in
mitochondrial membrane permeability. We used the JC-1 probe to detect the changes in
mitochondrial membrane potential of two cell lines under the intervention of different
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concentrations of B1. According to Figure 10, JC-1 mainly existed in the mitochondrial
matrix in the form of aggregation and emitted strong red fluorescence without any chemical
interference, and the intensity of the green fluorescence was extremely weakened.

Molecules 2024, 29, x FOR PEER REVIEW 13 of 32 
 

 

 
Figure 10. Immunofluorescence analysis of the detection of mitochondrial membrane potential in 
HCT-15 and HCC1937 cell lines by different concentrations (1.25, 2.5, 5, 10, and 20 µM) of B1; when 
the mitochondrial membrane potential is high, JC-1 forms aggregates inside the mitochondrial ma-
trix, resulting in JC-1 aggregates that emit red fluorescence. When there is a decrease in the mito-
chondrial membrane potential, JC-1 remains in its monomeric form, resulting in the emission of 
green fluorescence. Scale bar, 50 µm. 

2.3.8. In Vivo Study of B1 
To further evaluate the in vivo anti-tumor efficacy of the compound B1, an HCT-15 

nude mouse xenograft model was used. After establishing the solid tumors, the com-
pound B1 was intraperitoneally administered at three doses (10, 25, and 50 mg/kg) once 
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and the corresponding tissues were analyzed. As shown in Figure 11, no significant 
changes in mouse body weight were observed, suggesting that the compound B1 was safe 
at these dosages (Figure 11A). Notably, the compound B1 significantly inhibited xenograft 
tumor growth at doses of 25 mg/kg and 50 mg/kg, with evident reductions in both tumor 
volume and weight (Figure 11B–D). Moreover, no significant histopathological abnormal-
ities were found in the heart, liver, spleen, lungs, and kidneys. Tumor cells in the treated 
groups exhibited irregular morphological alterations and severe vacuolization at doses of 
10 mg/kg (Figure 11E), confirming the anti-tumor effect of the compound B1 in vivo. 

Figure 10. Immunofluorescence analysis of the detection of mitochondrial membrane potential
in HCT-15 and HCC1937 cell lines by different concentrations (1.25, 2.5, 5, 10, and 20 µM) of B1;
when the mitochondrial membrane potential is high, JC-1 forms aggregates inside the mitochondrial
matrix, resulting in JC-1 aggregates that emit red fluorescence. When there is a decrease in the
mitochondrial membrane potential, JC-1 remains in its monomeric form, resulting in the emission of
green fluorescence. Scale bar, 50 µm.

With increasing concentrations of B1, the mitochondrial membrane potential de-
creased, resulting in a marked decrease in red fluorescence and a concomitant increase in
green fluorescence in the cytoplasm. Importantly, at a concentration of 5 µM, green fluo-
rescence began to change significantly in both cell lines, and at 20 µM the intensity of red
fluorescence was hardly visible, indicating that B1 not only accelerated the accumulation
of ROS, but also effectively stimulated the depolarization of the mitochondrial membrane,
expediting cellular apoptosis.

2.3.8. In Vivo Study of B1

To further evaluate the in vivo anti-tumor efficacy of the compound B1, an HCT-15
nude mouse xenograft model was used. After establishing the solid tumors, the compound
B1 was intraperitoneally administered at three doses (10, 25, and 50 mg/kg) once daily for
14 consecutive days. The tumor volume and mouse body weight were recorded, and the
corresponding tissues were analyzed. As shown in Figure 11, no significant changes in
mouse body weight were observed, suggesting that the compound B1 was safe at these
dosages (Figure 11A). Notably, the compound B1 significantly inhibited xenograft tumor
growth at doses of 25 mg/kg and 50 mg/kg, with evident reductions in both tumor volume
and weight (Figure 11B–D). Moreover, no significant histopathological abnormalities were
found in the heart, liver, spleen, lungs, and kidneys. Tumor cells in the treated groups
exhibited irregular morphological alterations and severe vacuolization at doses of 10 mg/kg
(Figure 11E), confirming the anti-tumor effect of the compound B1 in vivo.

2.3.9. Acute Toxicity Study of B1

After confirming B1 had significant in vitro and in vivo anti-tumor effects, we per-
formed an acute toxicity study in mice to assess its in vivo safety profile. The mice were
administered a single intraperitoneal injection dose of 800 mg/kg and were constantly
monitored for 14 days. The results showed that there was no significant reduction in body
weight in the treated mice compared to the control group. Also, there were no signifi-
cant changes in heart, liver, spleen, lung, or kidney for those mice (Figure 12), providing
important evidence to support the safety profile of the compound B1.
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compared with the control. Scale bar, 50 µm.
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2.3.10. Molecular Docking Study of the Compound B1

The discovery of the compound B1 indicated substantial potential for overcoming
primary resistance and demonstrated the effectiveness of our design strategy. We conducted
an in-depth docking study on the mechanism of effectiveness of the compound B1 [34].

As shown in Figure 13, compounds IN17, A32, and B1 maintained vital hydrogen-
bonding interactions with the residues GLY863, SER904, and ASP766 (Figure 13). However,
the compounds have different spatial configurations in the protein. The compound B1 is
T-shaped due to the bridging ring, and its disubstituted benzene ring extends to the helical
region at the AD site (Figure 14). Compared to the other two compounds, B1 formed the
shortest hydrogen bond between ASP766 and the urea group, with a distance of 1.8 Å.
The hydrogen bonds between B1 and GLY863 and SER904 were also shortened, resulting
in a unique spatial conformation that enhances protein binding. This suggested that the
existence of shorter hydrogen bonds between the compound and ASP766 may enhance its
sensitivity to drug-resistant cells.
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2.3.11. Molecular Dynamics Study of the Compound B1

To further investigate whether this hydrogen bond between B1 and ASP766 is stable,
molecular dynamics simulations of B1 and PARP complexes were carried out for 30 ns [35].

The root mean square deviation (RMSD) and the radius of gyration (Rg) are both
important criteria for objectively evaluating system stability and overall structural changes.
Figure 15 showed the results of the 30 ns simulation; there were minimal fluctuations
in RMSD/Rg between B1 and the protein, indicating a high level of overall stability for
the complex.
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(B) The Rg of the complex.

As shown in Figure 16, the data clearly indicated that an oxygen atom B1 formed
a strong hydrogen bond with SER904, GLY863, and ASP766, displaying an impressive
occupancy rate of 99.2%, 99.6%, and 88.6%. These results highlight the strong stability of
the hydrogen bonds, which further supports the strong binding interaction between B1
and the PARP protein, and the importance of the direct hydrogen bond between B1 and
ASP766 was also proved by its stability.
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We selected stable trajectories of the complex for energy analysis using the MM-PBSA
method. As shown in Figure 17, the van der Waals interaction energy, ∆Evdw, surpasses
the electrostatic interaction energy, ∆Eele, by a factor of 2.5 and exceeds the hydrophobic
interaction energy, ∆Enonpol, by a factor of 9 [36]. This discernment underscores the
dominant role of van der Waals interactions, ∆Evdw, followed by electrostatic interactions,
∆Eele, as secondary contributors, with hydrophobic interactions, ∆Enonpol, playing a
supplementary role. This heightened binding energy observed between B1 and the protein
serves as a robust indicator of the substantial affinity between these two entities.
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Figure 17. The binding energy of the complex.

After analyzing the final structure of the stable complex between B1 and the protein, it
is clear that crucial hydrogen-bonding interactions remain with the protein residues ASP766,
GLY863, and SER904 (Figure 18). Moreover, B1 has carbon–hydrogen bond interactions
with HIE862 and different hydrophobic interactions, comprising Pi–Pi T-shaped interactions
with TYR907, TYR889, TYR896, and HIE862, as well as amide–Pi stacked, Pi–Pi stacked,
and Pi–cation interactions with LYS903. Alkyl and Pi–alkyl hydrophobic interactions were
observed with residues ARG878, ALA880, ALA898, and ASN767. In addition, van der
Waals interactions were observed between the residues ILE879, HIE909, and PHE897. These
varied interactions underlie the secure binding of small molecules to proteins, which is
essential to their anti-tumor activity.
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3. Materials and Method
3.1. Chemistry

All the chemical reagents employed were obtained from commercial suppliers with-
out further purification. Thin-layer chromatography (TLC) was carried out on silica gel
GF254 and observed with UV light (254 nm). The silica gel used in the chromatography
column was 200–300 mesh, and the melting points of all compounds were observed on the
melting point instrument. Mass spectrometry was determined by Thermo Scientific™Q
Exactive™. All the 1H NMR and 13C NMR spectra were determined by AVANCE NEO
400 MHz (Bruker) using CDCl3 and DMSO-d6 as a deuterium reagent. Chemical shifts
were expressed in ppm relative to tetramethylsilane (TMS) as an internal standard, and the
coupling constants were depicted in hertz (Hz) with multiplicities denoted as s (singlet),
d (doublet), t (triplet), q (quartet), and m (multiplet).

