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Abstract: A series of reported Pt(II) carbene complexes possibly have the ability to serve as the
new generation of blue emitters in luminescent devices because of their narrow emission spectra,
high photoluminescence quantum yields (PLQYs), and rigid molecular skeleton. However, the
combination of all carbene ligands with different multidentate structures will affect the overall
planarity and horizontal dipole ratio to varying degrees, but the specific extent of this effect has not
previously been analyzed in detail. In this work, density functional computation is used to study
a class of platinum tetracarbene bidentate complexes with similar absorption and emission band
characteristics, which is the main reason for the remarkable difference in quantum efficiency due to
subtle differences in electronic states caused by different ligands. From the calculation results, the
major reason, which results in significantly decrease in quantum efficiency for [Pt(cyim)2]2+, is that
[Pt(cyim)2]2+ can reach the non-radiative deactivation metal-centered d-d excited state through an
easier pathway compared with [Pt(meim)2]2+. The result, based on changes in the dihedral angle
between ligands, can achieve the goal of improving and designing materials by adjusting the degree
of the dihedral angle. (meim: bis(1,1′-dimethyl-3,3′-methylene-diimidazoline-2,2′-diylidene); cyim:
bis(1,1′-dicyclohexyl-3,3′-methylene-diimidazoline-2,2′-diylidene).

Keywords: potential energy curve; excited state; non-radiative deactivation; absorption and emission;
platinum complex materials

1. Introduction

Over the last decade, transition metals with N-heterocyclic carbenes (NHCs) as ligands
have become the subject of intensive study in many fields of chemistry and molecular
material design [1,2]. The bond between the C atom of N-heterocyclic carbene and the
metal center of a complex in the molecular skeleton can be best described as a dative
σ-bond when the M-C distance falls comfortably in the range of typical single M-C bond
lengths and hybridized orbital components [3,4]. Their relative ease of synthesis from
readily accessible precursors, together with their favorable donor properties, makes them
the major choice for applications of the ligand [5–7].

Our interest is the application of the transition metal NHC complexes in phospho-
rescent organic light-emitting devices (PhOLED) [8,9]. Surprisingly, the applications of
platinum carbenes in PhOLED are rarely reported in the literature. Strassner and co-workers
have reported the photophysical and photochemical properties of a series of platinum (II)
complexes with biscarbene ligands (Figure 1) [10–12]. It is noted that these complexes show
high photostability and can be used as blue phosphorescent emitters, of which substituents
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of N atoms are wavelength-independent. In addition, they exhibit not only an attractive
quantum yield but also the quantum yield of Pt(meim)2

2+ is seven times larger than that of
Pt(cyim)2

2+. (meim: bis(1,1′-dimethyl-3,3′-methylene-diimidazoline-2,2′-diylidene); cyim:
bis(1,1′-dicyclohexyl-3,3′-methylene-diimidazoline-2,2′-diylidene).
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Figure 1. The structures of [Pt(meim)2]2+, [Pt(cyim)(meim)]2+ and [Pt(cyim)2]2+.

This small difference in geometry leads to a large difference in the stability and
inactivation characteristics of the excited state, which drives us to find the cause from the
perspective of calculating the electronic structure of the excited state properties, and this
factor is also applicable to other Pt-NHC-type complexes [13–15]. In coordination chemistry,
the study of excited-state properties is a cornerstone for OLED luminescence phenomena.
In this paper, a full-density functional theory (DFT) [16–18] and time-dependent density
theory (TDDFT) [19,20] are used to investigate the geometry, electronic structures, and
optical properties of Pt NHC complexes. This computational strategy has been repeatedly
applied to transition metal complexes, which are metal-containing large-scale molecular
systems, and the results are comparable to the experimental characterization. Therefore,
they can provide a definitive characterization of the photophysical properties of this system
and lead to deep understanding of this system.

2. Results and Discussion

The optimized structural parameters of [Pt(meim)2]2+, [Pt(meim)(cyim)]2+, and [Pt(cyim)2]2+

are listed in Table 1. The metal atom and four carbon atoms on carbine are situated on the
same plane, and substituents linking on N atoms are above or below the plane. Imidazole
planes keep an inclination away from the metal carbene plane (Figure 2). The dihedral
angle between the imidazole plane and the carbine plane decreases along with an increase
in the bulk of the substituent.

