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Abstract: Z-scheme heterojunction Bi2WO6/g-C3N4 was obtained by a novel hydrothermal process;
its photocatalysis–persulfate (PDS) activation for tetracycline (TC) removal was explored under
solar light (SL). The structure and photoelectrochemistry behavior of fabricated samples were well
characterized by FT-IR, XRD, XPS, SEM-EDS, UV-vis DRS, Mott-Schottky, PL, photocurrent response,
EIS and BET. The critical experimental factors in TC decomposition were investigated, including
the Bi2WO6 doping ratio, catalyst dosage, TC concentration, PDS dose, pH, co-existing ion and
humic acid (HA). The optimum test conditions were as follows: 0.4 g/L Bi2WO6/g-C3N4 (BC-
3), 20 mg/L TC, 20 mg/L PDS and pH = 6.49, and the maximum removal efficiency of TC was
98.0% in 60 min. The decomposition rate in BC-3/SL/PDS system (0.0446 min−1) was 3.05 times
higher than that of the g-C3N4/SL/PDS system (0.0146 min−1), which might be caused by the
high-efficiency electron transfer inside the Z-scheme Bi2WO6/g-C3N4 heterojunction. Furthermore,
the photogenerated hole (h+), superoxide (O2•−), sulfate radical (SO4•−) and singlet oxygen (1O2)
were confirmed as the key oxidation factors in the BC-3/SL/PDS system for TC degradation by a free
radical quenching experiment. Particularly, BC-3 possessed a wide application potential in actual
antibiotic wastewater treatment for its superior catalytic performance that emerged in the experiment
of co-existing components.

Keywords: photocatalyst; solar light; Bi2WO6/g-C3N4; persulfate; tetracycline

1. Introduction

Global freshwater resources are being further depleted due to climate change, increas-
ing demand and poor management, and many regions have been suffering from severe
water shortages [1]. It was estimated that one billion urban people would face a water
resources shortage worldwide by 2050 [2]. The shortage of water resources is being paid
close attention all over the world, and water pollution is more seriously aggravating the
problem. In particular, antibiotics have become one of the primary water pollution sources
for its overuse in agricultural, biological, and medical fields, to name a few. Previous
studies reported that antibiotics were detected not only in surface water and wastewater,
but also in groundwater and drinking water [3]. The presence of antibiotics in the water
environment posed potential harm to animals and human health, which has been drawing
the broad attention of environmentalists. Further, microbial resistance genes could be
activated by antibiotics [4], which made the biochemical waste water treatment process
less effective and more expensive. In addition, the administration of antibiotic-containing
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wastewater was difficult with conventional wastewater treatment techniques such as filtra-
tion, precipitation, and disinfection, on account of its chemical stability [5]. Therefore, it is
particularly important to explore effective techniques to treat antibiotic wastewater.

Advanced persulfate oxidation technology was widely used to treat antibiotic wastew-
ater because of its strong oxidizing property, fast reaction, high stability and excellent
adaptability. However, the sulfate radical (SO4•−) generated slowly from peroxymonosul-
fate (PMS) or persulfate (PDS), which was unfavorable to its applications in environmental
purification [6]. In recent years, various methods had been developed to enhance the
generation of SO4•− including thermal [7], UV, metal ions, and the inorganic nonmetallic
nanomaterial [8]. Given its ability to utilize green solar energy, the photocatalytic activation
technique was enormously studied in the effluent treatment [9]. It was reported that the
graphite phase carbon nitride (g-C3N4) possessed the ability to activate persulfate for TC
decomposition [10]. Besides, g-C3N4 was widely used in photocatalytic technology for the
characteristics of an outstanding chemical stability, suitable energy band structure, and ex-
cellent light absorption [11]. In consequence, the g-C3N4-combined light catalyst-activated
persulfate was an interesting topic. However, the electron-hole (e−-h+) pairs that were
generated by light, recombined readily, which hampered its practical applications [12]. A
number of methods, such as metal loading, microstructure control and heterostructure
construction, were used to strengthen the activity of g-C3N4 recently [13]. Constructing a
heterojunction was proved to be a feasible technique among the above methods. Bi2WO6,
a ternary metal oxide, has aroused much concern for its visible-light-driven performance
and preeminent oxidizing ability. The Bi2WO6/g-C3N4 heterojunction constructed by
Bi2WO6 and g-C3N4 could be divided into two categories (Z-scheme and type-II), and
the Z-scheme heterojunction had a better redox ability in its photocatalytic reaction than
that of type-II [14]. It was reported that constructing the Bi2WO6/g-C3N4 heterojunction
was beneficial to the removal of 2,4-dichlorophenol [15]. Bi2WO6/g-C3N4 obtained by
Zhao [16] via a hydrothermal reaction for 24 h exhibited good photocatalytic decompo-
sition activity for ciprofloxacin, tetracycline, and other antibiotics under sunlight. The
g-C3N4/Bi2WO6 heterojunction, with ethylene glycol used as a solvent, was synthesized
through a hydrothermal reaction for 24 h [17]. However, the use of harmful solvents
constricted the further development of the g-C3N4/Bi2WO6 heterojunction. It is necessary
to find a novel synthesis method of energy conservation and environmental protection for
the Bi2WO6/g-C3N4 heterojunction. Moreover, Bi2WO6/g-C3N4 used as the activator of
PDS might be more effective for antibiotic removal under solar light (SL), which has been
rarely studied.

