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Abstract: Accurate modeling of nonbonded interactions between protein kinases and their small
molecule inhibitors is essential for structure-based drug design. Quantum chemical methods such
as density functional theory (DFT) hold significant promise for quantifying the strengths of these
key protein–ligand interactions. However, the accuracy of DFT methods can vary substantially
depending on the choice of exchange–correlation functionals and associated basis sets. In this study,
a comprehensive benchmarking of nine widely used DFT methods was carried out to identify an
optimal approach for quantitative modeling of nonbonded interactions, balancing both accuracy and
computational efficiency. From a database of 2139 kinase-inhibitor crystal structures, a diverse library
of 49 nonbonded interaction motifs was extracted, encompassing CH–π, π–π stacking, cation–π,
hydrogen bonding, and salt bridge interactions. The strengths of nonbonded interaction energies
for all 49 motifs were calculated at the advanced CCSD(T)/CBS level of theory, which serve as
references for a systematic benchmarking of BLYP, TPSS, B97, ωB97X, B3LYP, M062X, PW6B95,
B2PLYP, and PWPB95 functionals with D3BJ dispersion correction alongside def2-SVP, def2-TZVP,
and def2-QZVP basis sets. The RI, RIJK, and RIJCOSX approximations were used for selected
functionals. It was found that the B3LYP/def2-TZVP and RIJK RI-B2PLYP/def2-QZVP methods
delivered the best combination of accuracy and computational efficiency, making them well-suited
for efficient modeling of nonbonded interactions responsible for molecular recognition of protein
kinase inhibitors in their targets.

Keywords: dispersion-corrected DFTs; benchmarking; protein kinase inhibitors; motifs of nonbonded
interactions; CCSD(T)/CBS reference; molecular recognition

1. Introduction

Protein kinases are a large family of enzymes that play a central role in cellular regula-
tion by catalyzing the transfer of the γ-phosphate group from ATP to their target substrates.
This process, known as protein phosphorylation, is a fundamental regulatory mechanism
for numerous cellular functions, including metabolism, cell growth and division, differ-
entiation, apoptosis, and gene expression [1]. Dysregulation of protein kinase activity has
been implicated in many human diseases, such as cancer, inflammation, diabetes, nervous
system disorders, and cardiovascular disease [2]. Cancer cells, in particular, rely on pro-
tein phosphorylation by specific kinases to promote abnormal proliferation, metastasis,
angiogenesis, and survival. Over 400 diseases are thought to be linked to protein kinases,
either directly or indirectly [3]. This has spurred considerable interest in developing small
molecule protein kinase inhibitors (PKIs) capable of modulating kinase function for thera-
peutic benefit [4]. The majority of PKIs are ATP binding site competitive inhibitors, which
are the primary targets of this research.
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Ever since the first approval of the PKI drug imatinib by the FDA for the treatment of
chronic myeloid leukemia in 2001, ATP binding site competitive PKIs have emerged as one
of the most significant therapeutic agents in the 21st century for treating a variety of diseases,
including cancer, heart disease, and diabetes [4]. However, many challenges remain in PKI
drug discovery, such as drug resistance and off-target-mediated toxicity [2,5,6]. The key
to overcoming these challenges lies in the targeted molecular design of more potent and
selective PKIs. To do so, an atomic level understanding of the molecular recognition
between PKIs and their specific kinase targets is required [6].

It is nonbonded interactions that mediate molecular recognition between PKIs and
their target protein kinases, as in all ligand–protein complexes [7,8]. Traditionally,
the consideration of nonbonded interactions mainly included hydrogen bonding and
salt bridge interactions. However, in recent years, more and more evidence suggests
that π-moiety involved interactions, such as π–π stacking interactions [9], CH–π interac-
tions [10], cation–π interactions [11], are just as important as hydrogen bonding and salt
bridges [6,12,13]. As is established in Ref. [12], hereinafter, all these π-moiety involved
interactions will be collectively termed “nonbonded π-interactions”.

