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Science is a point of view. Two centuries ago, Auguste Comte stated in 1830, “Any
attempt to use mathematical methods in the study of chemical problems must be con-
sidered profoundly irrational and contrary to the spirit of chemistry. . .”. But just a few
years later (1888), Gay-Lussac changed this perspective: “. . .perhaps we are not too far
from the moment when we will be able to treat the heart of chemical phenomena with
computation. . .”. The efforts to conjugate chemistry, mathematics, and computers were
awarded the Nobel Prize in Chemistry in 1998, which was divided equally between Walter
Kohn “for his development of the density-functional theory” and John A. Pople “for his de-
velopment of computational methods in quantum chemistry”. They developed improved
energy calculations on molecules and other multi-atom systems, enabling the chemists to
perform calculations on systems during reactive encounters. These findings gave a better
understanding of chemical dynamics and allowed for predictions regarding the course of
chemical reactions [1]. Computational approaches rose to prominence again in 2013, when
the Royal Swedish Academy of Science announced that the winners of the Nobel Prize in
Chemistry were Martin Karplus, Michael Levitt, and Arieh Warshel for their studies “on
the development of multiscale models for complex chemical systems”. Starting in 1970,
the three scientists laid the foundation for programs used worldwide today to understand
chemical processes. Karplus, Levitt, and Warshel developed equations that allow chemical
processes to be simulated and even predict the outcome of reactions before carrying them
out. Their equations are used every day in industrial chemistry and drug development.
With progress and therefore the creation of computers with greater computing power, it has
been possible to avoid idle experiments and finely regulate the processes that are desired
to be achieved in a much shorter time. But what they have achieved goes much further;
their research is at the basis of the birth of so-called target therapy, i.e., all those treatments
in which specific targets are targeted, such as tumors. Furthermore, knowing the three-
dimensional characteristics of some molecules in nature has allowed scientists to develop
much more efficient analogs. These three new Nobel Prize winners managed to combine
classical and quantum physics in the description of interactions between molecules.

Computational approaches used in the early stages of drug discovery depend on the
constant increase in hardware performance. Moore’s Law [2], which states that computer
power doubles every 24 months, gives an empirical projection of historical trends in hard-
ware. Even though the miniaturization of chips will make Moore’s law obsolete by 2036, it
is still possible to observe some advances in hardware performance due to the increasing
use of GPUs, parallel CPUs, and the inclusion of new technologies [3]. This progress in
hardware contributes to the expanding role of computational methods in searching for
new drugs. This impact on drug discovery occurs by accelerating virtual screening initia-
tives, speeding up CPU-demanding simulations (e.g., molecular dynamics), and combining
multiple steps of drug discovery in an optimized workflow. As a demonstration of this,
the actual combinations of software and hardware allow the evaluation of several million
compounds/day. This number could reach even billions, as stated by the researchers
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at the Oak Ridge National Laboratory working on the SUMMIT supercomputer, which
was recently exploited for an ultra-large GPU-accelerated virtual screening against the
SARS-CoV-2 main protease [4,5]

The chemical space forming the drug-like environment (1060 compounds) is probably
the major challenge in the drug discovery field [6]. Medicinal chemists can overcome this
limitation by bringing the hit selection problem from a wet lab setup to a virtual envi-
ronment, such as HTVS. Without forgetting several examples of reverse virtual screening
where a single compound is screened against thousands of targets [7,8].

In the last decade, the evolution of machine learning and deep learning methods
focused on drug discovery [9], and on another front, the increase in protein-ligand data
with over 200,000 structures in the protein data bank (PDB) enlarges the chances for drug
discovery projects. Moreover, databases providing receptor–ligand affinity data fully
integrated with structural data create an ideal scenario to address the early discovery
phases both in academia and industry [10–12].

In this second Special Issue, we continued to collect [13] original research articles and
reviews covering all the aspects of computational approaches applied to drug discovery.
Virtual screenings remain of large use in the early phase of drug discovery and are applied
to several different approaches. Jokinen and colleagues employed molecular docking and
pharmacophore modeling in a VS campaign to identify retinoic acid-related orphan receptor
γt modulators. Twenty-eight compounds were selected for in vitro testing, and eight
showed low micromolar inhibitory activity, generating a hit rate of ~29% (Contribution
1). Haque and colleagues described the design and development of seventeen pyrimidine-
clubbed benzimidazole derivatives as potential dihydrofolate reductase (DHFR) inhibitors
that were filtered through ADMET and drug-likeness profiles before carrying out docking
calculations. Their in vitro tests confirmed two compounds effective against all the bacterial
and fungal strains selected (Contribution 2). Detroja and Samson performed a VS for
FDA-approved drugs that selectively inhibit Arginase 1 and 2 by using docking and
molecular mechanics energy calculations. Candesartan, ibersartan, codeine, metformin,
and isavuconazole qualified as suitable candidates for the development of potential arginase
inhibitors, even though in vitro and in vivo studies are required to characterize the effective
ligand binding (Contribution 3). Ebenezer and colleagues performed an induced-fit (IFD)
docking study on the ZINC library, identifying two promising candidates as potential
norovirus inhibitors (Contribution 4).

Molecular dynamics is the approach of choice when a computational medicinal chemist
looks for accuracy and the interpretation of the mechanism of action [8,14]. In this Special
Issue, Conrad and colleagues tried to unveil the influence of different histamine tautomers
(e.g., τ-tautomer and π-tautomer) and charge states (mono- vs. di-cationic) on the in-
teraction with the ternary histamine–H1R–Gq complex by means of atomistic molecular
dynamics (Contribution 5). Altharawi tried to interpret the mechanism of action of three
compounds selected by docking and energy calculations as antiparasitic drugs that can
block Toxoplasma gondii ME49 TgAPN2 (Contribution 6). The use of molecular dynamics
and molecular mechanics energy calculation was exploited by Tiwari and colleagues, who
showed the role of pre- and pro-vitamin D of mushrooms against Mpro and PLpro pro-
teases of SARS-CoV2 (Contribution 7). Ali and colleagues screened traditional Chinese
medicine’s natural compounds as myostatin (MSTN) inhibitors. Molecular dynamics of the
most promising compound helped to understand its therapeutic potential (Contribution 8).

Moreover, computational approaches, such as QSAR, proved useful in providing a
mechanistic interpretation of structure–activity relationships for the further development
of active compounds. In this Special Issue, Bernal and Schmidt reported various QSAR
models to explain and predict the antileishmanial activity of a series of dyhidrobenzofurans.
They stated that the best-performing and robust 3D-QSAR model can guide the decision
making of new antileishmanial compounds before synthesis (Contribution 9).

Three reviews were also collected in this Special Issue. Bassani and Moro reported
the state-of-the-art computer-aided drug design methods, focusing on their application
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in different scenarios of pharmaceutical and biological interest and highlighting their
potential and weaknesses (Contribution 10). Dulsat and colleagues compared eighteen free
web servers capable of predicting ADMET properties and analyzed their advantages and
disadvantages (Contribution 11).

Last but not least, Klupt and Jia presented an overview of eEF2K-related drug discov-
ery efforts dating from the 1990s to more recent in vivo studies in rat models and their view
regarding the future of eEF2K drug discovery (Contribution 12).

We express our deep gratitude again to all the contributors to this Special Issue for their
commitment, hard work, and outstanding papers. We also thank all the reviewers involved
in the manuscript revisions for their unpaid contributions to improve any aspects of the
submitted works. We think that these manuscripts could contribute to the improvement of
the drug discovery field.
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