In the present study, the Bi2WO6/g-C3N4 heterojunction was prepared by a single-step
hydrothermal reaction for 3 h. The physicochemical and photoelectrochemical perfor-
mances of Bi2WO6/g-C3N4 were well analyzed. The effects of different systems, Bi2WO6
doping ratio, catalyst dosage, TC concentration, PDS dose, initial pH, co-existing anions,
and HA on the decomposition of TC in BC-3/SL/PDS systems were studied in detail.
Furthermore, free radical quenching experiments were used to explore the dominant
active species.

2. Results and Discussion
2.1. Structure and Morphology Analyses
2.1.1. FT-IR Analysis

The molecular information of the prepared samples was studied with FT-IR spec-
troscopy (Figure 1a). The peaks of Bi2WO6 at 580, 752, and 915 cm−1 were from the
vibrations of Bi-O, W-O, and W-O-W bonds, respectively [18]. The broad peak at 3346
and 3647 cm−1 belonged to the C-H and O-H stretching vibration of samples [19]. In
addition, the characteristic stretching patterns between 1299 and 1720 cm−1 were related to
the C-N and C=N. The peaks at 1292, 1382, 1480, and 1640 cm−1 were identified as the C-N
vibrations [20]. The feature peak at 1710 cm−1 was specified as the C=N of g-C3N4 [21]. The
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triazine structure peak (960 cm−1) was part of W-O-W. The results of the FT-IR spectroscopy
demonstrated the successful synthesis of the Bi2WO6/g-C3N4 [20].
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Figure 1. (a) FT-IR spectra of Bi2WO6, g-C3N4, BC-1, BC-2, BC-3, BC-4, and BC-5 composites and
(b) XRD patterns of g-C3N4, Bi2WO6, and BC-3. Clubs and Hearts signs are used to distinguish the
characteristic peaks of Bi2WO6 and g-C3N4.

2.1.2. XRD Analysis

The crystalline form of the photocatalyst was detected by XRD (Figure 1b). Pure
Bi2WO6 exhibited feature peaks at 2θ = 28.3◦, 32.8◦, 47.1◦, 55.8◦, 58.5◦, 68.7◦, 75.9◦, and
78.3◦, which was consistent with the russellite phase of Bi2WO6 [22]. The peaks of pure
g-C3N4 at 2θ of 12.8◦ and 27.7◦ agreed with the results reported in the literature [23]. The
peaks of Bi2WO6 were precisely observed in BC-3. However, the characteristic peak of
g-C3N4 was almost invisible behind the shelter of the strong peak of Bi2WO6 at 28.3◦ [24].
It could be concluded that BC-3 was successfully obtained.