To better understand molecular recognition of PKIs in the binding pockets of protein
kinases, we are establishing a library of 3D binding motifs between PKIs and their interact-
ing residues inside protein kinases. In a previous study [6], we carried out a large-scale
data mining of the Protein Data Bank (PDB), which resulted in the establishment of a
database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound
to protein kinases. As you will see in the Results and Discussion section, care is taken to
ensure that the library of 3D binding motifs samples are representative of all major modes
of nonbonded interactions occurring in the database of 2139 PKI bound protein kinases,
including hydrogen bonding, salt bridge, CH–π interaction, π–π stacking interactions,
and cation–π interaction.

Subsequently, intermolecular interaction energies for all motifs in the library were cal-
culated at the highest level of electronic structure theory currently available, i.e., the coupled
cluster methods with single, double, and perturbative triple excitations CCSD(T) at com-
plete basis set (CBS) [14]. Besides gaining mechanistic insights on molecular recognition
of PKIs in protein kinases, this work has two practical implications: (1) The library of
3D motifs based on real life PKI-bound complexes will provide medicinal chemists with
working structure motifs that can guide future design of next generation PKIs; and (2) The
magnitudes of intermolecular interaction energies for all motifs of nonbonded intermolec-
ular interactions calculated at the advanced CCSD(T)/CBS level of theory will serve as
references for theoreticians to benchmark existing or newly developed methods of inter-
molecular interaction energy calculations. The latter is exactly what we carried out in the
second half of this article: benchmarking of the widely applied density functional theory
(DFT) methods against CCSD(T)/CBS.

Nonbonded interactions are essentially a juxtaposition of several elements, includ-
ing electrostatic interactions, exchange repulsion interactions, induction, and dispersion
forces. Of these, dispersion forces constitute the dominant attractive forces between neutral
molecules [15,16]. Dispersion forces arise from the mutual correlation of electrons that
belong to interacting monomers (intermolecular correlation effects). For a proper treatment
of dispersions, post-Hartree–Fock methods that include electron correlation corrections
are needed. Therefore, for the study of biological macromolecular systems, applicable
wavefunction-based post-Hartree–Fock methods are quite limited due to their large sys-
tem size. Over the years, second-order Møller–Plesset perturbation (MP2) has been the
working horse for calculations of nonbonded interactions because of its efficiency and
convenience [17]. The highly accurate CCSD(T) method has been widely applied to small
molecular systems. However, its applicability to large biological systems is severely limited
due to the extremely high demand of the CCSD(T) method for both CPU time and core
memory until recently.



Molecules 2024, 29, 304 3 of 22

The DFT method is an alternative approach that provides an unrivaled practical bal-
ance of accuracy and computational cost. Although the DFT method has been widely
applied to study covalently bonded molecules, its application to nonbonded intermolecular
interactions is limited due to its inability to capture long-range correlation effects [18]. As a
result, typical pure DFT functionals do not take dispersion interactions into consideration.
Fortunately, a new generation of DFT methods have been developed with dispersion cor-
rection, making it possible to apply DFT methods for analyzing biological systems that are
interacting mainly through dispersion interactions [16]. However, the accuracies of disper-
sion corrected DFTs varied widely. In this work, we performed a systematic benchmarking
of nine widely used exchange–correlation functionals, BLYP [19,20], TPSS [21], B97 [22],
ωB97X [23], B3LYP [24,25], M062X [26], PW6B95 [27], B2PLYP [28] and PWPB95 [29]. Those
functionals span the entire spectrum of the Jacob’s ladder, including two (meta-)GGAs, five
(meta-)hybrid functionals, and two double-hybrid functionals. With the inclusion of the
D3 level dispersion correction developed by Grimme [30], their performance is calibrated
against the ‘gold standard’ CCSD(T) method for a diverse set of 49 motifs of nonbonded
interactions extracted from X-ray structures of kinase–inhibitor complexes. Here, we aim at
determining the best performing dispersion-corrected DFT method in terms of not only
the accuracy but also the computational efficiency. Our objective is to arrive at a recom-
mendation on the best performing DFT protocol that is applicable to routine modeling of
protein–ligand binding in kinases.

