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Abstract: Proton Exchange Membrane Water Electrolysis (PEMWE) under acidic conditions outper-
forms alkaline water electrolysis in terms of less resistance loss, higher current density, and higher
produced hydrogen purity, which make it more economical in long-term applications. However, the
efficiency of PEMWE is severely limited by the slow kinetics of anodic oxygen evolution reaction
(OER), poor catalyst stability, and high cost. Therefore, researchers in the past decade have made
great efforts to explore cheap, efficient, and stable electrode materials. Among them, the RuO2

electrocatalyst has been proved to be a major promising alternative to Ir-based catalysts and the most
promising OER catalyst owing to its excellent electrocatalytic activity and high pH adaptability. In
this review, we elaborate two reaction mechanisms of OER (lattice oxygen mechanism and adsorbate
evolution mechanism), comprehensively summarize and discuss the recently reported RuO2-based
OER electrocatalysts under acidic conditions, and propose many advanced modification strategies to
further improve the activity and stability of RuO2-based electrocatalytic OER. Finally, we provide
suggestions for overcoming the challenges faced by RuO2 electrocatalysts in practical applications
and make prospects for future research. This review provides perspectives and guidance for the
rational design of highly active and stable acidic OER electrocatalysts based on PEMWE.

Keywords: RuO2 catalyst; activity promotion strategy; oxygen evolution reaction; electrocatalysts;
acidic media

1. Introduction

Depletion of fossil fuels and the resulting greenhouse gas emissions have significantly
increased global energy demands, causing serious environmental problems. To address
these challenges, people are increasingly turning to alternative and sustainable energy
sources, including hydrogen, an ideal energy carrier characterized by zero carbon dioxide
emissions and high energy density [1,2]. Electrocatalytic water splitting as a potential
means of sustainable hydrogen production depends largely on the development of high
performance catalysts [3–5]. The oxygen evolution reaction (OER) is a slow four-electron
transfer process with a high overpotential and significant energy loss, resulting in slow
kinetics and practical voltage exceeding theoretical values. Therefore, efficient, stable and
inexpensive electrocatalysts are essential to improve the efficiency of water splitting under
acidic and alkaline conditions for sustainable hydrogen production. Proton Exchange

Molecules 2024, 29, 537. https://doi.org/10.3390/molecules29020537 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29020537
https://doi.org/10.3390/molecules29020537
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5301-6266
https://orcid.org/0000-0001-5581-5352
https://doi.org/10.3390/molecules29020537
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29020537?type=check_update&version=1


Molecules 2024, 29, 537 2 of 20

Membrane Water Electrolysis (PEMWE) have developed rapidly, with lower resistance loss
and higher current density compared to alkaline electrolyte. This means more hydrogen
can be produced per unit time, and the produced H2 has high purity, which are beneficial
for improving energy efficiency. In addition to a compact design and fast response to
changes in input power, PEMWE has a wider operating temperature range and is more
economical in long-term applications [6–8].

However, the harsh corrosion of PEMWE in acidic environments makes most non-
precious metal- and carbon-based catalysts unstable, making it impossible to achieve both
high activity and durability. Therefore, acidic OER electrocatalysts still mainly rely on precious
metals, such as iridium (Ir) and ruthenium (Ru) or their oxides. Ir has significant limitations
in large-scale practical applications due to high cost, scarcity and other factors [9–11]. Ru
costs only about 15% of the price of Ir, and is superior over Ir-based catalysts in terms of
activity. Currently, RuO2 is one of the most effective catalysts demonstrated for OER at all
pHs, making it a promising candidate for various applications [12–15]. However, its instability
under highly corrosive and oxidizing acidic conditions still restricts its replacement of Ir-based
catalysts and its large-scale application in PEMWE for hydrogen production [16–18].