2.1.3. XPS Analysis

The element information and structure state of the BC-3 composite were analyzed by
XPS. As shown in Figure 2a, XPS spectra displayed that BC-3 was composed of carbon
(41.3%), nitrogen (22.7%), oxygen (8.3%), tungsten (7.8%), and bismuth (19.9%). As revealed
in Figure 2b, the C 1s spectrum could be deconvolved into two characteristic peaks at 284.8
(C-C) and 288.0 eV (C-C=N) [25]. Figure 2c illustrated the N 1s spectrum, and the peak at
399.0 eV was attributed to N-(C)3, while the peak (403.0 eV) was ascribed to C-N-H [23]. As
shown in Figure 2d, the trait peaks at 158.4 and 164.7 eV indicated the existence of Bi3+ [26].
The peaks of W 4f at 35.5 and 37.6 eV belonged to W6+ (Figure 2e) [27]. The spectrum of O
1s (Figure 2f) showed a two-state peak (530.1 and 531.7 eV), which agreed with W-O and
Bi-O, respectively [28]. The findings revealed an effective electron transfer in BC-3 and the
formation of heterojunction structures.

2.1.4. FE-SEM and EDS Analysis

The microstructure and element analysis of the obtained catalysts were analyzed by FE-
SEM and EDS. Figure 3a manifested that g-C3N4 had an obvious fold-layered structure. As
could be observed, Bi2WO6 (Figure 3b) showed a compact flower-like structure of a micron
size formed by nanosheets. As shown in Figure 3c, g-C3N4 was uniformly incorporated on
the surface and cavity of Bi2WO6. The EDS and element mapping of the Bi2WO6/g-C3N4
heterojunction was displayed in Figure 3d–k. EDS patterns proved the presence of Bi, W,
O, N and C in BC-3, and the contents of major elements were 48.5% (C), 24.7% (N), 7.1%
(O), 6.1% (W), and 13.6% (Bi) (Figure 3d), respectively. The results were basically consistent
with the characterization of XPS. The element maps further demonstrated the successful
synthesis of the Bi2WO6/g-C3N4 photocatalyst.
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Figure 2. XPS spectra of BC-3: (a) full survey spectrum, (b) C 1s, (c) N 1s, (d) Bi 4f, (e) W 4f, and
(f) O 1s.

2.2. Optical and Photoelectrochemical Properties
2.2.1. UV-Vis DRS Analysis

The light absorption performance of the photocatalyst was investigated using UV-vis
DRS spectroscopy. As illustrated in Figure 4a, the absorption edges were about 446 nm
(g-C3N4), 474 nm (Bi2WO6) and 510 nm (BC-3), respectively. The construction of the
heterojunction broadened the absorption edge of the photocatalyst, which might improve
its photocatalytic performance. The band gap energies (Eg) could be estimated using the
Kubelka–Munk equation. As exhibited in Figure 4b, the Eg of g-C3N4, Bi2WO6, and BC-3
were determined as 3.44, 3.21, and 3.02 eV, respectively [29]. The lower the Eg value of
the catalyst, the higher the catalytic performance. In light of this, BC-3 might possess
the excellent photocatalytic performance. Moreover, the flat band potential (Efb) was
directly determined on the basis of the Mott–Schottky diagram. As exhibited in Figure 4c,
the Efb values of g-C3N4 and Bi2WO6 were −0.32 and −0.98 eV (vs. Ag/AgCl), which
corresponded to −0.22 and −0.88 eV (vs. NHE), respectively. Usually, the conduction
band potential (ECB) value was 0.1 eV higher than that of Efb in n-type semiconductors [15].
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Therefore, the valence band potential (EVB) values of g-C3N4 and Bi2WO6 were estimated
as 3.32 and 2.43 eV, respectively.

1 

 

 

Figure 3. SEM images of (a) g-C3N4, (b) Bi2WO6 and (c) BC-3, (d) EDS spectrum, (e) electronic image,
and (f–k) elemental mapping of BC-3.

2.2.2. PL Analysis

The separation ability of e−-h+ pairs were evaluated by PL spectra. As illustrated in
Figure 4d, the PL intensity of the samples followed this sequence: g-C3N4 > Bi2WO6 >
BC-3, demonstrating that the heterostructure of Bi2WO6/g-C3N4 could availably suppress
the recombination of e−-h+ pairs. Contrasted with g-C3N4, the luminous intensity of BC-3
was reduced by 95.7%, which was because of the effective transport of the photo-induced
electron from g-C3N4 to Bi2WO6 in the BC-3 composite. Generally speaking, the weaker
the PL strength, the higher the catalytic performance [30].
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2.2.3. Electrochemical Analysis