Figure 3 shows the simulated absorption spectra of these complexes. The experimental
results [7] for three complexes (Figure 3a) are all reproduced well by the DFT calculations
(Figure 3b). [Pt(meim)2]2+ has a lowest-energy absorption band around 300 nm, which
can be assigned to MLCT/π → π* character. This transition is from HOMO to LUMO and
from HOMO-1 to LUMO. The shoulder band at the region of 240–270 nm corresponds
to the MLCT-type transition, which is dominated by the excitation from HOMO-3 to
LUMO+1. The high-energy absorption bands are attributed to π → π* transition on the
ligand. The absorption bands of [Pt(meim)(cyim)]2+ and [Pt(cyim)2]2+ are similar to those
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of [Pt(meim)2]2+. But MLCT transition bands of both complexes are blue shifted compared
with [Pt(meim)2]2+, because the orbital energy change is affected by the decrease in the
dihedral angle between the imidazole planes of the biscarbene ligand. The heteroleptic
[Pt(meim)(cyim)]2+ has stronger oscillator strength in the lowest-energy absorption, which
may be due to the low amount of LLCT character included in this absorption.

Table 1. Partial optimized geometric structural parameters of topic complexes in the ground and
excited states associated with the experimental values of [Pt(meim)2]2+.

[Pt(meim)2]2+ [Pt(cyim)2]2+ [Pt(meim)(cyim)]2+

Exp10 S0/1Ag T1/3Bu MC State/3Bg S0/1Ag T1/3Bu MC State/3Bg S0/1A′ T1/3A′′

Bond length (Å)

r (Pt–C1) 2.026 2.032 2.042 2.292 2.034 2.051 2.293 2.031/2.036 2.036/2.058

r (C1–N1) 1.345 1.353 1.378 1.357 1.355 1.382 1.357 1.352/1.354 1.389/1.370

r (C1–N2) 1.352 1.361 1.384 1.365 1.364 1.381 1.366 1.363/1.364 1.395/1.376

r (N2–C4) 1.454 1.458 1.451 1.458 1.458 1.450 1.457 1.455/1.458 1.449/1.453

Bite angle (degree)

a (C1–Pt–C7) 84.2 83.3 84.5 81.6 82.9 84.0 81.0 83.1/83.0 83.8/84.0

a (C1–Pt–C7a) 95.9 96.7 95.5 98.4 97.1 95.8 99.0 96.5/96.6 96.1/96.1

a (N1–C1–Pt) 133.0 134.2 133.2 134.6 134.7 134.2 134.9 133.9/134.7 132.9/134.1

a (N2–C1–Pt) 122.2 121.1 122.7 120.2 120.0 121.3 119.2 121.2/120.1 123.1/121.2

a (N1–C1–N2) 104.8 104.6 103.8 104.0 105.0 104.1 104.4 104.7/105.0 103.5/104.4

Dihedral angle (degree)

d (C7–C1–Pt–C7a) 180.0 180.0 180.0 180.0 180.0 180.0 180.0 179.6 178.2

d (C1–C4–Pt–C7) 124.7 122.2 125.9 126.6 118.4 122.7 123.7 122.0/121.1 124.7/123.0
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HOMO-3 to LUMO+1. The high-energy absorption bands are attributed to π → π* transi-
tion on the ligand. The absorption bands of [Pt(meim)(cyim)]2+ and [Pt(cyim)2]2+ are simi-
lar to those of [Pt(meim)2]2+. But MLCT transition bands of both complexes are blue shifted 
compared with [Pt(meim)2]2+, because the orbital energy change is affected by the decrease 
in the dihedral angle between the imidazole planes of the biscarbene ligand. The hetero-
leptic [Pt(meim)(cyim)]2+ has stronger oscillator strength in the lowest-energy absorption, 
which may be due to the low amount of LLCT character included in this absorption. 

Figure 2. The optimized geometry of Pt(meim)2
2+.