3.1.1. General Synthetic Procedures for the Synthesis of the Compound 2

To a solution of Methyl 2-aminobenzoate (1.51 g, 10 mmol) in 4 N HCl-dioxane solution,
chloroacetonitrile (2.26 g, 30 mmol) was added and the mixture was stirred at 80 ◦C for
12 h. After cooling to room temperature, the reaction solution was collected and dissolved
in water and neutralized with sodium hydroxide to pH = 7. The solids were collected by
filtration, and washed with water and dried to give the target product. White solid, yield
51.6%. 1H NMR (400 MHz, CDCl3) δ 9.45 (s, 1H), 8.30 (d, J = 7.1 Hz, 1H), 7.80 (s, 1H),
7.70 (d, J = 8.7 Hz, 1H), 7.54 (s, 1H), 4.59 (s, 2H).

3.1.2. General Synthetic Procedures for the Synthesis of the Compound 3

To a solution of 2-chloromethyl-4-(3H)-quinazolinone (0.39 g, 2 mmol) in 95% ethanol,
N-Boc-piperazine (0.75 g, 4 mmol) and potassium carbonate (0.83 g, 6 mmol) were added.
The mixture was stirred at room temperature for 12 h. After completion of the reaction,
95% ethanol was removed under vacuo, then 60 mL water was added, extracted with ethyl
acetate (30 mL × 3), and washed with saturated sodium chloride (30 mL). The combined
organic layer was dried on anhydrous sodium sulfate and concentrated in vacuo. The
residue was purified by column chromatography on silica gel. Pure fractions were col-
lected and concentrated to obtain the target product. White solid, yield 55.8%. 1H NMR
(400 MHz, CDCl3) δ 9.94 (s, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H),
7.66 (d, J = 8.1 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 3.57 (d, J = 17.6 Hz, 2H), 3.51 (s, 4H),
2.56 (s, 4H).

3.1.3. General Synthetic Procedures for the Synthesis of the Compound 4

To a solution of 4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-carboxylate
(0.34 g, 1 mmol) in dichloromethane, 4N HCl-dioxane solution was added, and the mixture
was stirred at room temperature for 1 h. The resulting mixture was concentrated in vacuo
to obtain the crude target product, and this crude target product was used for the next step
without any treatment.

3.1.4. General Synthetic Procedures for the Synthesis of the Compounds A1–A39

To a solution of 2-(piperazin-1-ylmethyl)-4-(3H)-quinazolinone (0.24 g, 1 mmol) in
tetrahydrofuran, phenyl isocyanate derivatives and triethylamine (0.30 g, 3 mmol) were
added. The mixture was stirred at room temperature for 4 h. The organic phases were
combined by extraction with dichloromethane and water, and the target compounds were
obtained by column chromatography.

N-(2-fluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A1)

White solid, yield 46.7%, m.p. 192.5–194.2 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.21
(d, J = 33.5 Hz, 1H), 8.28 (d, J = 7.8 Hz, 1H), 8.04 (s, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.68 (d,
J = 8.1 Hz, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.13–6.95 (m, 3H), 6.65 (s, 1H), 3.64 (s, 2H), 3.62 (s,
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4H), 2.68 (s, 4H). 13C NMR (100 MHz, CDCl3) δ 161.89, 154.18, 153.90, 152.72, 151.51, 148.77,
134.89, 127.13, 126.55, 124.57, 123.25, 121.72, 114.68, 60.63, 52.91, 43.98. ESI-MS: calculated
for C20H20FN5O2 [M+H]+ 382.16010, found 382.15900.

N-(3-fluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A2)

White solid, yield 52.2%, m.p. 189.5–192.1 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.95
(s, 1H), 8.28 (d, J = 7.8 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.50 (t,
J = 7.5 Hz, 1H), 7.30 (d, J = 11.0 Hz, 1H), 7.22 (dd, J = 15.1, 7.5 Hz, 1H), 7.02 (d, J = 8.1 Hz,
1H), 6.74 (t, J = 8.1 Hz, 1H), 6.56 (s, 1H), 3.66 (s, 2H), 3.61 (s, 4H), 2.68 (s, 4H). 13C NMR
(100 MHz, DMSO-d6) δ 161.40, 155.00, 154.49, 148.85, 134.83, 130.18, 126.96, 126.24, 121.82,
120.55, 115.37, 106.45, 60.89, 52.91, 44.12. ESI-MS: calculated for C20H20FN5O2 [M+H]+

382.16010, found 382.15906.

N-(4-fluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A3)

White solid, yield 57.3%, m.p. 196.5–197.8 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.55 (s, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.81 (t, J = 7.5 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H),
7.51 (t, J = 7.4 Hz, 1H), 7.47–7.42 (m, 2H), 7.06 (t, J = 8.2 Hz, 2H), 3.50 (s, 2H), 3.48 (s, 4H),
2.54 (s, 4H). 13C NMR (100 MHz, DMSO-d6) δ 162.07, 158.98, 156.62, 155.41, 154.51, 148.87,
137.27, 134.85, 127.51, 126.97, 126.26, 121.77, 115.34, 115.12, 60.94, 52.95, 44.09. ESI-MS:
calculated for C20H20FN5O2 [M+H]+ 382.16010, found 382.15897.

N-(2-chlorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A4)

White solid, yield 45.2%, m.p. 197.9–199.6 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.08
(s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d,
J = 8.1 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 5.8 Hz, 1H),
6.98 (dd, J = 16.8, 9.1 Hz, 2H), 3.66 (s, 6H), 2.70 (s, 4H). 13C NMR (100 MHz, CDCl3) δ
161.81, 153.97, 152.65, 148.76, 135.51, 134.90, 128.81, 127.77, 127.13, 126.59, 123.40, 122.41,
121.70, 121.01, 60.63, 52.92, 43.98. ESI-MS: calculated for C20H20ClN5O2 [M+H]+ 398.13055,
found 398.12985.

N-(3-chlorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A5)

White solid, yield 47.7%, m.p. 193.3–195.2 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.05
(s, 1H), 8.77 (s, 1H), 8.19 (d, J = 7.6 Hz, 1H), 7.88 (t, J = 7.2 Hz, 1H), 7.72 (d, J = 10.2
Hz, 2H), 7.58 (t, J = 6.9 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.04 (d,
J = 7.6 Hz, 1H), 3.57 (s, 2H), 3.56 (s, 4H), 2.61 (s, 4H). 13C NMR (100 MHz, DMSO-d6) δ
162.08, 154.98, 154.50, 148.87, 142.64, 134.84, 133.18, 130.40, 127.51, 126.97, 126.26, 121.75,
119.16, 118.08, 60.90, 52.91, 44.13. ESI-MS: calculated for C20H20ClN5O2 [M+H]+ 398.13055,
found 398.12985.