The photocurrent response (i-t) curve was used to further study the photocurrent den-
sity by an electrochemical workstation. As exhibited in Figure 4e, the photocurrent density
of BC-3 was the best, which demonstrated that the construction of heterojunctions could
accelerate the carrier migration and ultimately improve the catalytic activity. The charge
separation and transfer capability of the photocatalyst was measured by EIS. As exhibited
in Figure 4f, the arc radius of BC-3 was smaller than Bi2WO6 and g-C3N4, indicating that
BC-3 owned the outstanding charge separation and transfer performance [31]. In addition,
the electron lifetime (τ) was closely related to the frequency (f ), and could be estimated
based on Equation (1):

τ =
1

2π f
(1)
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The electron lifetime of BC-3 (0.0504 ms) was longer than Bi2WO6 (0.0193 ms) and g-
C3N4 (0.0159 ms), demonstrating that BC-3 had the lowest electron–hole pair recombination
rate and charge transfer resistance. These results were consistent with the i-t curve.

2.2.4. BET Analysis

The SSA of the prepared samples was estimated by the adsorption–desorption isotherm
of N2. The catalysts exhibited typical type-III isotherms with distinct H3 hysteresis loops
(Figure 5a). The SSA of photocatalysts was 111.67 m2/g (g-C3N4), 80.28 m2/g (BC-3), and
20.00 m2/g (Bi2WO6), respectively. The SSA of BC-3 was slightly reduced by the introduc-
tion of Bi2WO6, which might be the effective combination of Bi2WO6; g-C3N4 took up its
internal space of Bi2WO6 [16]. Pore size distribution curves (Figure 5b) demonstrated that
the pore sizes were 3.54 nm (g-C3N4), 2.66 nm (Bi2WO6), and 3.08 nm (BC-3), respectively,
which implied that the catalysts were mesoporous materials.
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Figure 5. (a) N2 adsorption–desorption isotherms and (b) distribution of pore size plots of g-C3N4,
Bi2WO6, and BC-3.

2.3. Comparative Tests on TC Removal

The decomposition of TC was discussed in different systems. As displayed in Figure 6a,
the decomposition rate of TC was very low in SL (11.6%), illustrating that TC was stable
and easy to remain in nature. The removal ratio of TC in SL/PDS, g-C3N4/SL, and g-
C3N4/SL/PDS systems was 13.3%, 29.9%, and 56.4%, respectively, indicating that g-C3N4
had a certain activation ability in PDS in the TC degradation. The maximum value achieved
98.0% in the BC-3/SL/PDS system; the results demonstrated that building a heterojunction
was beneficial for the removal of TC. As exhibited in Figure 6b, the decomposition of
TC deferred to the pseudo first-order kinetic model (R2 > 0.532). The apparent reaction
rate constants (kobs) of TC in different reaction processes were exhibited in Figure 6c;
the maximum kobs (0.0446 min−1) in the BC-3/SL/PDS system was 3.05 times that of
g-C3N4/SL/PDS (0.0146 min−1).

2.4. Parameters Impacting on TC Degradation

The effect of the Bi2WO6 doping ratio, catalyst dosage, initial pH value, TC concen-
tration, PDS dose, and co-existing components on the decontamination rate of TC in the
BC-3/SL/PDS system was studied and discussed in detail.

2.4.1. Effect of the Bi2WO6 Doping Ratio

The experiment was carried out to assess the influence of the Bi2WO6 doping ratio
on the TC decomposition in conjunction with PDS (20 mg/L) under SL. As exhibited in
Figure 7a, the decomposition ratios of TC were 56.4% and 61.1% with g-C3N4 and Bi2WO6,
respectively. Moreover, the removal efficiencies of BC-1, BC-2, BC-3, BC-4, and BC-5
for TC were 87.3%, 89.9%, 98.0%, 83.4%, and 72.8%, respectively. The Bi2WO6/g-C3N4
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composites had a stronger photocatalysis–persulfate activation for TC degradation than
g-C3N4 and Bi2WO6. With the increase in the Bi2WO6 doping ratio, the removal rates of
TC first increased and then decreased in Bi2WO6/g-C3N4/SL/PDS systems. In particular,
the effective transfer of the photoinduced electron in the Bi2WO6/g-C3N4 composite
was conducive to degrade TC. However, the excessive Bi2WO6 hindered the transfer of
photo-induced carriers while the Bi2WO6 doping ratio was higher than 4:6. Thus, the
optimal Bi2WO6 doping ratio was 4:6 (BC-3), and the BC-3/SL/PDS system was used in
the subsequent degradation experiment.
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2.4.2. Influence of the Catalyst BC-3 Dosage