In the lowest-lying triplet excited state (T1) of these complexes (Table 1), bond distances
of the Pt-C and C (carbene C)-N are significantly longer than those in the ground state (S0),
and dihedral angles of C1–C4–Pt–C7 are more stretched. Differences in the bond length
and the dihedral angle of T1 and S0 of [Pt(cyim)2]2+ are larger than those of [Pt(meim)2]2+.
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In [Pt(meim)(cyim)]2+, the expanded range of the big substituent side is larger than that
of the other side. The ∆SCF energies of these complexes calculated from T1 geometries
show similar values: 3.72 eV in [Pt(meim)2]2+, 3.84 eV in [Pt(cyim)2]2+, and 3.76 eV in
[Pt(meim)(cyim)]2+, respectively. A better estimate of emission energies was obtained by
TDDFT calculation at the T1 geometries. All three complexes display a low-lying state
with 3MLCT character. [Pt(meim)2]2+, [Pt(cyim)2]2+, and [Pt(meim)(cyim)]2+ emit a band
at 375 nm (3.31 eV), 369 nm (3.36 eV), and 372 nm (3.33 eV), respectively.
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Figure 3. Simulated absorption spectra of topic complexes compared to the experimental spectra:
(a) experimental absorption spectra obtained from Refs. [10,11], (b) calculated absorption spectra.

From the emission wavelength point of view, complexes in this class are good candi-
dates for dopants in the deep blue region. However, the quantum yield of [Pt(cyim)2]2+ is
fairly low ([Pt(meim)2]2+, at 0.45; for [Pt(meim)(cyim)]2+, it is 0.39, but for [Pt(cyim)2]2+, it
is 0.06). PLQYs are determined by both the radiative decay rate constant (kr) and the non-
radiative decay rate constant (knr). It is a competitive process in general. Importantly, the kr
from the Tm state to the S0 state can be expressed as follows within the Born–Oppenheimer
approximation and perturbation theory and frozen core calculation [15,21,22]:

kα
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where η is the refractive index of the medium, and energy levels E(Tm) and E(Sn) are the
energy of mth triplet excited state and nth singlet excited state, respectively. It is worth
noting that the ⟨Tα

m|HSOC|Sn⟩ is the spin-orbit coupling (SOC) matrix elements between the
mth triplet excited state and the nth singlet excited state, and the superscript α is the spin
sublevel of the triplet excited state Tm (α = x, y, or z). Finally, the ƒn is the oscillator strength
of the excited state transitions. Based on Equation (2), the value of kr is overall determined
by the SOC matrix elements ⟨Tα

m|HSOC|Sn⟩, the oscillator strength ƒn, and the energy gap
between the coupled Sn and Tm. The calculated average kr values of the T1 → S0 transition
[Equation (2)] are 7.72, 4.95, 5.83 × 105 s−1 for [Pt(meim)2]2+, [Pt(meim)(cyim)]2+, and
[Pt(cyim)2]2+, respectively. From the index of radiation deactivation rate of the low-lying
3MLCT excited state, there is little difference between the three complexes, indicating that
the radiation deactivation path is not the key reason affecting the PLQYs. Extensive studies
of transition metal complexes reveal that such thermal quenching of the emissive state can
be ascribed to deactivation via a metal-centered (d-d) excited state [23–26]. The calculated
geometrical parameters for the d-d state are given in Table 1. It indicates that this state
is populated through the absorption of light, then the molecule undergoes a significant
distortion upon the formation of the excited state and the increase in Pt-C bond lengths.

To obtain insights into the deactivation process and analyze the vibration relaxation
process of the phosphorescent state, the potential energy curves (PECs) [27–32] were calcu-
lated. Along with the symmetric stretching vibration route of the Pt-C bond ([Pt(meim)2]2+,
1121.77 cm−1; [Pt(cyim)2]2+, 1104.42 cm−1), the PECs were computed as a function of the
Pt-C (carbene) distance. T1-PECs and S0-PECs are shown in Figure 4. The bond length of
Pt-C in the lowest d-d state is considerably as long as 2.3 Å, while lengths and angles of
other bonds are almost the same as those in the ground state. Dihedral angles between
imidazole planes are outspread with structural relaxation (Figure 5). The change in dihedral
angles in [Pt(cyim)2]2+ with bulky substituents is sharper than that of [Pt(meim)2]2+. As
seen from Figure 5, when the Pt-C bond length extends over 2.2 Å, the dihedral angle has
an abrupt increase, and the dihedral angle reaches the peak value when the lowest d-d
state arrives.