N-(4-chlorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A6)

White solid, yield 48.1%, m.p. 189.8–191.4 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.65 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.81 (t, J = 7.5 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H),
7.51 (t, J = 8.4 Hz, 3H), 7.27 (d, J = 8.3 Hz, 2H), 3.51 (s, 2H), 3.49 (s, 4H), 2.55 (s, 4H). 13C NMR
(100 MHz, DMSO-d6) δ 162.10, 155.16, 154.51, 148.83, 140.00, 134.87, 128.62, 127.48, 126.99,
126.26, 125.72, 121.80, 121.45, 60.90, 52.92, 44.11. ESI-MS: calculated for C20H20ClN5O2
[M+H]+ 398.13055, found 398.13037.
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N-(2-bromophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A7)

White solid, yield 49.5%, m.p. 195.1–196.7 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.07
(s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d,
J = 8.1 Hz, 1H), 7.50 (d, J = 7.4 Hz, 2H), 7.28 (d, J = 10.3 Hz, 1H), 7.03 (s, 1H), 6.91 (t,
J = 7.6 Hz, 1H), 3.65 (s, 6H), 2.70 (s, 4H). 13C NMR (100 MHz, CDCl3) δ 161.90, 154.00, 152.73,
148.78, 136.60, 134.88, 132.00, 128.42, 127.13, 126.55, 123.94, 121.69, 121.27, 113.36, 60.65,
52.92, 43.99. ESI-MS: calculated for C20H20BrN5O2 [M+H]+ 442.08004, found 442.07788.

N-(3-bromophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A8)

White solid, yield 51.2%, m.p. 194.2–196.3 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.70 (s, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.83–7.77 (m, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.51
(t, J = 7.4 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 3.51
(s, 2H), 3.50 (s, 4H), 2.56 (s, 4H). 13C NMR (100 MHz, DMSO-d6) δ 162.09, 154.98, 154.50,
148.85, 142.76, 134.85, 130.72, 127.48, 126.97, 126.26, 124.58, 122.05, 121.77, 118.49, 60.89,
52.90, 44.12. ESI-MS: calculated for C20H20BrN5O2 [M+H]+ 442.08004, found 442.07776.

N-(4-bromophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A9)

White solid, yield 53.3%, m.p. 187.8–188.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.65 (s, 1H), 8.12 (d, J = 7.7 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.66 (d, J = 8.3 Hz,
1H), 7.51 (t, J = 7.7 Hz, 1H), 7.42 (dd, J = 18.6, 8.1 Hz, 4H), 3.50 (s, 2H), 3.48 (s, 4H), 2.54
(s, 4H). 13C NMR (100 MHz, DMSO-d6) δ 162.07, 155.09, 154.51, 148.87, 140.49, 134.83,
131.51, 127.50, 126.96, 126.26, 121.83, 113.61, 60.91, 52.93, 44.13. ESI-MS: calculated for
C20H20BrN5O2 [M+H]+ 442.08004, found 442.07852.

4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-N-(o-tolyl)piperazine-1-carboxamide (A10)

White solid, yield 52.1%, m.p. 199.9–201.6 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.97
(s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.56 (d,
J = 7.9 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.18 (dd, J = 13.4, 7.1 Hz, 2H), 7.03 (t, J = 7.4 Hz, 1H),
6.17 (s, 1H), 3.63 (s, 2H), 3.58 (s, 4H), 2.66 (s, 4H), 2.25 (s, 3H). 13C NMR (100 MHz, CDCl3)
δ 161.78, 155.37, 152.75, 148.78, 136.73, 134.89, 130.48, 129.55, 127.11, 126.68, 124.54, 123.32,
121.70, 60.62, 52.96, 44.13, 17.88. ESI-MS: calculated for C21H23N5O2 [M+H]+ 378.18518,
found 378.18420.

4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-N-(m-tolyl)piperazine-1-carboxamide (A11)

White solid, yield 48.8%, m.p. 197.8–200.2 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.97
(s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.50 (t,
J = 7.5 Hz, 1H), 7.22 (s, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 6.87 (d,
J = 7.3 Hz, 1H), 6.41 (s, 1H), 3.63 (s, 2H), 3.58 (s, 4H), 2.65 (s, 4H), 2.32 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ 161.70, 154.95, 152.66, 148.79, 138.85, 138.64, 134.89, 131.83, 128.76,
127.04, 126.61, 124.22, 121.73, 120.85, 117.14, 60.60, 52.99, 44.02, 21.50. ESI-MS: calculated
for C21H23N5O2 [M+H]+ 378.18518, found 378.18457.

4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-N-(p-tolyl)piperazine-1-carboxamide (A12)

White solid, yield 49.6%, m.p. 197.7–199.5 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.88 (s,
1H), 8.29 (d, J = 7.8 Hz, 1H), 7.78 (t, J = 7.7 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.4 Hz,
1H), 7.23 (d, J = 7.6 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 6.28 (s, 1H), 3.64 (s, 2H), 3.58 (s, 4H),
2.66 (s, 4H), 2.30 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 162.07, 155.47, 154.52, 148.87,
138.36, 134.84, 130.93, 129.17, 127.50, 126.96, 126.26, 121.83, 120.23, 60.96, 52.99, 44.10, 20.81.
ESI-MS: calculated for C21H23N5O2 [M+H]+ 378.18518, found 378.18423.
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4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-N-(2-(trifluoromethyl)phenyl)
piperazine-1-carboxamide (A13)

White solid, yield 47.9%, m.p. 200.1–201.2 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.23 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.70–7.61 (m, 3H),
7.51 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 8.6 Hz, 2H), 3.50 (s, 2H), 3.46 (s, 4H), 2.53 (s, 4H). 13C
NMR (100 MHz, DMSO-d6) δ 162.08, 156.27, 154.49, 148.88, 137.87, 134.82, 133.13, 131.03,
127.51, 126.95, 126.66, 126.32, 125.95, 122.96, 121.84, 60.97, 52.85, 44.29. ESI-MS: calculated
for C21H20F3N5O2 [M+H]+ 432.15691, found 432.15488.

4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-N-(3-(trifluoromethyl)phenyl)piperazine-1-
carboxamide (A14)

White solid, yield 46.8%, m.p. 197.8–200.3 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.86 (s, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.92 (s, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.73 (d,
J = 8.1 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.49 (dt, J = 15.5, 7.4 Hz, 2H), 7.26 (d, J = 7.5 Hz, 1H),
3.51 (s, 6H), 2.56 (s, 4H). 13C NMR (100 MHz, DMSO-d6) δ 162.07, 155.03, 154.50, 148.89,
141.93, 134.82, 129.82, 129.42, 127.50, 126.95, 126.26, 123.21, 121.85, 118.24, 115.77, 60.89,
52.90, 44.12. ESI-MS: calculated for C21H20F3N5O2 [M+H]+ 432.15691, found 432.15555.

4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-N-(4-(trifluoromethyl)phenyl)piperazine-1-
carboxamide (A15)

White solid, yield 55.4%, m.p. 198.8–200.6 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.06
(s, 1H), 8.98 (s, 1H), 8.19 (d, J = 7.9 Hz, 1H), 7.88 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 7.4 Hz, 3H),
7.65 (d, J = 8.3 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 3.58 (s, 6H), 2.62 (s, 4H). 13C NMR (100 MHz,
DMSO-d6) δ 162.07, 154.89, 154.49, 148.87, 144.90, 134.84, 127.24, 126.78, 126.21, 123.76,
122.12, 121.84, 119.32, 60.89, 52.91, 44.18. ESI-MS: calculated for C21H20F3N5O2 [M+H]+

432.15691, found 432.15540.

N-(2-methoxyphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A16)

White solid, yield 56.8%, m.p. 188.5–190.7 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.06 (s,
1H), 8.29 (d, J = 7.9 Hz, 1H), 8.17–8.08 (m, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.68 (d, J = 8.1 Hz,
1H), 7.50 (t, J = 7.5 Hz, 1H), 7.11 (s, 1H), 6.96 (dt, J = 9.8, 5.0 Hz, 2H), 6.86 (d, J = 6.9 Hz, 1H),
3.87 (s, 3H), 3.64 (s, 2H), 3.61 (s, 4H), 2.67 (s, 4H). 13C NMR (100 MHz, CDCl3) δ 161.81,
154.50, 152.82, 148.80, 147.64, 134.86, 128.50, 127.10, 126.58, 122.31, 121.70, 121.22, 119.11,
109.76, 60.64, 55.76, 52.99, 43.88. ESI-MS: calculated for C21H23N5O3 [M+H]+ 394.18009,
found 394.17911.