The dosage of BC-3 (0.2–0.6 g/L) was used to explore its influence on the decompo-
sition rate of TC. As exhibited in Figure 7b, the removal ratios of TC were 84.9%, 94.0%,
98.0%, 95.9%, and 89.5%, respectively, when the concentrations of BC-3 were 0.2, 0.3, 0.4,
0.5, and 0.6 g/L. With the increase in BC-3, the degradation ratio increased significantly,
while the BC-3 usage ranged from 0.2 to 0.4 g/L. The larger SSA and more redox-active
sites caused by the increased catalysts were conducive to activate the PDS. Nevertheless,
the decomposition ratio of TC was inhibited when the dose of BC-3 was more than 0.4 g/L,
probably because the increase in turbidity intensified the light dispersion [32]. Therefore,
the concentration of BC-3 was confirmed as 0.4 g/L.

2.4.3. Influence of TC Concentration

The influence of TC concentration (5–40 mg/L) on the photocatalytic performance
was discussed over the BC-3/SL/PDS system. As revealed in Figure 7c, the decomposition
efficiency of TC was about 99.5% (5 mg/L), 98.7% (10 mg/L), 98.0% (20 mg/L), 93.3%
(30 mg/L), and 91.4% (40 mg/L), respectively. It is worth noting that the decomposition
ratio of TC (5 and 10 mg/L) reached about 98% in 40 min. With the content of TC increased
from 20 to 40 mg/L, the decomposition rate decreased slightly. A reasonable explanation
was that the reactive oxygen species (ROSs) produced in the BC-3/SL/PDS system were
not sufficient to decompose the excess TC. Thus, 20 mg/L of TC was used to conduct the
follow-up study.

2.4.4. Influence of PDS Dose

The impact of PDS dose on the decomposition efficiency of TC was discussed in the
BC-3/SL/PDS system. As demonstrated in Figure 7d, the decomposition ratios of TC were
88.8% (5 mg/L), 95.8% (10 mg/L), 98.0% (20 mg/L), 98.8% (40 mg/L), and 99.2% (80 mg/L),
respectively. The decomposition ratio of TC was continuously improved with the increase
in PDS dose, which was because there were more active factors generated by PDS. The PDS
dose was chosen as 20 mg/L in the follow-up experiment.



Molecules 2024, 29, 1169 9 of 15Molecules 2024, 29, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 7. Effects of (a) Bi2WO6 doping ratio, (b) BC-3 dosage, (c) TC concentration, (d) PDS dose, (e) 
initial solution pH, and (f) co-existing components in TC degradation. 

2.4.2. Influence of the Catalyst BC-3 Dosage 
The dosage of BC-3 (0.2–0.6 g/L) was used to explore its influence on the decomposi-

tion rate of TC. As exhibited in Figure 7b, the removal ratios of TC were 84.9%, 94.0%, 
98.0%, 95.9%, and 89.5%, respectively, when the concentrations of BC-3 were 0.2, 0.3, 0.4, 
0.5, and 0.6 g/L. With the increase in BC-3, the degradation ratio increased significantly, 
while the BC-3 usage ranged from 0.2 to 0.4 g/L. The larger SSA and more redox-active 
sites caused by the increased catalysts were conducive to activate the PDS. Nevertheless, 
the decomposition ratio of TC was inhibited when the dose of BC-3 was more than 0.4 g/L, 
probably because the increase in turbidity intensified the light dispersion [32]. Therefore, 
the concentration of BC-3 was confirmed as 0.4 g/L. 

  

Figure 7. Effects of (a) Bi2WO6 doping ratio, (b) BC-3 dosage, (c) TC concentration, (d) PDS dose,
(e) initial solution pH, and (f) co-existing components in TC degradation.