The PECs for [Pt(meim)2]2+ and [Pt(cyim)2]2+ are illustrative for understanding the
thermal deactivation of the phosphorescent states in transition metal complexes. There
are three important reasons contributing to the reason that the d-d state of [Pt(cyim)2]2+

is induced more easily than that of [Pt(meim)2]2+. First, when the complex is excited, the
resultant Franck–Condon state is relaxed into the T1-MLCT potential minima. Under the
fitting temperature, the excited state has sufficient thermal energy to go beyond the humps
and reaches the d-d state. The activation energy barrier of [Pt(cyim)2]2+ is smaller than
that in [Pt(meim)2]2+; the difference is about 0.11 eV in the T1 state. Second, the bond
lengths of Pt-C for [Pt(cyim)2]2+ in T1-MLCT are longer than that of [Pt(meim)2]2+, and in
the d-d state, they have almost similar Pt-C bond lengths. Therefore, the geometry of
[Pt(cyim)2]2+ undergoes less change (0.24 Å vs. 0.25 Å in [Pt(meim)2]2+) from T1-MLCT
to T1-dd. Finally, from the calculated reorganization energies [33–35], it is found that d-d
states for both [Pt(meim)2]2+ and [Pt(cyim)2]2+ remain at a high level, and the energy
level of [Pt(meim)2]2+ is higher than that of [Pt(cyim)2]2+, which is about 0.037 eV. In the
excited state, the higher activation energy and larger structural difference upon vibration
relaxation and the higher d-d state reorganization energy for [Pt(meim)2]2+ enhanced the
excited state stability, so [Pt(meim)2]2+ has a good quantum yield. Comparing [Pt(cyim)2]2+

with [Pt(meim)2]2+, the bulky substituents induce a more out-of-plane deformation. From
Table 2, we can see that the d orbital components of central metal in the frontier orbitals
of [Pt(cyim)2]2+ are less than those in [Pt(meim)2]2+, and there is an obvious difference
between d-d states. The increase in the twist angle of the carbene plane reduces the metal
components in the frontier MOs and decreases the d-d state energy, which makes the d-d
state easier to achieve. This situation could be avoided in future experiments.
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We have also studied the charge transfer reorganization energies at the molecular level.
In the case of solid-state optoelectronic devices, the external contribution reorganization en-
ergy (λe) is negligible. Therefore, the inner reorganization energy (λi) is approximate to the
reorganization energy (λ). The reorganization energies of [Pt(meim)2]2+ and [Pt(cyim)2]2+

are listed in Table 2. For each molecule, reorganization energies for the hole transport
are smaller than those of the electron transport, in general. This is determined by the
fundamental characteristics of the particle of the electron and the hole. Compared with
the classical benchmark of hole-transport material 4,4′-bis(phenyl-m-tolylamino)biphenyl
(TPD) [36], of which λi(h) is 0.27 eV and λi(e) is 0.69 eV at the B3LYP/6-31G* level, both of
the complexes have smaller λi(h). This means that the hole-transporting performance of
these complexes is better than the electron-transporting performance.

Table 2. The metal d orbital components in the frontier orbitals of [Pt(cyim)2]2+ and [Pt(meim)2]2+ in
different states and MC state reorganization energies (λ(d-d)) and inner reorganization energies (λi(h)

and λi(e)) (h: hole; e: electron). (HSOMO: the highest singly occupied molecular orbital).