Hence, it is necessary to further explore and develop high-activity and stable RuO2-
based catalysts to improve the efficiency of water splitting under acidic conditions. Recently,
researchers have proposed various strategies to enhance the activity and stability of RuO2-
based catalysts, such as heterojunction engineering, heteroatom doping and coordination
environment engineering. RuO2 doped with Ni, Sn doping or Ir, Sr co-doping is a much
more efficient, durable and stable catalyst than commercial RuO2 for OER under acidic
conditions [1,19,20]. The doping of these impurities enhances the adsorption of oxygen-
containing intermediates on the Ru sites in OER, as well as the oxygen evolution activity,
and reduces the reaction energy barrier of the rate-determining step. This method also
effectively improves the charge transfer in RuO2, significantly weakens the covalency
of Ru-O and completely suppresses the dissolution and over-oxidation of RuO2 during
OER. Such improvements effectively solve the high catalyst cost and poor stability due to
dissolution.

In this article, we review the recent research progress on the OER of RuO2 electro-
catalysts under acidic conditions, and summarize the common strategies to optimize and
improve their OER catalytic activity and stability (Figure 1). We first discuss the two
main mechanisms of OER under acidic conditions, providing guidance for modification
design of RuO2 electrocatalysts and revealing the degradation/dissolution mechanism of
RuO2 catalysts during OER. Finally, we summarize the current development prospects
and challenges of RuO2-based electrocatalysts in acidic environments, and provide some
reasonable solutions and suggestions for future research.
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2. Reaction Mechanism

The OER pathways have a significant impact on the stability of catalysts in reactions,
and they effectively lead to a deeper comprehension of the OER mechanism, as well as
the rational design and preparation of catalysts. Ru-based catalysts often exhibit poor
stability due to the formation of soluble Ru oxides (e.g., RuO4) during the OER process.
RuO2-based OER materials often suffer from instability at high current density due to
over-oxidation of Ru species (from Ru0 or Ru4+ to ortho-valent), and this over-oxidation
of Ru is directly responsible for the stability [21]. In addition, for RuO2 electrocatalysts,
the high energy barrier for the generation of the critical O* intermediate from OOH* as
a rate-determining step (RDS) also has a great impact on the activity and durability of
the catalyst [22]. Therefore, a detailed understanding of the OER reaction mechanism and
a summary of relevant recent mechanistic studies will be of great help in enhancing the
activity and stability of the catalysts. Typically, there are two potential reaction mechanisms:
the traditional adsorbate evolution mechanism (AEM) and the lattice oxygen oxidation
mechanism (LOM) [23–25].

2.1. Adsorbate Evolution Mechanism (AEM)

AEM is a traditional OER mechanism, and its activity is highly correlated with the
adsorption energy of the intermediate species. According to Sabatier’s principle, the
accepted scaling relationships among various reaction intermediates highlight that the key
factor influencing the reaction overpotential is the binding strength of the intermediates.
Although the scaling relationships in AEM are helpful for efficient screening of catalysts,
there are still significant limitations in improving OER activity [26,27]. The AEM pathway
(Figure 2A,B) is typically believed to involve four synergistic proton-electron transfer
reactions that occur at active metal sites during the OER process. The OER process involves
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three types of oxygen-containing adsorption intermediates, including oxygen radicals
(O), hydroxyl groups (OH), and oxyhydroxide groups (OOH). First, the adsorbed water
molecules lose electrons to form HO and generate O in the subsequent deprotonation step.
Then, the O is subjected to nucleophilic attack by H2O molecules to form OOH, which is
finally converted to O2 molecules and released in subsequent steps. In most OERs of the
AEM pathway, the rate-determining step is typically considered to be the formation of HO
or HOO*, and the difference in binding energy between HO* and HOO* is commonly used
as a descriptor for OER activity. To achieve the optimal OER activity, the binding strength
between reaction intermediates and the active sites should be set as moderate as possible
to ensure the largest balance of adsorption and desorption energy. In the AEM pathway,
the OER activity of the electrocatalysts is usually optimized by optimizing the binding
strength of oxygen-containing intermediates and adjusting the electronic configuration of
the catalyst.
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Density functional theory (DFT) calculations of RuO2 electrocatalysts show that the
interaction between O and the catalyst surface is too strong, inhibiting HOO* formation in
the next step and limiting full catalytic activity [28,29]. Sun et al. captured HOO* in acidic
OER using potential-dependent in situ attenuated total reflection Fourier transform infrared
spectroscopy (ATR-SEIRAS), and studied the difference in binding energies of oxidized
intermediates on the surface of the electrocatalysts (Figure 2C,D) [21]. At 1132 cm−1, the
potential-dependent peak associated with stretching vibrations of OO/OOH became more
pronounced when the potential shifted from 1.35 to 1.65 V. However, *OOH underwent
stretching vibrations at 1.45 V for pure RuO2, with a blue shift to 1180 cm−1, indicating
that the adsorption of *OOH on Nb0.1Ru0.9O2 is much stronger than that on RuO2.
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2.2. Lattice Oxygen Oxidation Mechanism (LOM)