Another important consideration for the theoretical treatment of nonbonded interac-
tions is the judicious selection of a basis set that effectively balances accuracy and efficiency.
Two widely used series of basis sets in electronic structure methods, which take into ac-
count electron correlations, are the def2 series developed by Ahlrichs and Weigend [31]
and Dunning’s correlation-consistent family of basis sets (cc-pVXZ) [32]. The CC-pVXZ
basis sets, known for their correlation consistent design, were selected for the CCSD(T)
calculations. The def2 series of basis sets were employed in the DFT methods for their
balanced accuracy and computational efficiency. The latter is achieved through density
fitting, also known as resolution of the identity (RI) or fitting auxiliary basis sets. Density
fitting has been seamlessly incorporated into calculations that employ the def2 series of
basis sets in the ORCA program [33]. In this work, def2-SVP, def2-TZVP, and def2-QZVP
basis sets were tested in all DFT methods for a systematical study of basis set dependence.

Historically, benchmarking of theorical approaches for nonbonded interaction en-
ergy calculations has been based on prototypical model systems of nonbonded interac-
tions [34,35]. The latter are typically at equilibrium geometries or artificially scaled distances
between the nonbonded interacting pairs [36]. This is problematic because, for a given the-
oretical method, the accuracy of the calculated interaction energy is known to be sensitively
geometry (distance) dependent. In contrast, the 3D motifs of nonbonded interactions in
our study were obtained directly from actual real life PKI-bound protein complexes. Thus,
it is our expectation that the winner of this benchmarking study (i.e., the top performing
DFT approach) will be better suited for molecular modeling of PKI binding with protein
kinases in any future structure-based drug design of potent and selective PKIs.

As noted earlier, the CCSD(T) interaction energies not only serve as a benchmark
for this study but also offer a valuable resource for future development and validation of
methods for calculating intermolecular interactions. Moreover, the established library of 3D
nonbonded interaction motifs represents a significant contribution in its own right, provid-
ing a valuable dataset for future studies exploring protein–ligand recognition and beyond.

2. Results and Discussion
2.1. Library of 3D Motifs of Nonbonded Interactions

In order to construct a comprehensive library of three-dimensional (3D) binding mo-
tifs to model the interactions between PKIs and protein kinases, we meticulously selected
representative motifs of pairwise nonbonded interactions between PKIs and their inter-
acting residues inside the ATP binding pocket of protein kinases. In a previous study, we
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carried out a large-scale data mining of the PDB, which resulted in the establishment of a
database of 2139 non-redundant high-resolution X-ray crystal structures of kinase–inhibitor
complexes [6]. Based on this database, 49 unique motifs of nonbonded interaction pairs
between PKIs and their interacting residues were extracted. These represent key modes
of nonbonded interactions, including 13 CH–π interactions, 12 π–π stacking interactions,
8 cation–π interactions, 8 hydrogen bonding, and 8 salt bridge interactions. The selection
of these motifs was governed by two main criteria. The first criterion prioritizes protein
kinases that are the targets of disease treatment. For example, multiple cyclin-dependent
kinases (CDKs) were included, owing to their crucial role in cell cycle regulation and
their status as high-priority targets for kinase inhibitor development. The second crite-
rion ensures that these 49 motifs comprehensively cover the diverse spectrum of possible
intermolecular interactions, such as hydrogen bonding, salt bridge, and all non-bonded
π-interactions, in proportion to their occurrence frequencies in the database of 2139 PKI-
Protein complexes [6].

Table 1 provides a full list of relevant details on all 49 motifs. For easy reference, a
motif ID is assigned in column 1. Column 2 defines the mode of nonbonded interactions.
Column 3 lists the PDB IDs for the PKI-bound complexes from which the binding motifs
are extracted. Column 4 lists the interacting pairs, with PKIs labeled by the three letter
ligand IDs of the corresponding PDB file and their interacting residues labeled by the
residue IDs. Geometrical features for the interacting pairs are given in Columns 5 and 6.
For hydrogen bonding pairs, two sets of H-bond angles and distances are listed since there
are dual hydrogen bonds in all motifs except motif 40. For all other modes of nonbonded
interactions, the closest atom to atom distance between the PKI and its interacting residue
is tabulated. For π–π stacking interactions, the angle is measured between the two π planes
of the interacting partners. The last column lists the reference in which the X-ray crystal
structure was reported.