[Pt(meim)2]2+ [Pt(cyim)2]2+ TPD [36]

S0
LUMO 0.2% 0.3%
HOMO 35.3% 33.1%

T1-MLCT
HSOMO 0.3% 0.1%

HSOMO-1 20.9% 19.8%

T1-dd
HSOMO 34.2% 31.3%

HSOMO-1 10.3% 8.7%

λ(d-d)/eV 1.456 1.419
λi(h)/eV 0.127 0.140 0.270
λi(e)/eV 0.326 0.284 0.690

The results presented in this work demonstrate that photophysical properties, espe-
cially the excited-state non-radiative deactivation pathways, can be strongly affected by
different ligands. Access to such information, especially the structure-property relation-
ships based on the characteristics of excited electronic states, is fundamental for a rational
design of new metal complexes with tunable photochemical features. Photophysical mea-
surements with emerging capabilities show advantages in investigating the excited-state
potential energy surfaces. Hence, when combining photophysical measurements and quan-
tum chemical calculations, it is helpful to provide deep information about such effects.
This is also based on a precise understanding of electronic structural information and
chemical bonds. The [Pt(meim)2]2+ and [Pt(cyim)2]2+ systems also have a large effect on
the excitation state energy surface only because of the small difference in the M-C inter-
action caused by the coordination environment, which leads to a large difference in the
non-radiative deactivation characteristics. The introduction of advantageous structural
variations on photoactivable metal species can only be guided by the correct description of
orbital energies and shapes, binding features, and a full comprehension holding of different
excited states in light-caused electronic transitions.

3. Computational Details

All calculations here were performed with the Gaussian 09 program package [37], em-
ploying the various density functional theory (DFT) methods. Among Becke’s 3-parameter
hybrid method, the long-range corrected functional CAM-B3LYP was set [38–42]. The
effective core potential (ECP) basis set of the LanL2DZ [43–45] type with an additional
f-polarization function (f = 0.18) for the transition metal platinum atom and 6-31G** basis
set for the other atoms were used to optimize the ground state (S0) geometries [46,47]. To
avoid the underestimation of the lowest-lying triplet state (T1) energy and some relaxation
error in the optimized geometry [48] from time-dependent CAM-B3LYP calculations, the
T1 geometries for the three complexes were calculated in the gas phase by using the un-
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restricted CAM-B3LYP functional. Based on the crystal data (distance Pt-I > 5 Å, the two
iodide anions are non-coordinating), the calculation model corresponds to the complexes.
By using the respective optimized equilibrium geometry, time-dependent density func-
tional theory (TD-DFT) at the CAM-B3LYP level was employed and examined to predict
their absorption and emission transitions and features. CAM-B3LYP yields atomization
energies of similar quality to those from B3LYP while also performing well for charge
transfer excitations, which B3LYP underestimates enormously. The ∆SCF approach [49] at
the same level was also used for evaluating the emission energies of the complexes.

In order to determine the geometry of the metal-centered state (MC state or d-d
state) [23], which is the most important state evidently involved in the deactivation process,
preliminary geometrical optimizations were performed with constraints conditions based
on strengthening M-C bonds. In detail, four metal-to-ligand bond lengths were elongated
by 30% of the S0 geometry. It is found that most of the highest singly occupied orbitals are
dσ* of the Pt-C bond in the resulting geometry. To obtain insights into the deactivation
process and analyze the vibration relaxation process of the phosphorescent state, the
potential energy curves (PECs) were established. Along with the symmetric stretching
vibration route ([Pt(meim)2]2+, 1121.77 cm−1; [Pt(cyim)2]2+, 1104.42 cm−1), the PECs were
computed as a function of the distance between Pt and the C atom of carbene by 0.05 Å
increments. Hence, the Pt-C bond was frozen every 0.05 Å, and the geometry of the
molecule was relaxed to a stationary point. From the view of the Franck–Condon principle,
the S0-PECs were produced based on every T1 state geometry. That is to say, the PECs
of the ground state have been emendated by the same method used in the excited state
PECs calculation. Each stretching geometry was then employed to calculate the triplet
excited state by TD-DFT at the CAM-B3LYP level. Except for the geometry optimization,
the energy calculations in the PECs and TD-DFT calculations were performed with a large
basis set. The 18-VE (valence electron) quasi-relativistic pseudo-potential and basis set of
Andrae [50] with an additional f-polarization function (f = 0.14) are used for the Pt atom,
and the 6-31G (3 df, 3 pd) basis set is used for all other atoms.