The results of experiments and theoretical calculations suggest that a deeper under-
standing of the reaction mechanism that regulates catalyst activity predicts that oxygen
evolution is closely related to the participation of lattice oxygen. LOM has been extensively
studied to bypass the limitations of the AEM, showing that the active centers are not
limited to metal centers [30]. LOM involves a non-coordinated proton-electron transfer step
involving metal cationic active sites and lattice oxygen, involving five intermediate species.
The first two reaction steps of the LOM pathway, involving the formation of O* and HO*,
are similar to the AEM process (Figure 3A,B). The surface O* then combines with lattice
oxygen in the catalyst structure to form a direct O-O bond. Then, through the formation of
HO* and the removal of a proton through a single-electron oxidation step, a H2O molecule
replenishes the surface vacancy. Therefore, the LOM bypasses the formation of OOH*,
providing a different reaction path for direct coupling of lattice oxygen in the catalyst
during OER. The limitation of the scale relationship between the intermediate free energy
in LOM and the adsorption energy in AEM is quite different. Differential electrocatalytic
mass spectrometry (DEMS) results reveal the involvement of lattice oxygen in OER under
acidic conditions [31–33]. Lattice oxygen in RuO2 electrocatalysts participates in OER,
easily forming soluble RuO4, which is a detectable corrosive product (Figure 3C,D) [34,35].
In contrast, no involvement of oxygen from platinum-based electrocatalysts was observed
during OER [36]. Zagalskaya et al. used DFT to calculate the overpotential of the AEM
and LOM pathways of the RuO2 catalyst, and explained the role of structural defects.
Compared to catalysts with surface defects, catalysts with lattice oxygen vacancies have a
higher overpotential [37]. For RuO2 electrocatalysts, the introduction of surface vacancies
and dopants is likely to change the OER mechanism from AEM to LOM, confirming the
susceptibility of RuO2 to structural defects.
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Although LOM shows great potential in improving OER performance, the involvement
of lattice oxygen in the reaction can easily lead to the instability of the catalyst due to
thermodynamic expansion. The dissolution of cations and the continuous formation of
oxygen vacancies during lattice oxygen oxidation-reduction, oxygen bulk diffusion and
structural reconstruction occur, making the instability of LOM-based catalyst has become
a key bottleneck in practical application. Therefore, in-depth elucidation of the LOM
mechanism are crucial for the synthesis and development of high activity and high stability
OER catalysts.

3. Activity and Stability Enhancement Strategies

RuO2-based catalysts (Table 1) are considered to be promising candidates for replacing
iridium-based catalysts. However, the poor stability and corrosion resistance of ruthenium
oxide under acidic conditions severely hinder its large-scale application as an OER elec-
trocatalysts. Therefore, effective strategies are urgently needed to improve the activity
and stability of Ru-based oxides for acidic water splitting [38–42]. Recently, various strate-
gies are currently used to prepare modified acidic OER catalysts, such as heterostructure
construction, atomic doping, defect engineering, and substrate engineering.

Table 1. Comparison of the overpotential at 10 mA cm−2 with the reported RuO2-based OER catalysts.