2.4.5. Influence of Initial Solution pH

The initial pH was studied in the BC-3/SL/PDS system. TC exhibits TCH3+, TCH2
0,

and TCH¯ or TC2−, respectively, when the value of pH was less than 3.3, between 3.3 and
7.7, and more than 7.7 [25]. The zero charge points (pHPZC) of BC-3 was 6.09. Therefore, the
charge of BC-3 was positive when the pH values were 2, 4, and 6, and the surface charge
was negative when the pH values were 8 and 10. As exhibited in Figure 7e, the removal
efficiency of TC was 77.6%, 85.7%, 95.7%, 98.0%, 93.2%, and 80.8%, respectively, when the
value of pH was 2, 4, 6, 6.49 (unadjusted), 8, and 10. The repulsion force between TC and
BC-3 was harmful to the degradation of TC, while the value of pH was less than 6.09 or
more than 7.7. However, the vanished repulsive force, 6.09 ≤ pH ≤ 7.7, promoted the
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adsorption of TC on the interface of BC-3, which was beneficial to the catalytic oxidation of
TC. Hence, the value of the initial solution’s pH was determined as 6.49 (unadjusted) in the
BC-3/SL/PDS system.

2.4.6. Influence of Co-Existing Components

HA, CO3
2−, HCO3

−, Cl−, and SO4
2− widely existed in water, and had different

impacts on the catalytic oxidation of contaminant. Hence, the influence of co-existing
components on the decomposition of TC was assessed in the BC-3/SL/PDS system. As
illustrated in Figure 7f, the inhibition effects of different co-existing components on the TC
degradation were in sequence: HA > CO3

2− > HCO3
− > Cl− > SO4

2−. The decomposition
ratio of TC was 71.8% (HA), 78.8% (CO3

2−), 85.8% (HCO3
−), 95.7% (Cl−), and 97% (SO4

2−),
respectively. HA exhibited the most obvious inhibitory action for TC degradation, which
was because of the suppressed light absorption in the BC-3/SL/PDS system. Moreover, the
competitive adsorption of CO3

2− and S2O8
2− to binding sites on the surface of BC-3 limited

the decomposition of TC. SO4•− and the hydroxyl radical (•OH) captured by HCO3
−

were harmful to the oxygenolysis of TC [33]. Interestingly, Cl− and SO4
2− exhibited an

insignificant influence on the TC degradation. The result confirmed that the BC-3/SL/PDS
system presented great merits for the degradation of TC in a complex water environment.

2.4.7. Stability Assessment

The stability of BC-3 was tested by means of a multiple-cycle test. As displayed in
Figure 8a, the decomposition ratio of TC remained at 82.2% after 5 cycles under the best
experimental conditions, which might be because the reactive sites of the catalyst surfaces
were occupied by the byproducts. The cycling test showed that BC-3 possessed a high
physicochemical stability for the TC degradation in the BC-3/SL/PDS system. Further,
the catalytic performance of Bi2WO6/g-C3N4 was also compared in this research and
recent reports, as illustrated in Table 1. The BC-3/SL/PDS system represented a better
catalytic performance of TC than other processes. Therefore, the BC-3/SL/PDS system was
a satisfactory process to use when treating antibiotic wastewater.
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Table 1. The comparison between different Bi2WO6/g-C3N4 catalysts into TC removal.

Process Antibiotic Operating Conditions Degradation Rate kobs (min−1) Ref.

CNQDs/BWO + vis TC

[pH]: -
[Catalyst]: 1.0 g/L
[Nor]: 20 mg/L
[Time]: 60 min

87.0% - [34]

flower-like dual Z-scheme
BiSI/Bi2WO6/g-C3N4 +
vis

TC

[pH]: -
[Catalyst]: 0.6 g/L
[Nor]: 20 mg/L
[Time]: 60 min

90.0% - [35]

Agx/Bi2WO6/g-C3N4
+ vis TC

[pH]: -
[Catalyst]: 0.5 g/L
[Nor]: 15 mg/L
[Time]: 60 min

81.4% 0.028 min−1 [36]

Bi2WO6/BiOI/g-C3N4
nanoparticles + vis TC

[pH]: 9.0
[Catalyst]: 1.0 g/L
[Nor]: 20 mg/L
[Time]: 120 min

94.5% - [37]