The Arrhenius equations:

kd(T) = A1 exp(−Ea1/kT) + A2 exp(−Ea2/kT)

where kd(T) is the temperature-dependent decay rate, and the pre-exponential A1 and
energy level Ea1 are the frequency factor and activation energy for the thermal deactivation
through the higher-lying excited state, respectively. Similarly, the A2 and Ea2 are those for
the deactivation directly from the emitting state to the ground state contrastively.

The rate of intermolecular charge transfer (Ket) can be estimated by using the semiclas-
sical MARCUS theory [51,52], which is described as follows:

Ket = A exp(−λ/4KBT)

where A is a prefactor related to the electronic coupling between adjacent molecules, and λ
is the reorganization energy between the starting state and the final state. Classically, KB is
the Boltzmann constant, and T is the temperature. From this equation, it can be concluded
that the reorganization energy is dominant in the charge transport process at constant
temperature. Generally, the λ value is determined by fast changes in intramolecular
geometry (the inner reorganization energy λi) and slow variations in the molecular skeleton
in solvent polarization of the surrounding medium (the external contribution λe). However,
the λe is negligible in most cases of solid-state optoelectronic devices, such as LEDs. Hence,
the λi value is approximate to the total λ. Furthermore, the inner reorganization energy λi
is caused by the change in the internal nuclear coordinates, which is from state A to state B
(Figure 6), and the conventional reorganization energy λ is the sum of λAB and λBA.
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12. Bárta, O.; Pinter, P.; Císařová, I.; Strassner, T.; Štěpnička, P. Synthesis and Characterization of Cationic Platinum(II) Complexes
with Two Chelating Ligands. Eur. J. Inorg. Chem. 2020, 2020, 575–580. [CrossRef]

13. Bai, F.-Q.; Zhou, X.; Xia, B.-H.; Liu, T.; Zhang, J.-P.; Zhang, H.-X. Electronic structures and optical properties of neutral substituted
fluorene-based cyclometalated platinum(II)—Acetylide complexes: A DFT exploration. J. Organomet. Chem. 2009, 694, 1848–1860.
[CrossRef]

14. Fan, H.-W.; Bai, F.-Q.; Zhang, Z.-X.; Wang, Y.; Qu, Z.-X.; Zhong, R.-L.; Zhang, H.-X. Theoretical investigation on the effect of
ancillary ligand modification for highly efficient phosphorescent platinum(II) complex design. RSC Adv. 2017, 7, 17368–17376.
[CrossRef]

15. Feng, T.-T.; Bai, F.-Q.; Xie, L.-M.; Tang, Y.; Zhang, H.-X. Theoretical study and design of highly efficient platinum(II) complexes
bearing tetradentate ligands for OLED. RSC Adv. 2016, 6, 11648–11656. [CrossRef]

16. Strassner, T.; Taige, M.A. Evaluation of Functionals O3LYP, KMLYP, and MPW1K in Comparison to B3LYP for Selected Transition-
Metal Compounds. J. Chem. Theory Comput. 2005, 1, 848–855. [CrossRef] [PubMed]

17. Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [CrossRef]
18. Bolink, H.J.; Cappelli, L.; Cheylan, S.; Coronado, E.; Costa, R.D.; Lardiés, N.; Nazeeruddinb, M.K.; Ortí, E. Origin of the Large

Spectral Shift in Electroluminescence in a Blue Light Emitting Cationic Iridium(III) Complex. J. Mater. Chem. 2007, 17, 5032–5041.
[CrossRef]

19. Jamorski, C.; Casida, M.E.; Salahub, D.R. Dynamic Polarizabilities and Excitation Spectra from A Molecular Implementation of
Time-Dependent Density-Functional Response Theory: N2 as a Case Study. J. Chem. Phys. 1996, 104, 5134–5147. [CrossRef]

20. Petersilka, M.; Grossmann, U.J.; Gross, E.K.U. Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev.
Lett. 1996, 76, 1212–1215. [CrossRef]

21. Tong, G.S.M.; Che, C.M. Emissive or Nonemissive? A Theoretical Analysis of the Phosphorescence Efficiencies of Cyclometalated
Platinum(II) Complexes. Chem.-A Eur. J. 2009, 15, 7225–7237. [CrossRef] [PubMed]

22. Siddique, Z.A.; Yamamoto, Y.; Ohno, T.; Nozaki, K. Structure-Dependent Photophysical Properties of Singlet and Triplet
Metal-to-Ligand Charge Transfer States in Copper(I) Bis(diimine) Compounds. Inorg. Chem. 2003, 42, 6366–6378. [CrossRef]
[PubMed]

23. Gareth Williams, J.A. Photochemistry and Photophysics of Coordination Compounds: Platinum. Top. Curr. Chem. 2007, 281,
205–268.