Sample Overpotential
@10 mA cm−2 Tafel Slope Reference

Ni-RuO2 214 42.6 [1]
Ru@V-RuO2/C 176 45.6 [15]
Nb0.1Ru0.9O2 201 47.9 [21]

Mn0.73Ru0.27O2−δ 208 65.3 [22]
Nd0.1RuOx 211 50 [43]

W0.2Er0.1Ru0.7O2−δ 168 66.8 [44]
SS Pt RuO2 HNSs 228 51 [45]

In-RuO2/G 187 46.2 [46]
Bi0.15Ru0.85O2 200 59.6 [47]

La-RuO2 208 57.4 [48]
Re0.06Ru0.94O2 190 45.5 [49]

S-RuO2 219 54.2 [50]
Ru0.6Sn0.4O2 245 61.8 [51]
RuO2/CoOx 240 70 [52]

a/c-RuO2 205 48.6 [53]
Ru@RuO2 198 42.6 [54]

3.1. Heterostructure Construction

The physical and chemical properties of metal materials can be further adjusted
through various material synergy effects, optimized coordination environments, and elec-
tronic structures. Therefore, composite material design is an important way to construct
high-activity acidic OER catalysts. After combining, different materials are combined with
known efficient catalysts to form a heterostructure, the interfacial bonding interaction
between different components can significantly enhance the electron transfer rate. The
conductivity, hydrophilicity, chemical stability, and active site density of the heterostructure
can be adjusted, resulting in easier access to catalytic active sites [52,55–62]. Different
chemical compositions and crystal structures in heterostructures can cause lattice strain,
which affects the adsorption energy of intermediates at the site, thereby enhancing the
catalytic activity of the material. In heterostructures, the energy band arrangement of dif-
ferent phases may lead to interface charge transfer, which is beneficial for surface electronic
modulation of heterostructures. The kinetic of electrocatalytic reactions can be improved by
changing the composition and structure of the electrocatalyst at the molecular level [63–69].
Huang et al. synthesized a Ru/Se-RuO2 electrocatalyst through Se doping and Ru loading,
and adjusted the phase composition and electronic structure of the Ru-based oxide [70].
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The co-modification of Ru/Se on RuO2 reduced the adsorption free energy of *OOH inter-
mediates, and enhanced the electronic transfer interaction and the formation of Ru/RuO2
heterojunctions, thus exhibiting excellent electrocatalytic performance in acidic OER with
low overpotential and excellent long-term durability (Figure 4A–F).
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Figure 4. (A,B) HRTEM images and (C) SAED pattern of the Ru/Se-RuO2. (D) Free energy diagram,
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(H) HRTEM image and (I) scheme of potential induced interfacial synergy of RuO2/NiO (red, O;
yellow, H; cyan, Ru; purple, Ni). Copyright 2018, John Wiley & Sons.

Liu et al. designed a RuO2-NiO coupled electrocatalyst for OER, in which RuO2
nanoparticles were uniformly distributed on the surface of NiO [71]. This method provides
a rich source of active sites and targeted interfacial synergy. The NiOOH derived from
NiO enhanced the oxygen binding energy of RuO2, thereby improving the OER activity
(Figure 4G–I). Li et al. synthesized a defect-based RuO2/TiO2 nanoheterostructure electro-
catalyst (Figure 5A) [72]. This heterostructure can regulate the electronic structure of RuO2,
the interface interaction between RuO2 and TiO2, and the defects on RuO2 nanoparticles,
exposing a large number of active sites. The d-band center of Ru shifts to a lower energy
level and weakens the interaction between adsorbed oxygen species on Ru sites, thereby
enhancing catalytic activity. The TiO2 carrier with abundant oxygen vacancies significantly
improves the OER activity and stability of the loaded RuO2-OER nanoparticles. Naoto
Todoroki et al. introduced SnO2 to form a RuO2/Nb-TiO2 single-crystal oxide heterojunc-
tion catalyst (Figure 5B–D) [73]. The SnO2 interlayer stabilized the interface between RuO2
and TiO2 layers and thus reduced electrode resistance and lattice strains, inhibiting the
formation of RuO2/TiO2 interface nanodomains and structural damage and alleviating the
electrocatalytic and structural mismatch. As a result, the OER activity and stability were im-
proved. Wu et al. designed a defect-rich MnOx/RuO2 nanosheet (H/d-MnOx/RuO2) [74].
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The 2D hexagonal nanosheet shape fully exposes active sites (Figure 5E–H) and improves
the utilization efficiency of precious metal atoms. Oxygen vacancies and non-homogeneous
interfaces facilitate the reduction in *OOH adsorption energy and the Ru-Oads energy level,
inhibiting lattice oxygen participation, adjusting electronic structure of Ru, and accelerating
electron transfer. Consequently, more electrons in the Ru-Oads chemical bond become
anti-bonding states, and the bond energy is reduced and the dissociation is promoted. As a
result, the catalyst possesses high activity and durability.
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rutile-RuO2 (110) surface. Copyright 2023 American Chemical Society. (E) Schematic illustration,
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3.2. Heteroatom Doping