N-(3-methoxyphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A17)

White solid, yield 53.7%, m.p. 186.3–188.5 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.04
(s, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.50 (t,
J = 7.5 Hz, 1H), 7.15 (dd, J = 18.2, 10.1 Hz, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.61 (t, J = 10.5
Hz, 2H), 3.78 (s, 3H), 3.62 (s, 2H), 3.58 (s, 4H), 2.63 (s, 4H). 13C NMR (100 MHz, CDCl3) δ
161.95, 160.11, 153.68, 152.87, 148.79, 140.33, 134.89, 130.47, 126.50, 124.65, 123.63, 121.64,
112.23, 108.96, 105.82, 60.61, 55.25, 52.94, 43.94. ESI-MS: calculated for C21H23N5O3 [M+H]+

394.18009, found 394.17899.

N-(4-methoxyphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A18)

White solid, yield 56.7%, m.p. 184.9–186.9 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.05
(s, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.49 (t,
J = 7.4 Hz, 1H), 7.24 (d, J = 7.9 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 3.77 (s, 3H),
3.62 (s, 2H), 3.56 (s, 4H), 2.62 (s, 4H). 13C NMR (100 MHz, CDCl3) δ 161.72, 156.09, 155.44,
152.72, 148.80, 134.88, 131.71, 127.11, 126.60, 122.61, 121.72, 114.17, 60.61, 55.52, 52.99, 43.97.
ESI-MS: calculated for C21H23N5O3 [M+H]+ 394.18009, found 394.17880.
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N-(2,3-difluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A19)

White solid, yield 57.8%, m.p. 188.2–189.9 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.07 (s,
1H), 8.28 (d, J = 7.9 Hz, 1H), 7.89–7.75 (m, 2H), 7.68 (d, J = 8.1 Hz, 1H), 7.50 (t, J = 7.4 Hz,
1H), 6.92 (ddd, J = 30.8, 15.7, 7.6 Hz, 2H), 6.58 (d, J = 54.3 Hz, 1H), 3.65 (s, 2H), 3.62 (s, 4H),
2.68 (d, J = 4.3 Hz, 4H). 13C NMR (100 MHz, CDCl3) δ 161.73, 154.34, 153.79, 152.59, 148.78,
134.90, 127.14, 126.60, 125.00, 121.73, 116.55, 115.34, 110.64, 60.61, 52.90, 44.05. ESI-MS:
calculated for C20H19F2N5O2 [M+H]+ 400.15068, found 400.14935.

N-(2,5-difluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A20)

White solid, yield 49.7%, m.p. 202.1–204.2 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.43 (s, 1H), 8.12 (d, J = 7.7 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H),
7.51 (t, J = 7.1 Hz, 1H), 7.41 (s, 1H), 7.23 (d, J = 4.7 Hz, 1H), 6.91 (s, 1H), 3.51 (s, 2H), 3.48 (s,
4H), 2.55 (s, 4H). 13C NMR (100 MHz, DMSO-d6) δ 162.08, 159.26, 156.90, 154.95, 152.39,
148.87, 134.82, 129.57, 127.50, 126.95, 126.25, 121.84, 116.77, 111.88, 110.66, 60.91, 52.86, 44.27.
ESI-MS: calculated for C20H19F2N5O2 [M+H]+ 400.15068, found 400.14932.

N-(2-fluoro-3-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A21)

White solid, yield 52.9%, m.p. 200.5–202.1 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.22 (s, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.81 (t, J = 7.5 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H),
7.51 (t, J = 7.3 Hz, 1H), 7.23 (s, 1H), 6.98 (d, J = 4.6 Hz, 2H), 3.51 (s, 2H), 3.47 (s, 4H), 2.54 (s,
4H), 2.22 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 162.07, 155.49, 153.14, 148.88, 134.85,
127.85, 127.63, 126.90, 126.26, 124.73, 124.07, 123.71, 121.84, 60.96, 52.91, 44.21, 14.71. ESI-MS:
calculated for C21H22FN5O2 [M+H]+ 396.17575, found 396.17487.

N-(2-fluoro-4-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A22)

White solid, yield 50.8%, m.p. 198.4–200.7 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.19 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H),
7.51 (t, J = 7.4 Hz, 1H), 7.25 (t, J = 8.2 Hz, 1H), 7.00 (d, J = 11.6 Hz, 1H), 6.91 (d, J = 7.8 Hz,
1H), 3.50 (s, 2H), 3.46 (s, 4H), 2.53 (s, 4H), 2.27 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ
162.07, 155.59, 154.49, 148.86, 135.55, 134.85, 127.51, 126.93, 126.26, 124.97, 121.83, 116.27,
60.96, 52.92, 44.15, 20.80. ESI-MS: calculated for C21H22FN5O2 [M+H]+ 396.17575, found
396.17462.

N-(2-fluoro-5-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A23)

White solid, yield 47.8%, m.p. 199.5–201.1 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.98
(s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d,
J = 8.1 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 6.93 (t, J = 9.6 Hz, 1H), 6.80–6.72 (m, 1H), 6.55
(s, 1H), 3.65 (s, 2H), 3.62 (s, 4H), 2.68 (s, 4H), 2.31 (s, 3H). 13C NMR (100 MHz, CDCl3) δ
161.92, 154.26, 152.75, 148.77, 134.88, 134.19, 127.12, 126.61, 123.62, 122.11, 121.67, 114.21,
60.64, 52.91, 43.98, 21.13. ESI-MS: calculated for C21H22FN5O2 [M+H]+ 396.17575, found
396.17477.

N-(2-fluoro-4-(trifluoromethyl)phenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-
yl)methyl)piperazine-1-carboxamide (A24)

White solid, yield 49.5%, m.p. 202.3–203.9 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.01
(s, 1H), 8.29 (t, J = 7.4 Hz, 2H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.51 (t,
J = 7.5 Hz, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.33 (d, J = 11.2 Hz, 1H), 6.77 (s, 1H), 3.66 (s, 2H),
3.64 (s, 4H), 2.70 (s, 4H). 13C NMR (100 MHz, CDCl3) δ 161.77, 153.40, 152.54, 150.20, 148.74,
134.94, 130.71, 127.17, 126.60, 121.95, 121.70, 120.83, 112.22, 60.60, 52.87, 44.02. ESI-MS:
calculated for C21H19F4N5O2 [M+H]+ 450.14749, found 450.14508.
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N-(2-chloro-6-fluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A25)

White solid, yield 53.2%, m.p. 198.4–199.8 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.07
(s, 1H), 8.28 (d, J = 7.8 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.50 (t,
J = 7.4 Hz, 1H), 7.20 (d, J = 7.9 Hz, 1H), 7.14–7.01 (m, 2H), 6.18 (s, 1H), 3.64 (s, 6H), 2.67
(s, 4H). 13C NMR (100 MHz, CDCl3) δ 161.87, 159.10, 156.61, 154.54, 152.81, 148.78, 134.89,
131.07, 127.11, 126.55, 124.96, 121.66, 114.95, 114.75, 60.63, 52.91, 44.29. ESI-MS: calculated
for C20H19ClFN5O2 [M+H]+ 416.12113, found 416.11945.

N-(2-chloro-5-(trifluoromethyl)phenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-
yl)methyl)piperazine-1-carboxamide (A26)

White solid, yield 54.1%, m.p. 191.2–193.9 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.15 (s,
1H), 8.58 (s, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H),
7.53–7.43 (m, 2H), 7.22 (d, J = 8.3 Hz, 1H), 7.12 (s, 1H), 3.67 (s, 6H), 2.72 (s, 4H). 13C NMR
(100 MHz, CDCl3) δ 161.90, 153.49, 152.58, 148.75, 136.18, 134.92, 129.21, 127.16, 126.54,
125.32, 124.96, 122.25, 121.67, 119.70, 117.68, 60.63, 52.85, 43.99. ESI-MS: calculated for
C21H19ClF3N5O2 [M+H]+ 466.11794, found 466.11606.

N-(2-chloro-5-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A27)

White solid, yield 52.1%, m.p. 196.7–198.7 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.11 (s,
1H), 8.28 (d, J = 7.9 Hz, 1H), 8.00 (s, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H),
7.50 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 8.1 Hz, 1H), 6.96 (s, 1H), 6.78 (d, J = 8.1 Hz, 1H), 3.65 (d,
J = 4.9 Hz, 6H), 2.70 (s, 4H), 2.32 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 161.81, 154.04,
152.66, 148.76, 137.91, 134.96, 128.36, 127.13, 126.58, 124.24, 121.61, 119.42, 60.63, 52.92, 43.98,
21.39. ESI-MS: calculated for C21H22ClN5O2 [M+H]+ 412.14620, found 412.14481.