24. Islam, A.; Ikeda, N.; Nozaki, K.; Ohno, T. Role of Higher Excited States in Radiative and Nonradiative Processes of Coordination
Compounds of Ru(II) and Rh(III) in Crystal. Chem. Phys. Lett. 1996, 263, 209–214. [CrossRef]

25. Durham, B.; Casper, J.V.; Nagle, J.K.; Meyer, T.J. Photochemistry of Tris(2,2′-bipyridine)ruthenium(2+) Ion. J. Am. Chem. Soc. 1982,
104, 4803–4810. [CrossRef]

26. Allen, G.H.; White, R.P.; Rillema, D.P.; Meyer, T.J. Synthetic Control of Excited-State Properties. Tris-Chelate Complexes
Containing the Ligands 2,2′-bipyrazine, 2,2′-bipyridine, and 2,2′-bipyrimidine. J. Am. Chem. Soc. 1984, 106, 2613–2620. [CrossRef]

27. Salassa, L.; Garino, C.; Salassa, G.; Gobetto, R.; Nervi, C. Mechanism of Ligand Photodissociation in Photoactivable [Ru(bpy)2L2]2+

Complexes: A Density Functional Theory Study. J. Am. Chem. Soc. 2008, 130, 9590–9597. [CrossRef]
28. Saito, K.; Nakao, Y.; Sakaki, S. Theoretical Study of Pyrazolate-Bridged Dinuclear Platinum(II) Complexes: Interesting Potential

Energy Curve of the Lowest Energy Triplet Excited State and Phosphorescence Spectra. Inorg. Chem. 2008, 47, 4329–4337.
[CrossRef]

29. Yang, L.; Okuda, F.; Kobayashi, K.; Nozaki, K.; Tanabe, Y.; Ishii, Y.; Haga, M. Syntheses and Phosphorescent Properties of Blue
Emissive Iridium Complexes with Tridentate Pyrazolyl Ligands. Inorg. Chem. 2008, 47, 7154–7165. [CrossRef]

https://doi.org/10.1016/j.cej.2022.137836
https://doi.org/10.1002/anie.200702138
https://www.ncbi.nlm.nih.gov/pubmed/17645275
https://doi.org/10.1016/j.jorganchem.2016.04.027
https://doi.org/10.1039/b806924g
https://doi.org/10.1021/ja3048656
https://doi.org/10.1021/acs.inorgchem.2c02467
https://doi.org/10.1039/b804019b
https://doi.org/10.1039/b900655a
https://www.ncbi.nlm.nih.gov/pubmed/19513490
https://doi.org/10.1002/ejic.201901221
https://doi.org/10.1016/j.jorganchem.2009.01.020
https://doi.org/10.1039/C7RA00705A
https://doi.org/10.1039/C5RA22754B
https://doi.org/10.1021/ct049846+
https://www.ncbi.nlm.nih.gov/pubmed/26641901
https://doi.org/10.1021/cr990029p
https://doi.org/10.1039/b713745a
https://doi.org/10.1063/1.471140
https://doi.org/10.1103/PhysRevLett.76.1212
https://doi.org/10.1002/chem.200802485
https://www.ncbi.nlm.nih.gov/pubmed/19544517
https://doi.org/10.1021/ic034412v
https://www.ncbi.nlm.nih.gov/pubmed/14514312
https://doi.org/10.1016/S0009-2614(96)01188-8
https://doi.org/10.1021/ja00382a012
https://doi.org/10.1021/ja00321a020
https://doi.org/10.1021/ja8025906
https://doi.org/10.1021/ic702367f
https://doi.org/10.1021/ic800196s