In general, the formation or fracture of a bond depends on the bond strength between
the oxygen intermediate and the active site, and the activity of a catalyst is greatly affected
by its d-orbital electron configuration. The introduction of foreign atoms can effectively
enhance the d-orbital state and electron transfer ability, and optimize the electron config-
uration of the catalyst, so as to promote the catalytic reaction. Cation doping has been
widely studied to improve the intrinsic activity of Ru oxides, and various metallic elements
(e.g., Ni, Nd, Nb, W, Er, Li, Mo, ln) can greatly improve the OER activity of Ru-based
electrocatalysts in acidic media. Doping does not transform the OER mechanism, and
the enhanced activity primarily stems from the optimized binding energy of oxygen in-
termediates [20,49,75–93]. Sun et al. synthesized Nb0.1Ru0.9O2 by doping high-valence
refractory metal niobium into ruthenium oxide, which promoted the electron transfer in
the local structure of Ru-O-Nb and reduced the valence state of Ru sites and the covalency
of Ru-O bond [21]. Consequently, the adsorption of oxygen-containing intermediates on
the Ru sites as well as oxygen evolution activity was enhanced. More importantly, the
reaction energy barrier of the rate-determining step of ruthenium oxide was reduced, and
excessive oxidation of the ruthenium sites and the participation of lattice oxygen in oxygen
evolution were inhibited. Ultimately, the stability in oxygen evolution of ruthenium oxide
was improved under high current density (Figure 6A–D). Li et al. used Nd-doped RuO2
(Nd0.1RuOx) as an efficient OER electrocatalysts for acidic solutions (Figure 6E,F) [43].
The high ratio of Ru4+ inhibited Ru dissolution in the acidic electrolyte, improving the
stability of the electrocatalysts. The introduction of Nd reduced the d-band center energy of
the electrocatalysts, effectively balanced the adsorption/desorption of oxygen-containing
intermediates, and weakened the covalency of Ru-O, thus enhancing the catalytic activity.
Qin et al. synthesized Li-doped RuO2 electrocatalysts by doping Li into the lattice of RuO2
(Figure 6G,H) [94]. The Ru valence was reduced with the formation of a stable Ru-O-Li,
which weakened the covalent Ru-O and inhibited Ru dissolution, thereby improving its
durability. Meanwhile, the intrinsic lattice strain caused by Li doping activated the dangling
O atoms near the active Ru sites, stabilizing the intermediate OOH* and greatly enhancing
its activity, and the overpotential was only 156 mV (@10 mA·cm−2). Hao et al. reported
an advanced W0.2Er0.1Ru0.7O2-δ electrocatalyst by introducing Er and W into RuO2 to
change its electronic structure [44]. In addition, the over-oxidation and dissolution of Ru
were effectively prevented, the active sites of Ru4+ in the acidic OER were maintained,
and the formation of soluble RuO4 was inhibited. Moreover, the adsorption energy of
oxygen-containing intermediates was reduced, and the energy required for the formation
of oxygen vacancies was increased. Therefore, the overpotential was as low as 168 mV and
the record-breaking stability was 500 h in acidic electrolytes (Figure 7).

Overall, the introduction of dopant atoms into the interstitial sites of the catalyst lattice
to form doped compounds can adjust lattice parameters, ionic conductivity, and electronic
structure [79]. Additionally, dopants can introduce different valence states by replacing
lattice atoms, and adjust the energy levels and electron transfer abilities of the active sites.
These atomic doping strategies provide valuable means for fine-tuning and optimizing
OER reaction catalysts, ultimately enhancing catalytic performance and stability.
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3.3. Defect Engineering