N-(3-fluoro-2-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A28)

White solid, yield 51.8%, m.p. 198.9–200.6 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.26 (s, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.66 (d, J = 8.1 Hz,
1H), 7.52 (t, J = 7.5 Hz, 1H), 7.14 (dd, J = 14.5, 7.4 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.94 (t,
J = 8.8 Hz, 1H), 3.49 (d, J = 11.6 Hz, 6H), 2.55 (s, 4H), 2.03 (s, 3H). 13C NMR (100 MHz,
DMSO-d6) δ 162.07, 160.01, 155.77, 154.51, 148.87, 140.56, 134.85, 127.51, 126.97, 126.64,
126.26, 122.07, 121.83, 120.84, 111.25, 60.97, 52.95, 44.31, 10.39. ESI-MS: calculated for
C21H22FN5O2 [M+H]+ 396.17575, found 396.17432.

N-(4-fluoro-2-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A29)

White solid, yield 52.7%, m.p. 197.6–200.1 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 8.06 (s, 1H), 7.81 (t, J = 7.5 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H),
7.52 (t, J = 7.5 Hz, 1H), 7.18–7.11 (m, 1H), 7.04 (d, J = 9.8 Hz, 1H), 6.94 (t, J = 8.5 Hz, 1H),
3.51 (s, 2H), 3.46 (s, 4H), 2.54 (s, 4H), 2.14 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 162.08,
158.52, 156.07, 154.51, 148.87, 136.67, 134.84, 128.51, 127.51, 126.97, 126.26, 121.83, 116.82,
112.77, 60.98, 52.95, 44.26, 18.42. ESI-MS: calculated for C21H22FN5O2 [M+H]+ 396.17575,
found 396.17441.

N-(5-fluoro-2-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A30)

White solid, yield 47.8%, m.p. 201.1–202.8 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.99 (s,
1H), 8.29 (d, J = 7.9 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.57–7.47 (m,
2H), 7.08 (t, J = 7.2 Hz, 1H), 6.71 (t, J = 8.2 Hz, 1H), 6.24 (s, 1H), 3.64 (s, 2H), 3.60 (s, 4H),
2.67 (s, 4H), 2.20 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 162.71, 161.74, 160.30, 154.57, 152.61,
148.77, 137.96, 134.92, 131.03, 127.21, 126.60, 122.92, 121.70, 110.46, 109.24, 60.61, 52.92, 44.09,
17.15. ESI-MS: calculated for C21H22FN5O2 [M+H]+ 396.17575, found 396.17477.
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N-(3-bromo-2-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A31)

White solid, yield 53.6%, m.p. 200.6–202.2 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.34 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.81 (t, J = 7.1 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H),
7.52 (t, J = 7.2 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.08 (t, J = 8.0 Hz,
1H), 3.51 (s, 2H), 3.48 (s, 4H), 2.55 (s, 4H), 2.19 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ
162.08, 155.87, 154.50, 140.13, 134.85, 133.87, 129.16, 127.50, 126.97, 126.28, 125.00, 121.83,
60.96, 52.96, 44.27, 18.90. ESI-MS: calculated for C21H22BrN5O2 [M+H]+ 456.09569, found
456.09409.

N-(5-chloro-2-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A32)

White solid, yield 58.3%, m.p. 203.1–204.7 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.12 (d, J = 8.7 Hz, 2H), 7.81 (t, J = 7.3 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.52 (t,
J = 7.5 Hz, 1H), 7.32 (s, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H), 3.51 (s, 2H),
3.48 (s, 4H), 2.55 (s, 4H), 2.14 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 162.08, 155.55,
154.49, 148.88, 139.94, 134.84, 131.85, 130.05, 126.97, 126.26, 125.22, 124.34, 121.83, 120.54,
60.93, 52.90, 44.30, 17.89. ESI-MS: calculated for C21H22ClN5O2 [M+H]+ 412.14620, found
412.14517.

N-(2,6-dimethylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A33)

White solid, yield 55.7%, m.p. 200.3–201.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.86 (s, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H),
7.52 (t, J = 7.3 Hz, 1H), 7.03 (s, 3H), 3.51 (s, 2H), 3.48 (s, 4H), 2.54 (s, 4H), 2.12 (s, 6H). 13C
NMR (100 MHz, DMSO-d6) δ 162.07, 156.03, 154.50, 148.87, 137.02, 136.35, 134.84, 127.98,
127.51, 126.96, 126.25, 121.82, 61.03, 53.01, 44.45, 18.62. ESI-MS: calculated for C22H25N5O2
[M+H]+ 392.20083, found 392.19940.

N-(3,5-difluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A34)

White solid, yield 56.1%, m.p.199.8–200.2 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.90 (s, 1H), 8.13 (d, J = 7.9 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H),
7.51 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 9.8 Hz, 2H), 6.73 (t, J = 9.2 Hz, 1H), 3.51 (d, J = 5.3 Hz,
6H), 2.56 (s, 4H). 13C NMR (100 MHz, DMSO-d6) δ 164.07, 162.09, 161.67, 154.57, 148.85,
143.88, 134.85, 127.48, 126.97, 126.25, 121.81, 102.26, 101.97, 96.88, 60.84, 52.84, 44.10. ESI-MS:
calculated for C20H19F2N5O2 [M+H]+ 400.15068, found 400.14957.

N-(3,5-dichlorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A35)

White solid, yield 55.8%, m.p. 207.5–209.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.86 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H),
7.59 (s, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.12 (s, 1H), 3.51 (s, 2H), 3.49 (s, 4H), 2.55 (s, 4H). 13C
NMR (100 MHz, DMSO-d6) δ 162.07, 154.58, 148.85, 143.65, 134.84, 134.12, 127.51, 126.97,
126.26, 121.84, 121.02, 117.56, 60.82, 52.83, 44.10. ESI-MS: calculated for C20H19Cl2N5O2
[M+H]+ 432.09158, found 432.09000.

N-(3-chloro-4-fluorophenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A36)

White solid, yield 57.6%, m.p. 200.1–202.7 ◦C. 1H NMR (400 MHz, DMSO-d6) δ

11.98 (s, 1H), 8.70 (s, 1H), 8.12 (d, J = 7.7 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.74 (d,
J = 6.8 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.39 (s, 1H), 7.29 (t, J
= 9.1 Hz, 1H), 3.51 (s, 2H), 3.48 (s, 4H), 2.54 (s, 4H). 13C NMR (100 MHz, DMSO-d6) δ 162.10,
155.06, 154.51, 151.53, 148.83, 138.32, 134.87, 127.48, 127.00, 126.26, 121.80, 121.14, 120.01,
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119.01, 116.97, 60.87, 52.87, 44.07. ESI-MS: calculated for C20H19ClFN5O2 [M+H]+ 416.12113,
found 416.11984.

N-(3,4-dimethylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A37)

White solid, yield 58.9%, m.p. 194.4–196.1 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.34 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H),
7.51 (t, J = 7.3 Hz, 1H), 7.21 (s, 1H), 7.15 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 3.50 (s,
2H), 3.46 (s, 4H), 2.54 (s, 4H), 2.15 (d, J = 7.9 Hz, 6H). 13C NMR (100 MHz, DMSO-d6) δ
162.07, 155.48, 154.52, 148.87, 138.57, 136.15, 134.84, 129.71, 127.50, 126.96, 126.26, 121.83,
121.61, 117.73, 60.95, 52.99, 44.11, 20.10, 19.14. ESI-MS: calculated for C22H25N5O2 [M+H]+

392.20083, found 392.19974.

N-(3,5-dimethylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)piperazine-1-
carboxamide (A38)

White solid, yield 56.3%, m.p. 201.5–203.3 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.97
(s, 1H), 8.35 (s, 1H), 8.11 (d, J = 7.7 Hz, 1H), 7.80 (t, J = 7.4 Hz, 1H), 7.65 (d, J = 8.1 Hz,
1H), 7.51 (t, J = 7.4 Hz, 1H), 7.06 (s, 3H), 3.49 (s, 2H), 3.46 (s, 4H), 2.53 (s, 4H), 2.19 (s,
6H). 13C NMR (100 MHz, DMSO-d6) δ 162.07, 155.38, 154.52, 148.87, 140.76, 138.17, 137.55,
134.84, 127.50, 126.97, 126.26, 123.75, 121.83, 117.86, 116.29, 60.93, 52.97, 44.15, 21.59. ESI-MS:
calculated for C22H25N5O2 [M+H]+ 392.20083, found 392.19919.