Bi2WO6/g-C3N4 + SL +
PDS TC

[pH]: 6.49
[Catalyst]: 0.4 g/L
[Nor]: 20 mg/L
[Time]: 60 min

98.0% 0.0446 min−1 This
work

2.4.8. ROSs and Reaction Mechanisms in BC-3/SL/PDS System

Free radical quenching experiments were applied to discern ROSs of TC degradation
in the BC-3/SL/PDS system. p-benzoquinone (P-BQ), disodium EDTA (EDTA-2Na), fur-
furalcohol (FFA), methyl alcohol (MeOH), and tert butyl alcohol (TBA) were employed
to quench O2•−, h+, 1O2, SO4•−, and •OH, •OH, respectively. As displayed in Figure 8b,
the decomposition ratio of TC was 65.0% (P-BQ), 61.4% (EDTA-2Na), 70.5% (FFA), 54.5%
(MeOH), and 84.0% (TBA), respectively. EDTA-2Na showed the apparent inhibition on
TC degradation, which indicated that h+ made great contributions to the degradation
of TC. Similarly, the oxidation reactions were greatly suppressed after adding P-BQ and
FFA, which certified that O2•− and 1O2 were the primary ROSs for the decomposition.
Moreover, the degradation efficiency declined substantially to 54.5% after adding MeOH,
which verified the existence of both SO4

•− and •OH species. However, the decomposition
ratio of TC decreased slightly (84.0%) when TBA was added, which demonstrated that
•OH was not the dominant ROSs. In conclusion, h+, O2•−, SO4•−, and 1O2 were the main
ROSs in the BC-3/SL/PDS system, while the TC degradation was relatively little influenced
by •OH.

The possible reaction mechanism for TC degradation by the photocatalysis–persulfate
activation was proposed in the BC-3/SL/PDS system (Figure 9b). The EVB of g-C3N4
and Bi2WO6 were 3.32 eV and 2.43 eV, and the ECB were −0.12 eV and −0.78 eV (vs.
NHE) (Figure 5). Thus, g-C3N4 and Bi2WO6 were motivated to generate e−-h+ pairs by
the solar light irradiation whose spectrum was exhibited in Figure 9a. The Bi2WO6/g-
C3N4 heterojunction was divided into a type-II or Z-scheme heterojunction based on the
transferred behavior of e− between g-C3N4 and Bi2WO6. Since the ECB (−0.78 eV) of
Bi2WO6 was more negative than O2/O2•− (−0.33 eV vs. NHE) [16], e− in the conduction
band of Bi2WO6 could react with O2 to produce O2•−. In addition, the EVB (+3.32 eV)
of g-C3N4 was higher than •OH/H2O (+2.40 eV vs. NHE) [15], and h+ in the valence
band of g-C3N4 was able to react with H2O/OH− to generate •OH. These results agreed
with free radical quenching experiments, confirmed that BC-3 belonged to the Z-scheme
heterojunctions. Moreover, PDS was able to break up into SO4•− (Equation (4)), and reacted
with OH− to produce 1O2 for the activation of BC-3 according to Equation (6). And, •OH
was generated by SO4•− and OH− based on Equation (5) [6].
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In the BC-3/SL/PDS system, O2•−, SO4•− and •OH free radicals; h+; and 1O2 non-
free radicals could decompose TC into CO2, H2O, and small molecules. The possible
reactions were described in Equations (2)–(8).

BC-3 + solar light → BC-3 (h+ + e−) (2)

O2 + BC-3 (e−) → O2•− (3)

S2O8
2− + BC-3 → SO4•− + SO4

2− (4)

SO4•− + BC-3 + OH− → •OH + SO4
2− (5)

S2O8
2− + BC-3 + 2OH− → 1O2 + 2SO4

2− + H2O (6)

H2O/OH− + BC-3 (e−) → •OH (7)

TC + h+/O2•−/SO4•−/•OH/1O2 → H2O + CO2 + small molecules (8)