Table 1. List of motifs of nonbonded interaction pairs between PKIs and their interacting residues a.

No. Mode of
Interaction PDB ID Intermolecular Pair Angle Distance (Å) b Ref.

1

CH–π

1H1Q 2A6. . .A31 3.32 [37]
2 4BDB ODO. . .L354 - 3.93 [38]
3 2BTS U32. . .I10 - 3.55 [39]
4 2XIY XIY. . .L174 - 3.57 [40]
5 1UU9 BI3. . .L88 - 3.81 [41]
6 2IO6 330. . .I374 - 4.41 [42]
7 4GUE QCT. . .L147 - 3.61 [43]
8 3OOG YTP. . .A70 - 3.34 -
9 4FKO 20K. . .I10 - 3.72 -
10 3QL8 X01. . .L134 - 3.23 -
11 4RC2 3O8. . .L174 - 3.43 -
12 4RC3 3OA. . .A56 - 3.27 -
13 3QX4 X4B. . .L134 - 3.61 -

14

π–π
stacking

2V7O DRN. . .F90 89.64 c 3.77 [44]
15 3I4B Z48. . .Y134 6.8 4.31 [45]
16 4DGO 0JW. . .F113 43.85 3.55 -
17 3QQF X07. . .F82 70.14 3.76 -
18 3B2T M33. . .Y566 10.09 3.83 [46]
19 3R6X X84. . .F82 74.54 3.71 -
20 4WG4 UWB. . .Y131 5.57 4.08 -
21 1PXN CK6. . .F82 16.8 3.62 [47]
22 3ROY 22Z. . .F82 68.31 3.75 -
23 2C6O 4SP. . .F82 20.3 4.01 [48]
24 3RAK 03Z. . .F82 41.29 3.81 [49]
25 4EL9 AFE. . .F79 19.17 3.48 [50]
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Table 1. Cont.

No. Mode of
Interaction PDB ID Intermolecular Pair Angle Distance (Å) b Ref.

26

Cation–π

1PXL CK4. . .K33 - 4.62 [51]
27 1FGI SU1. . .K514 - 5.15 [52]
28 1M2Q MNX. . .K68 - 4.21 [53]
29 2VGP AD6. . .K180 - 5.06 [54]
30 3OWP 2SB. . .K72 - 3.59 -
31 3SQQ 99Z. . .K33 - 5.12 [49]
32 3RJC 06Z. . .K33 - 4.77 [49]
33 3QTW X3A. . .K89 - 3.51 [49]

34

H-Bond d

3SW4 18K. . .L83 158.59 166.51 2.88 2.94 -
35 3ZLY YSO. . .M146 153.12 164.48 2.97 3.26 [55]
36 3RZB 02Z. . .L83 143.48 162.20 2.96 3.06 [49]
37 3RPY 27Z. . .L83 141.82 167.13 2.89 3.24 [49]
38 3R28 XA0. . .L83 155.87 134.34 2.88 2.98 -
39 3QZI X72. . .L83 132.02 148.51 2.98 2.98 -
40 3SXF BK5. . .Y131 161.45 3.14
41 2R3P 3SC. . .L83 141.41 168.79 2.82 3.35 [56]

42

Salt bridge

3MA3 01I. . .K67 - 3.38 [57]
43 4L9I 8PR. . .D271 - 3.96 [58]
44 1NVQ UCN. . .E91 - 3.48 [59]
45 4JIK 1KO. . .D148 - 3.22 [60]
46 1BX6 BA1. . .E127 - 5.05 [61]
47 4WG4 UWB. . .E135 - 4.16 -
48 4MTA 2D2. . .K67 - 3.67 [62]
49 1E9H INR. . .K33 - 3.65 [63]

a: All ligands (designated by the three-letter ligand IDs) and their interacting residues are extracted from chain A
of the corresponding PDB files. b: The closest distance between nonhydrogen atoms (C, O, or N) of the PKI and
those of its interacting residue. c: Angle (in degree) for π–π stacking motifs is measured between the two π planes.
d: All motifs of H-bonding interactions contain dual H-bonding except motif 40. Thus, two sets of parameters
are given.