N-(3,5-bis(trifluoromethyl)phenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-
yl)methyl)piperazine-1-carboxamide (A39)

White solid, yield 54.5%, m.p. 204.2–206.1 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.99
(s, 1H), 9.19 (s, 1H), 8.20 (s, 2H), 8.12 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.65 (d,
J = 7.6 Hz, 1H), 7.59 (s, 1H), 7.51 (t, J = 7.6 Hz, 1H), 3.51 (s, 6H), 2.56 (s, 4H). 13C NMR
(100 MHz, DMSO-d6) δ 162.07, 154.53, 148.88, 143.19, 134.83, 130.96, 130.64, 130.32, 127.50,
126.96, 126.25, 125.24, 122.53, 121.84, 119.11, 114.52, 60.84, 52.80, 44.09. ESI-MS: calculated
for C22H19F6N5O2 [M+H]+ 500.14429, found 500.14133.

3.1.5. General Synthetic Procedures for the Synthesis of Compounds B1–B7

We replaced the N-Boc-piperazine of Series A with other N-Boc-heterocyclic com-
pounds, replaced the phenyl isocyanate derivatives with 5-chloro-2-methylphenyl iso-
cyanate of Series A, and the other steps were the same as those in Series A.

N-(5-chloro-2-methylphenyl)-3-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-3,6-
diazabicyclo[3.1.1]heptane-6-carboxamide (B1)

White solid, yield 43.5%, m.p. 181.2–182.3 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.98
(s, 1H), 8.08 (d, J = 11.4 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.47 (t,
J = 7.4 Hz, 1H), 7.37 (s, 1H), 7.17 (d, J = 8.1 Hz, 1H), 7.07 (d, J = 8.3 Hz, 1H), 4.23 (s, 2H), 3.67
(s, 2H), 3.29 (s, 2H), 2.98 (d, J = 10.5 Hz, 2H), 2.25 (s, 1H), 2.11 (s, 3H), 1.87 (d, J = 7.5 Hz,
1H). 13C NMR (100 MHz, DMSO-d6) δ 156.66, 154.96, 139.03, 134.68, 131.99, 131.19, 130.76,
130.14, 126.79, 126.19, 124.93, 124.35, 122.57, 121.72, 120.53, 59.83, 58.03, 50.78, 27.91, 18.02.
ESI-MS: calculated for C22H22ClN5O2 [M+H]+ 424.14620, found 424.14423.

N-(5-chloro-2-methylphenyl)-2-methyl-4-((4-oxo-3,4-dihydroquinazolin-2-
yl)methyl)piperazine-1-carboxamide (B2)

White solid, yield 45.2%, m.p. 189.5–190.8 ◦C. 1H NMR (400 MHz, DMSO-d6) δ

11.84 (s, 1H), 8.15–8.06 (m, 2H), 7.80 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.50 (t,
J = 7.3 Hz, 1H), 7.29 (s, 1H), 7.19 (d, J = 8.5 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 3.83–3.69 (m,
3H), 3.47 (d, J = 14.7 Hz, 1H), 3.21 (t, J = 11.1 Hz, 1H), 2.99–2.91 (m, 1H), 2.82 (d, J = 11.2 Hz,
1H), 2.62 (s, 1H), 2.41 (t, J = 10.4 Hz, 1H), 2.13 (s, 3H), 1.08 (d, J = 5.8 Hz, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 162.04, 155.41, 148.94, 139.96, 134.87, 131.90, 130.04, 127.42, 126.87,
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126.29, 125.30, 124.36, 122.57, 121.76, 57.04, 55.19, 51.16, 50.53, 44.38, 17.89, 15.31. ESI-MS:
calculated for C22H24ClN5O2 [M+H]+ 426.16185, found 426.16016.

(1S,4S)-N-(5-chloro-2-methylphenyl)-5-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-2,5-
diazabicyclo[2.2.1]heptane-2-carboxamide (B3)

White solid, yield 38.3%, m.p. 191.1–192.4 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.91
(s, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.85–7.73 (m, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.52–7.45 (m, 2H),
7.20 (d, J = 7.9 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 4.46 (s, 1H), 3.67 (dt, J = 23.0, 11.8 Hz, 4H),
3.29 (s, 1H), 2.95 (d, J = 9.3 Hz, 1H), 2.73 (d, J = 9.3 Hz, 1H), 2.19 (s, 3H), 1.89 (d, J = 9.2 Hz,
1H), 1.74 (d, J = 9.5 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) δ 162.08, 155.84, 154.36, 149.00,
139.67, 134.81, 131.91, 131.01, 130.12, 127.41, 126.85, 126.27, 124.65, 124.05, 121.82, 61.91,
60.24, 57.36, 50.86, 35.88, 17.89. ESI-MS: calculated for C22H22ClN5O2 [M+H]+ 424.14620,
found 424.14468.

N-(5-chloro-2-methylphenyl)-4-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-1,4-
diazepane-1-carboxamide (B4)

White solid, yield 46.9%, m.p. 186.6–187.9 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.89
(s, 1H), 8.11 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 13.2 Hz, 2H), 7.64 (d, J = 7.8 Hz, 1H), 7.50 (t,
J = 7.4 Hz, 1H), 7.35 (s, 1H), 7.19 (d, J = 8.6 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 3.63 (s, 2H), 3.56
(s, 4H), 2.78 (d, J = 28.8 Hz, 4H), 2.15 (s, 3H), 1.85 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ
162.08, 155.57, 148.92, 140.11, 134.82, 132.05, 131.85, 130.03, 127.46, 126.89, 126.26, 125.35,
124.24, 121.81, 120.53, 59.86, 55.80, 54.63, 46.28, 45.54, 27.92, 17.90. ESI-MS: calculated for
C22H24ClN5O2 [M+H]+ 426.16185, found 426.16043.

(1R,5S)-N-(5-chloro-2-methylphenyl)-8-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-3,8-
diazabicyclo[3.2.1]octane-3-carboxamide (B5)

White solid, yield 37.4%, m.p. 189.5–191.7 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.88
(s, 1H), 8.13 (dd, J = 7.9, 1.1 Hz, 1H), 7.93 (s, 1H), 7.84–7.78 (m, 1H), 7.65 (d, J = 7.8 Hz, 1H),
7.54–7.47 (m, 1H), 7.32 (d, J = 2.2 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 7.07 (dd, J = 8.1, 2.2 Hz,
1H), 3.72 (d, J = 10.6 Hz, 2H), 3.48 (s, 2H), 3.31 (s, 2H), 3.13 (d, J = 11.7 Hz, 2H), 2.15 (s,
3H), 2.00–1.88 (m, 2H), 1.64 (d, J = 7.5 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 162.03 (s),
156.48 (s), 155.69 (s), 149.01 (s), 140.10 (s), 134.85 (s), 131.85 (d, J = 13.4 Hz), 130.05 (s), 127.41
(s), 126.88 (s), 126.30 (s), 125.09 (s), 124.27 (s), 121.87 (s), 59.43 (s), 56.27 (s), 50.17 (s), 25.48
(s), 17.79 (s). ESI-MS: calculated for C23H24ClN5O2 [M+H]+ 438.16185, found 438.15988.

N-(5-chloro-2-methylphenyl)-3-((4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-3,8-
diazabicyclo[3.2.1]octane-8-carboxamide (B6)

White solid, yield 39.6%, m.p. 192.3–193.6 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.67 (s,
1H), 8.29 (d, J = 7.9 Hz, 1H), 7.84 (s, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H),
7.50 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.9 Hz, 1H), 6.99 (d, J = 8.1 Hz, 1H), 6.14 (s, 1H), 4.30 (s,
2H), 3.59 (s, 2H), 2.73 (q, J = 10.7 Hz, 4H), 2.21 (s, 3H), 2.10 (s, 4H). 13C NMR (100 MHz,
CDCl3) δ 162.08, 154.61, 154.22, 148.88, 139.54, 134.81, 131.88, 130.08, 126.96, 126.24, 125.31,
124.43, 122.58, 120.57, 60.27, 57.26, 54.35, 28.01, 17.99. ESI-MS: calculated for C23H24ClN5O2
[M+H]+ 438.16185, found 438.16016.