3. Experimental Section
3.1. Preparation of Bi2WO6/g-C3N4

g-C3N4 was obtained using urea using the thermal polymerization method, as de-
scribed in our previous study [38]. Bi2WO6/g-C3N4 was prepared via a hydrothermal
process. Simply stated, 0.98 g Bi(NO3)3·5H2O was put into 10 mL CH3COOH under mag-
netic stirring for 20 min (labeled as A). Then, 0.33 g Na2WO4·2H2O and a number of quality
of g-C3N4 were successively poured into 50 mL of deionized water by an ultrasonic wave
for 20 min (labeled as B). Next, solution B was blended with A and dispersed uniformly
by an ultrasonic wave for 20 min. The obtained mixture was subsequently put in a high-
pressure reactor and remained at 180 ◦C for 3 h. The resulting product was centrifuged
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and then washed with deionized water. Finally, the solid powder was naturally dried and
stored for later use. Bi2WO6/g-C3N4 with various ratios of g-C3N4 and Bi2WO6 at 4:6, 5:5,
6:4, 7:3, and 8:2 was expressed as BC-1, BC-2, BC-3, BC-4, and BC-5, respectively. Pure
Bi2WO6 was also prepared using the same procedure with the absence of g-C3N4.

3.2. Characterization

The molecular information of the catalyst was tested by Fourier transform infrared
spectroscopy (FT-IR, Cary630 (Agilent, Palo Alto, CA, USA)). The crystalline form of the
photocatalyst was characterized by an X-ray diffractometer (XRD, Rigaku/Smart Lab SE
(Rigaku, Tokyo, Japan)). The element and structure of the photocatalyst were determined
by X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB Xi+ (Thermo
Fisher Scientific, Waltham, MA, USA)). The morphology and element composition of the
photocatalyst were studied by a field emission scanning electron microscopy (FE-SEM,
Sigma300 (Carl Zeiss, Oberkochen, Germany)) equipped with an energy dispersive X-ray
spectroscopy (EDS, Sigma300 (Carl Zeiss, Oberkochen, Germany)). The light absorp-
tion characteristic was tested by ultraviolet-visible diffuse reflection spectroscopy (UV-vis
DRS, Cary7000 (Agilent, Palo Alto, USA)). The photoelectric properties were studied
with photo-luminescence (PL, F4600 (Hitachi, Tokyo, Japan)) and electrochemical systems
(CHI E660 (CH Instruments, Inc., Tennison Hill Drive Austin, TX, USA)). Electrochemical
tests included electrochemical impedance spectra (EIS), Mott–Schottky and photocurrent
spectroscopy, respectively. The specific surface area (SSA) was identified by a Brunauer–
Emmett–Teller (BET, Belsorp Maxll (Micromeritics, Atlanta, GA, USA)).

3.3. Photocatalytic Degradation

The performance of Bi2WO6/g-C3N4 composites was studied via the decomposition
experiment of TC under solar light (103 ± 3 mW/cm2, 26 ± 1 ◦C) for 60 min. Briefly,
20 mg of samples was added into 20 mg/L TC (50 mL). The solution-containing catalyst
was stirred (300 r/min) in the dark for 40 min. The beaker was then illuminated by solar
light after adding PDS. At a certain time, 1.5 mL solution filtered with a microfiltration
membrane (0.45 µm) was used to estimate the concentration of TC based on the absorbance
at the maximum wavelength (358 nm) by a UV-vis spectrophotometer (UV1901PC).

4. Conclusions

In summary, the Z-scheme heterojunction Bi2WO6/g-C3N4 was successfully obtained
by a single-step hydrothermal method for 3 h, and used as an activator of PDS in conjunction
with SL to decompose TC. The removal ratio of TC was 98.0% at the optimum experimental
conditions (pH = 6.49, BC-3 = 0.4 g/L, TC = 20 mg/L and PDS = 20 mg/L), and the most
suitable ratio of g-C3N4 to Bi2WO6 was 6:4. The kobs was 0.0446 min−1 in the BC-3/SL/PDS
system, which was 3.05 times than that of g-C3N4/SL/PDS (0.0146 min−1). BC-3 exhibited
an excellent performance for the efficient electron transfer in the photocatalytic oxidative
experiment of TC removal. h+, O2•−, SO4•−, and 1O2 generated by the synergy of BC-3, SL,
and PDS promoted the degradation of TC. HA represented the strongest suppression effect
(decreased by 26.2%) on the TC degradation in the test of co-existing components, indicating
that the BC-3/SL/PDS system possessed a strong anti-interference capacity. Therefore,
this study not only provided a novel synthesis method of the Bi2WO6/g-C3N4 Z-scheme
heterojunction, but also provided a practical technique for treating antibiotic wastewater.
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