Three dimensional structures for all 49 motifs of nonbonded interaction pairs between
PKIs and their interacting residues are depicted in Figure 1 in the same motif count order
as in Table 1. The four letter codes after the motif count represent the PDB IDs for the
PKI bound complexes from which the binding motifs are extracted. For each binding
motif, the PKI and its interacting residue are labeled by the three-letter ligand ID and the
residue ID number of the corresponding PDB file, respectively. Given the large size of
PKI molecules, only the functional group of a given PKI that directly interacts with the
protein was kept as part of the 3D motif. The coordinates of all the non-hydrogen atoms
were extracted from their respective PDB files. Hydrogen atoms were patched to satisfy the
valency by means of a geometry optimization calculation at the HF/6-31+G levels using
the Gaussian 09 program [64]. It should be cautioned that the X-ray crystal structures from
which the motifs were extracted may potentially have been distorted by crystal packing.
However, the extent of such distortion is a matter of hot debate, with some seeing it as
minor adjustments while others view it as significant.

In a previous study, we established a pharmacophore model for ATP-competitive
kinase inhibitors [6]. According to this pharmacophore model, PKIs are a special class
of small molecules that feature a scaffold of one or more aromatic rings that are linked
with one or more hydrophilic functional groups. The former has the structural role of
acting as a scaffold and the functional role of participating in nonbonded π-interactions
(i.e., π–π stacking interactions, CH–π interactions, cation–π interactions, and XH–π in-
teractions (XH = NH, SH, OH)) with hydrophobic regions I, II, and III (see Ref. [6] for
details), and the adenine region. The latter ensure water solubility and form hydrogen
bonds with the hinge region and other hydrophilic residues of the ATP binding pocket.
This pharmacophore model, to a large extent, functions as a blueprint to guide the se-
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lection of the 49 binding motifs sampled here. As shown in Figure 1, in all 13 motifs of
CH–π interactions, aromatic rings of PKIs interact with the CH groups of the aliphatic
residues Ala, Leu, and Ile. In the case of π–π stacking interactions, aromatic rings of PKIs
interact with aromatic residues Phe, Tyr, and Trp. As can be seen from Table 1, a wide
spectrum of π–π stacking angles are sampled, ranging from parallel displaced to T-shaped
configuration, and everything in between. In this study, the coordinates for all motifs
of nonbonded interactions were directly extracted from the experimentally determined
X-ray crystal structures. Inside the protein, the conformation of the interacting pairs is
constrained by a multitude of forces. As a results, the extracted motifs of non-bonded
interactions are generally not in energetically optimal conformations that are achievable in
the gas phase, such as the perfect T-shaped or parallel-displaced configurations for π–π
stacking interaction pairs [13]. Motifs of cation–π interaction feature aromatic rings of PKIs
interacting with the positively charged side chains of the basic residue Lys. In motifs of
hydrogen bonding pairs, the backbone N and O atoms of residues in the hinge region are
involved in dual hydrogen bonding with H bond donors and acceptors of PKIs. This mir-
rors a major hydrogen bonding pattern for molecular recognition of FDA approved small
molecule protein kinase inhibitor drugs in protein kinases [12]. For motifs of salt bridges,
positively charged basic residue Lys and negatively charged acidic residues (Asp and Glu)
in protein kinases interact with oppositely charged functional groups of PKIs, respectively.

Molecules 2024, 29, x FOR PEER REVIEW 6 of 22 
 

 

However, the extent of such distortion is a matter of hot debate, with some seeing it as 
minor adjustments while others view it as significant. 