N-(5-chloro-2-methylphenyl)-3-((4-oxo-3,4-dihydroquinazolin-2-
yl)methyl)tetrahydropyrimidine-1(2H)-carboxamide (B7)

White solid, yield 44.3%, m.p. 197.3–198.7 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.16
(dd, J = 8.0, 1.2 Hz, 1H), 8.06 (d, J = 2.2 Hz, 1H), 7.83 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.75 (s,
1H), 7.67 (d, J = 7.7 Hz, 1H), 7.56–7.51 (m, 1H), 7.12 (d, J = 8.1 Hz, 1H), 6.88 (dd, J = 8.1, 2.3
Hz, 1H), 6.77 (t, J = 5.6 Hz, 1H), 4.84 (s, 2H), 4.03 (s, 2H), 3.19 (d, J = 6.0 Hz, 2H), 2.72 (t,
J = 7.1 Hz, 2H), 2.15 (s, 3H), 1.70 (p, J = 6.9 Hz, 2H). 13C NMR (100 MHz, DMSO-d6)
δ 159.06 (s), 157.17 (s), 155.56 (s), 149.39 (s), 140.17 (s), 134.89 (s), 131.81 (s), 130.75 (s),
127.39 (s), 126.89 (s), 126.30 (s), 121.28 (s), 120.89 (s), 119.11 (s), 68.50 (s), 56.94 (s), 51.62
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(s), 37.53 (s), 28.64 (s), 17.86 (s). ESI-MS: calculated for C21H22ClN5O2 [M+H]+ 412.14620,
found 412.14468.

3.1.6. General Synthetic Procedures for the Synthesis of Compounds C1–C5

We replaced the methyl 2-aminobenzoate of Series A with other methyl 2-aminobenzoate
derivatives, replaced the N-Boc-piperazine of Series A with 6-N-Boc-3,6-diazabicyclo[3.1.1]heptane,
and replaced the phenyl isocyanate derivatives of Series A with 5-chloro-2-methylphenyl iso-
cyanate, and the other steps were the same as the steps in Series A.

N-(5-chloro-2-methylphenyl)-3-((7-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-3,6-
diazabicyclo[3.1.1]heptane-6-carboxamide (C1)

White solid, yield 36.4%, m.p. 193.2–195.1 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.09
(s, 1H), 8.13 (t, J = 7.3 Hz, 1H), 8.04 (s, 1H), 7.36 (s, 1H), 7.34–7.24 (m, 2H), 7.15 (d, J = 8.3
Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 4.23 (s, 2H), 3.68 (s, 2H), 2.96 (d, J = 10.5 Hz, 2H), 2.37 (d,
J = 6.3 Hz, 1H), 2.25 (s, 2H), 2.10 (s, 3H), 1.86 (d, J = 7.6 Hz, 1H). 13C NMR (100 MHz,
DMSO-d6) δ 164.80, 156.63, 138.92, 132.00, 131.01, 130.16, 129.19, 126.37, 124.83, 124.31,
122.58, 120.56, 118.69, 115.43, 59.84, 57.68, 50.63, 27.86, 18.01. ESI-MS: calculated for
C22H21ClFN5O2 [M+H]+ 442.13678, found 442.13474.

N-(5-chloro-2-methylphenyl)-3-((7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-3,6-
diazabicyclo[3.1.1]heptane-6-carboxamide (C2)

White solid, yield 35.5%, m.p. 192.3–194.1 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.14
(s, 1H), 8.09–8.00 (m, 2H), 7.56 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.36 (s, 1H), 7.15 (d, J = 8.1 Hz,
1H), 7.06 (d, J = 8.2 Hz, 1H), 4.24 (s, 2H), 3.69 (s, 2H), 3.38 (s, 2H), 2.96 (d, J = 10.4 Hz, 2H),
2.37 (d, J = 6.3 Hz, 1H), 2.10 (s, 3H), 1.86 (d, J = 7.5 Hz, 1H). 13C NMR (100 MHz, DMSO-
d6) δ 156.69, 139.32, 138.90, 131.95, 130.94, 130.19, 128.23, 127.06, 124.81, 124.33, 120.49,
59.81, 57.54, 50.57, 27.91, 17.96. ESI-MS: calculated for C22H21Cl2N5O2 [M+H]+ 458.10723,
found 458.10510.

N-(5-chloro-2-methylphenyl)-3-((7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-3,6-
diazabicyclo[3.1.1]heptane-6-carboxamide (C3)

White solid, yield 37.2%, m.p. 197.7–199.3 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.88
(s, 1H), 8.02 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.38 (s, 1H), 7.33 (s, 1H), 7.28 (d, J = 8.1 Hz,
1H), 7.16 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 4.24 (s, 2H), 3.67 (s, 2H), 3.36 (s,
2H), 2.96 (d, J = 10.3 Hz, 2H), 2.37 (s, 4H), 2.11 (s, 3H), 1.88 (t, J = 12.0 Hz, 1H). 13C NMR
(100 MHz, DMSO-d6) δ 161.98, 156.58, 154.91, 149.09, 145.09, 138.98, 131.96, 131.07, 130.15,
128.15, 127.26, 126.01, 124.87, 124.29, 119.30, 59.83, 57.70, 50.66, 27.92, 21.75, 17.98. ESI-MS:
calculated for C23H24ClN5O2 [M+H]+ 438.16185, found 438.16043.

N-(5-chloro-2-methylphenyl)-3-((6-fluoro-4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-3,6-
diazabicyclo[3.1.1]heptane-6-carboxamide (C4)

White solid, yield 38.9%, m.p. 192.1–193.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.14
(s, 1H), 8.04 (s, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.62 (s, 2H), 7.34 (s, 1H), 7.16 (d, J = 8.3 Hz,
1H), 7.06 (d, J = 8.1 Hz, 1H), 4.23 (s, 2H), 3.67 (s, 2H), 3.30 (s, 2H), 2.97 (d, J = 10.3 Hz,
2H), 2.36 (d, J = 6.2 Hz, 1H), 2.10 (s, 3H), 1.86 (d, J = 7.4 Hz, 1H). 13C NMR (100 MHz,
DMSO-d6) δ 161.99, 156.58, 154.90, 149.09, 145.08, 138.98, 131.95, 131.07, 130.16, 128.14,
127.26, 126.01, 124.87, 124.29, 119.31, 59.84, 57.71, 50.67, 21.75, 17.98. ESI-MS: calculated for
C22H21ClFN5O2 [M+H]+ 442.13678, found 442.13501.

N-(5-chloro-2-methylphenyl)-3-((6,7-difluoro-4-oxo-3,4-dihydroquinazolin-2-yl)methyl)-
3,6-diazabicyclo[3.1.1]heptane-6-carboxamide (C5)

White solid, yield 35.8%, m.p. 194.4–195.8 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.25
(s, 1H), 8.10 (s, 1H), 8.03 (t, J = 9.1 Hz, 1H), 7.79–7.71 (m, 1H), 7.19 (d, J = 8.2 Hz, 1H), 7.07
(d, J = 8.1 Hz, 1H), 5.76 (s, 1H), 3.50 (s, 2H), 3.47 (s, 4H), 2.54 (s, 4H), 2.14 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 156.53, 156.10, 139.11, 138.88, 131.98, 130.80, 130.15, 126.36, 124.63,
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124.19, 122.58, 120.55, 115.49, 113.53, 59.84, 57.37, 50.42, 27.68, 17.99. ESI-MS: calculated for
C22H20ClF2N5O2 [M+H]+ 460.12736, found 460.12552.

3.2. Biological Evaluation
3.2.1. Cell Lines and Cell Culture

HCT-15, HCC1937, MDA-MB-231, LO2, and NCM460 cell lines were purchased from
Procell (www.procell.com.cn). HCT-15, HCC1937, MDA-MB-231, LO2, and NCM460 cell
lines were cultured in DMEM medium or RPMI 1640 medium (www.thermofisher.cn) with
10% fetal bovine serum (FBS). All cells were incubated at 37 ◦C in a humidified incubator
(Thermo Scientific) with 5% CO2.