Defect engineering involves the introduction or regulation of defect properties in a
catalyst to alter its electronic structure, surface active sites, and proton transfer capability.
This approach can enhance the activity and stability of OER. Additional active sites are
provided and the interaction between the catalyst and oxygen molecules is strengthened
by introducing defect sites (e.g., missing atoms, surface adsorbates, or oxygen vacancies)
on the catalyst surface. The lattice structure and electronic transport properties can be
altered by introducing defects into the catalyst lattice, such as vacancies, interstitial atoms,
or substitutional atoms. These defects can influence the electronic structure of the catalyst
and its ability to adsorb oxygen on its surface, thereby enhancing OER activity [15,94–109].
Defective RuO2 exhibits high initial activity, but can easily accelerate the dissolution of Ru
species. Therefore, it is crucial to shift the electrocatalytic OER towards AEM to improve
the durability of RuO2. As such, Jin et al. investigated the mixing of Pt atoms with a RuO2
matrix to obtain PtCo-RuO2/C with a nanorod shape [110]. The penetration of Pt into
RuO2 and the dissolution of Co generated defects, which cooperatively reduced the d-band
center of Ru, as well as the adsorption binding energy. Moreover, the adsorption and
deprotonation of *OOH were promoted, the exposed Pt on the surface was oxidized, and
electrons transferred from Pt to Ru, preventing the overoxidation of Ru and maintaining
OER performance during long-term stability tests (Figure 8A–F). Zhang et al. reported a Na-
doped amorphous/crystalline multi-phase RuO2 (a/c-RuO2) with oxygen vacancies, which
served as an efficient OER electrocatalysts with significant acid and oxidation resistance,
resulting in exceptional electrocatalytic stability [53]. Na doping and the introduction of
oxygen vacancies lead to the deviation of the d band center of RuO2, which weakens the
chemical bond between the oxygen-containing intermediates and the RuO2 surface, thus
weakening the activation barrier of OER. The porous network structure of the catalyst
exposed more active sites and facilitated the rapid transport of intermediates. Defects
including vacancies (point defects) and boundaries (line defects) served as active sites and
enhanced the reaction kinetics of OER (Figure 8G–I).

3.4. Morphology Engineering

Morphology engineering is a promising way to expose more active sites or narrow
the size of catalysts to the atomic, cluster, or nanoparticle scale and combine them with
suitable carriers to enhance OER activity. The utilization efficiency of the active site
can be significantly increased by the large surface area of the carrier carrying the active
site. In addition, the coupling of metal particles or atoms with the carrier can induce
significant electron transfer, which affects the adsorption of oxygen intermediates and
thereby significantly enhances the activity and stability [111–121]. Although Ru-based
oxide electrocatalysts exhibit high initial OER activity due to their kinetically favorable
lattice oxygen oxidation mechanisms, the high-valence oxygen hole intermediate species
are highly soluble, resulting in decreased catalytic activity and stability in acidic electrolytes.
With a stable MOF modification strategy, Yao et al. reported a Ru-UiO-67-bpydc catalyst
modified with atomically dispersed Ru oxide through pyridine coordination on the UiO-67
framework [122]. The Ru-N chemical bond not only enhanced the participation of lattice
oxygen species in the OER, but also stabilized the intermediate species (*Vo-RuO2−

4 ), which
also significantly reduced the position of the Ru d band center, increased the p band center
position of O, promoted the LOM mechanism for OER, and stabilized the high-valence
Ru intermediate species. Consequently, the OER performance and long-term stability of
the electrocatalysts were greatly improved (Figure 9A–D). Yu et al. reported a hierarchical
porous carbon-supported ruthenium dioxide (RuO2/PC) nanostructure (Figure 9E) [123].
The porous carbon provided a conductive platform for the RuO2 NPS, facilitating electron
transfer and mass transport. It also offered larger electrocatalytic surface area to expose
more active sites. With the support of PC, the acid resistance and structural stability of the
RuO2/PC catalyst were further enhanced. The carbon phase and RuO2 lattice formed a
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rich heterointerface, which improved the electrocatalytic performance and stability of the
RuO2 NPS.
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4. Summary and Outlook

RuO2 is a promising OER electrocatalyst with high binding energy to oxygen inter-
mediates. Its instability in OER is mainly due to over-oxidation and dissolution. This
article reviews strategies (e.g., morphology engineering, doping, defect engineering, het-



Molecules 2024, 29, 537 14 of 20

erostructure engineering) that significantly optimize the stability and activity of RuO2 for
electrocatalytic OER. On the one hand, unique morphology designing can provide rich
active sites for oxygen-containing species. On the other hand, heterostructure engineering,
defect engineering and effective electronic structure engineering can also improve the
binding energy, thereby increasing the intrinsic activity. These advanced modification
strategies are promising for applications in RuO2-based electrocatalysts.