Molecules 2024, 29, 524 11 of 11

30. Yu, J.-K.; Hu, Y.-H.; Cheng, Y.-M.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Carty, A.J.; Tung, Y.-L.; Lee, S.-W.; Chi, Y.; et al. A
Remarkable Ligand Orientational Effect in Osmium-Atom-Induced Blue Phosphorescence. Chem. Eur. J. 2004, 10, 6255–6264.
[CrossRef]

31. De Angelis, F.; Fantacci, S.; Evans, N.; Klein, C.; Zakeeruddin, S.M.; Moser, J.-E.; Kalyanasundaram, K.; Bolink, H.J.; Grätzel,
M.; Nazeeruddin, M.K. Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes: A Combined
Experimental and Theoretical Study. Inorg. Chem. 2007, 46, 5989–6001. [CrossRef] [PubMed]

32. Fazzi, D.; Grancini, G.; Maiuri, M.; Brida, D.; Cerullo, G.; Lanzani, G. Ultrafast Internal Conversion in A Low Band Gap Polymer
for Photovoltaics: Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2012, 14, 6367–6374. [CrossRef] [PubMed]

33. Amini, A.; Harriman, A.; Mayeux, A. The Triplet Excited State of Ruthenium(II) Bis(2,2:6,2-terpyridine): Comparison Between
Experiment and Theory. Phys. Chem. Chem. Phys. 2004, 6, 1157–1164. [CrossRef]

34. Benniston, A.C.; Chapman, G.; Harriman, A.; Mehrabi, M.; Sams, C.A. Electron Delocalization in a Ruthenium(II) Bis(2,2′:6′,2′′-
terpyridyl) Complex. Inorg. Chem. 2004, 43, 4227–4233. [CrossRef]

35. Hutchison, G.H.; Ratner, M.A.; Marks, T.J. Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies
and Substituent Effects. J. Am. Chem. Soc. 2005, 127, 2339–2350. [CrossRef] [PubMed]

36. Lin, B.C.; Cheng, C.P.; Lao, Z.P.M. Reorganization Energies in the Transports of Holes and Electrons in Organic Amines in Organic
Electroluminescence Studied by Density Functional Theory. J. Phys. Chem. A 2003, 107, 5241–5251. [CrossRef]

37. Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.;
et al. Gaussian 09, Revision D. 01; Gaussian Inc.: Wallingford, CT, USA, 2009.

38. Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method
(CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [CrossRef]

39. Peach, M.J.G.; Benfield, P.; Helgaker, T.; Tozer, D.J. Excitation Energies in Density Functional Theory: An Evaluation and A
Diagnostic Test. J. Chem. Phys. 2008, 128, 044118. [CrossRef]

40. Runge, E.; Gross, E.K.U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [CrossRef]
41. Lee, C.; Yang, W.; Parr, R.G. Development of The Colle-Salvetti Correlation-Energy Formula into A Functional of the Electron

Density. Phys. Rev. B 1988, 37, 785–789. [CrossRef]
42. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee,

Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [CrossRef]
43. Hay, P.J.; Wadt, W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc

to Hg. J. Chem. Phys. 1985, 82, 270–283. [CrossRef]
44. Wadt, W.R.; Hay, P.J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi.

J. Chem. Phys. 1985, 82, 284–298. [CrossRef]
45. Hay, P.J.; Wadt, W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost

Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. [CrossRef]
46. Hariharan, P.C.; Pople, J.A. Accuracy of AHn Equilibrium Geometries by Single Determinant Molecular Orbital Theory. Mol.

Phys. 1974, 27, 209–214. [CrossRef]
47. Li, P.; Feng, L.; Li, G.; Bai, F.-Q. Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic

Structures of Organic Radicals. Chem. Res. Chin. Univ. 2023, 39, 202–207. [CrossRef]
48. Lam, W.H.; Lam, E.S.-H.; Yam, V.W.-W. Computational Studies on the Excited States of Luminescent Platinum (II) Alkynyl

Systems of Tridentate Pincer Ligands in Radiative and Nonradiative Processes. J. Am. Soc. Chem. 2013, 135, 15135–15143.
[CrossRef] [PubMed]
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