3.2.2. Cytotoxicity Assay

Cells were seeded into 96-well plates with 5 × 103 cells per well. After treatment
with target compounds at the different concentrations, MTT was added and the cells were
incubated for another 4 h. The IC50 values of the selected compounds were evaluated by
the same method. The cells were treated with compounds at different concentrations. The
OD values were detected using a microplate reader at 570 nm.

3.2.3. PARP1 Enzyme Inhibition Assay

The PARP1 enzyme inhibition activity was determined for compounds using a com-
mercially available PARP1 enzyme activity kit (Sigma-Aldrich, catalog No. 17-10149),
according to the manufacturer’s protocol.

3.2.4. Immunofluorescence Analyses of PAR and γH2AX

The cells were seeded in 6-well plates with 1 × 105 cells per well and incubated for
24 h. Then, the cells were co-incubated with different concentrations of B1 (1.25, 2.5,
5, 10, and 20 µM) for 48 h. Cells were fixed with addition of 4% paraformaldehyde,
and immunostaining blocking solution was added at room temperature for 20 min. The
immunostaining blocking solution was aspirated, the primary antibody γH2AX (Beyotime,
C2035S) or PAR (Enzo Life Sciences, ELS-BML-SA216-0100) was added and incubated
at room temperature for 1 h, and anti-rabbit 488 was added and incubated for 1 h at
room temperature. Then, a cytosolic staining solution (DAPI) was added for staining,
the cytosolic staining solution was aspirated, and the well washed 3 times with washing
solution. Photographs were taken through a Leica SP8 Laser confocal microscope.

3.2.5. Cell Apoptosis Assay

The cells were seeded in 6-well plates with 1 × 105 cells per well and incubated for
24 h. Then, the cells were co-incubated with different concentrations of B1 (1.25, 2.5, 5, 10,
and 20 µM) for 48 h. The cells were digested, collected, and resuspended in the binding
buffer. After adding 5 µL of Annexin V-FITC and 10 µL of propidium iodide (PI), the cells
were incubated for 30 min away from light; this was followed by detection using flow
cytometry (Beckman Coulter).

3.2.6. Western Blot Analysis

Different concentrations of B1 (1.25, 2.5, 5, 10, and 20 µM) were co-incubated with the
cells for 48 h. Subsequently, the cells were lysed with RIPA lysis buffer and protein samples
were prepared. Denatured proteins were separated by 10% SDS-PAGE electrophoresis and
transferred to a PVDF membrane. The membrane was blocked with 5% blocking solution
for 2 h. The membrane was incubated overnight at 4 ◦C with specific primary antibody.
Then, the membrane was rinsed three times with TBST, secondary antibody was added,
and the membrane was incubated at room temperature for 2 h. Finally, the target protein
was detected by the ECL detection system. The relative expression was quantified using
Image J (National Institutes of Health).

www.procell.com.cn
www.thermofisher.cn
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3.2.7. ROS Assay

Cell culture methods were the same as for the cell apoptosis assay. Then, fresh medium
containing the DCFH-DA probe was added, and the incubation was continued at 37 ◦C
for 2 h; this was followed by detection using flow cytometry (Beckman Coulter), and
photographs were taken through a Leica SP8 Laser confocal microscope.

3.2.8. Mitochondrial Membrane Potential Assay

The experimental operation was the same as ROS, only replacing the DCFH-DA probe
with the JC-1 probe.

3.2.9. In Vivo Anti-Tumor Study

All experimental procedures were performed according to the National Institutes
of Health guidelines for the use of laboratory animals, and an application was made to
the Institutional Animal Care and Use Committee, Shandong Second Medical University,
which was approved. BRCA2-mutant HCT-15 cells (5 × 106 cells) were injected into the
subcutaneous tissue of 6-week-old female BALB/c nude mice (Jinan Pengyue Experimental
Animal Breeding Co.). When the tumor volume reached about 80–150 mm3, the mice
were randomly divided into three groups (the control group, and different concentration
administration group) and administered for 14 consecutive days, while the tumor volume
was measured once every two days and the body weight of the mice was recorded. At the
end stage, mice were killed by neck-breaking and tumor tissues were removed. All the
photographs were taken through a Leica SP8 Laser confocal microscope.

3.2.10. Molecular Docking

In order to accurately predict the docking posture, we used two different molecular
docking programs, AMDock [37] and molecular operating environment software (MOE,
Chemical Computing Group, 2019.0101 edition), to detect the binding ability of different
compounds to PARP. The crystal structural files of PARP were downloaded from the protein
database (PDB: 7KK4). Protein and ligand processing was carried out using the tools that
come with the software, which performs repair treatments such as hydrogenation, the
removal of metal ions, side-chain repair, addition of missing atom types, repair of side-
chain amino acids, field optimization, and other repair treatments for proteins. The active
pocket creation method is to extract the original ligand from the protein to obtain an active
docking pocket for docking; all other parameters remain the default software standard.

3.2.11. Molecular Dynamics

The docked proteins were separated from the small-molecule ligands, and the small-
molecule force field files were generated by the antechamber tool in Ambertools software.
The small-molecule force field files were generated by the antechamber tool in Ambertools
software, and then converted to gromacs force field files by the Acpype software tool. The
GAFF force field was used for small molecules, and the AMBER14SB force field and TIP3P
water model were used for proteins. The protein and small-molecule ligand files were
merged to construct the simulation system for the complexes. The molecular dynamics (MD)
simulations were performed using the Gromacs2022 program under constant temperature
and pressure and periodic boundary conditions. In the MD simulations, all hydrogen
bonds were bound using the LINCS algorithm with an integration step of 2 fs. Electrostatic
interactions were calculated using the (particle-mesh Ewald) PME method with a cutoff
value of 1.2 nm, and the cutoff value of non-bonded interactions was set at 10 Å and
updated every 10 steps. The simulation temperature was controlled by the V-rescale
temperature coupling method at 298 K, and the pressure was controlled by the Berendsen
method at 1 bar. In total, 100 ps of NVT and NPT equilibrium simulations were performed at
298 K. A 30 ns MD simulation was performed for the complex system, and the conformation
was saved every 10 ps. After completion of the simulations, the trajectories were analyzed
using VMD and Pymol, and the free energy of binding of MMPBSA between the protein
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and the small-molecule ligand was analyzed using the g_mmpbsa program. All 2D and 3D
drawings were created through Pymol, ChimeraX, LigPlot+ v.2.2.8, and Discovery Studio
2019 Client.

3.2.12. Statistical Analysis

The data were visualized using GraphPad Prism software, and statistical analysis
was performed using the two-sided Student’s t-test or one-way ANOVA followed by an
appropriate post hoc test. Statistical significance was denoted by ** p < 0.01, *** p < 0.001.
The IC50 values of tested compounds were calculated by GraphPad Prism software.

4. Conclusions

In summary, a novel lead compound B1 was discovered based on IN17 with a
4-hydroxyquinazoline fragment. B1 has the potential to effectively target intracellular
PARP and enhance sensitivity in primary PARPi-resistant cells. The mechanism of synthetic
lethality showed that B1 can be effective in inhibiting intracellular PAR formation and
promoting γH2AX accumulation. Furthermore, B1 can induce apoptosis in HCT-15 and
HCC1937 cell lines at a concentration of 5 µM, which was accompanied by an upregulation
of Bax expression, downregulation of Bcl-2 expression, and activation of Caspase-3 in a
process that exhibited concentration dependence. We discovered that B1 can induce ROS
production and cause mitochondrial membrane depolarization, accelerating cell apoptosis,
which may serve as an additional mechanism to overcome PARPi resistance. In vivo stud-
ies demonstrated that the compound B1 significantly suppressed the growth of HCT-15
xenografts in nude mice. Moreover, it exhibited favorable safety profiles, supporting its
potential as a novel anticancer drug. Finally, we conducted a preliminary study of the
binding mechanism using molecular docking and molecular dynamics and found a stable
binding mode between B1 and the protein, with a hydrogen-bonding interaction with
ASP766 facilitating the antiproliferative activity. The findings provide useful structures for
the discovery of novel PARPi to overcome PARPi resistance.
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