Despite these achievements, this rapidly developing field still faces many challenges.

(1) Reaction mechanism. Understanding the correlation between the activity/stability
and local structure is central to the design of efficient RuO2-based OER catalysts. The
deactivation and dissolution of RuO2-based catalyst was studied by advanced techni-
cal means to provide guidance for the synthesis of more efficient OER electrocatalyst
and the in-depth understanding of catalytic mechanism. Although in situ Raman
and Operando XAS techniques can be used to record the oxidation states, geometry,
electronic structures, and interfaces of catalysts, the diversity and complexity of active
stages make it difficult to interpret the factors controlling and influencing catalytic
reactions. In addition, the existing operando techniques can only capture quasi-stable
active sites, while reaction intermediates typically have picosecond lifetime. Therefore,
the development of more advanced techniques to study the electrocatalytic reaction
process combined with theoretical simulation to better reveal the true and accurate
electrochemical process will be of great help in improving the understanding of the
acidic OER mechanism of RuO2-based catalyst.

(2) Activity and durability. Laboratories primarily use CV, CA, and CP to evaluate the
stability of RuO2-based OER catalysts, but these methods ignore mass transport, elec-
trode spacing, and fluid flow effects. Ru dissolution caused by over-oxidation in OER
process is generally considered to be the main cause of deactivation of RuO2-based ma-
terials. And the stability degradation found in these validation methods can be caused
not only by catalyst degradation, but also by catalyst interface separation or active
site coverage. The development of accelerated deactivation test systems is necessary
to provide information on long-term stability performance at high current densities
and high temperatures that will be more useful for practical applications [124]. As
applications are often required to operate at high current densities and high temper-
atures, accelerated deactivation test systems are required to rapidly assess catalyst
degradation under these conditions. By accelerating the catalyst deactivation process,
test times can be reduced, and the harsh environments of practical applications can
be simulated, allowing catalyst stability data to be obtained more quickly, which
can help researchers better understand the mechanisms of catalyst degradation and
provide guidance on how to improve catalyst stability. In addition, the Accelerated
Deactivation Test of RuO2-based catalyst can take into account important factors in
practical applications, such as mass transfer, electrode spacing and fluid flow.

(3) Industrial applications. The small-scale durability under laboratory conditions cannot
meet the requirements of industrial electrolytes. For large-scale PEM electrolysis
applications, the catalyst shall be manufactured using scalable and industrially ac-
ceptable methods. Precise computer-aided 3D printing techniques can help construct
complex structures, accelerating mass/charge/ion transport rates and enhancing
activity and stability. Conductive substrates play a key role in delivering activity
and stability, but common substrates are not stable in acids. By using acid oxidized
and/or doped substrates, we can improve the corrosion resistance of the substrate, or
an alternative substrate with excellent corrosion and oxidation resistance such as Ti or
Ta foam could be an effective solution. Depositing conductive layers can inhibit the
formation of insulating TiO2 layers to further enhance stability. The selection of appro-
priate OER substrate electrodes significantly impacts catalyst passivation/detachment,
substrate-catalyst interactions, and stability performance. Testing in three-electrode
configurations significantly differs from industrial applications in terms of operation
conditions. To bridge the gap between material development and industrial appli-
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cations, it is crucial to perform membrane electrode assembly (MEA) testing under
relevant industrial conditions as early as possible and further understand the opera-
tional conditions and other components essential for designing an optimal working
environment for MEAs.

In conclusion, RuO2-based materials show great potential for OER, but face many
challenges. Nevertheless, with ongoing research and the emergence of new technologies,
we have reason to believe that these issues will gradually be addressed. Meanwhile, we
believe that there are enormous opportunities in applying high-performance OER catalysts
into energy conversion technologies. Through interdisciplinary collaborations and joint
efforts, we can look forward to further breakthroughs and progress in the future fields of
energy conversion and storage.
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