In a previous study, we established a pharmacophore model for ATP-competitive ki-
nase inhibitors [6]. According to this pharmacophore model, PKIs are a special class of 
small molecules that feature a scaffold of one or more aromatic rings that are linked with 
one or more hydrophilic functional groups. The former has the structural role of acting as 
a scaffold and the functional role of participating in nonbonded π-interactions (i.e., π–π 
stacking interactions, CH–π interactions, cation–π interactions, and XH–π interactions 
(XH = NH, SH, OH)) with hydrophobic regions I, II, and III (see Ref. [6] for details), and 
the adenine region. The latter ensure water solubility and form hydrogen bonds with the 
hinge region and other hydrophilic residues of the ATP binding pocket. This pharmaco-
phore model, to a large extent, functions as a blueprint to guide the selection of the 49 
binding motifs sampled here. As shown in Figure 1, in all 13 motifs of CH–π interactions, 
aromatic rings of PKIs interact with the CH groups of the aliphatic residues Ala, Leu, and 
Ile. In the case of π–π stacking interactions, aromatic rings of PKIs interact with aromatic 
residues Phe, Tyr, and Trp. As can be seen from Table 1, a wide spectrum of π–π stacking 
angles are sampled, ranging from parallel displaced to T-shaped configuration, and eve-
rything in between. In this study, the coordinates for all motifs of nonbonded interactions 
were directly extracted from the experimentally determined X-ray crystal structures. In-
side the protein, the conformation of the interacting pairs is constrained by a multitude of 
forces. As a results, the extracted motifs of non-bonded interactions are generally not in 
energetically optimal conformations that are achievable in the gas phase, such as the per-
fect T-shaped or parallel-displaced configurations for π–π stacking interaction pairs [13]. 
Motifs of cation–π interaction feature aromatic rings of PKIs interacting with the posi-
tively charged side chains of the basic residue Lys. In motifs of hydrogen bonding pairs, 
the backbone N and O atoms of residues in the hinge region are involved in dual hydrogen 
bonding with H bond donors and acceptors of PKIs. This mirrors a major hydrogen bond-
ing pattern for molecular recognition of FDA approved small molecule protein kinase in-
hibitor drugs in protein kinases [12]. For motifs of salt bridges, positively charged basic 
residue Lys and negatively charged acidic residues (Asp and Glu) in protein kinases in-
teract with oppositely charged functional groups of PKIs, respectively. 

CH–π Interactions    
1. 1H1Q 2. 4BDB 3. 2BTS 4. 2XIY 

    
5. 1UU9 6. 2IO6 7. 4GUE 8. 3OOG 

    
9. 4FKO 10. 3QL8 11. 4RC2 12. 4RC3 

    

Figure 1. Cont.



Molecules 2024, 29, 304 7 of 22
Molecules 2024, 29, x FOR PEER REVIEW 7 of 22 
 

 

13. 3QX4    

 

   

π–π Stacking Interactions    
14. 2V7O 15. 3I4B 16. 4DGO 17. 3QQF 

    
18. 3B2T 19. 3R6X 20. 4WG4 21. 1PXN 

   
 

22. 3ROY 23. 2C6O 24. 3RAK 25. 4EL9 

 
   

Cation–π Interactions    
26. 1PXL 27. 1FGI 28. 1M2Q 29. 2VGP 

    

30. 3OWP 31. 3SQQ 32. 3RJC 33. 3QTW 

    
H-Bonding    

34. 3SW4 35. 3ZLY 36. 3RZB 37. 3RPY 

  
  

    
    

Figure 1. Cont.



Molecules 2024, 29, 304 8 of 22
Molecules 2024, 29, x FOR PEER REVIEW 8 of 22 
 

 

38. 3R28 39. 3QZI 40. 3SXF 41. 2R3P 

    
Salt bridge    
42. 3MA3 43. 4L9I 44. 1NVQ 45. 4JIK 

    
46. 1BX6 47. 4WG4 48. 4MTA 49. 1E9H 

    
    

Figure 1. Motifs of nonbonded interactions between PKIs (labeled by the three-letter ligand IDs) and 
their interacting residues (labeled by the residue IDs) in a licorice representation with carbon, oxy-
gen, nitrogen, sulfur, hydrogen and chlorine atoms colored in cyan, red, blue, yellow, white and 
brown, respectively. The electric charges of constituting monomers are labeled for motifs of cation-
π and salt bridge interactions. All motifs have a spin multiplicity of 1. This figure is produced with 
the program VMD 1.9.3 [65]. 

2.2. Energies of Intermolecular Interactions Calculated at the CCSD(T)/CBS Level 
The strengths of the intermolecular interaction energies for all 49 motifs were calcu-

lated at both the gas phase and the solution phase. The former serves as the reference for 
benchmarking the DFT methods in the next subsection. The latter aims at a realistic eval-
uation of the strengths of the intermolecular interactions in the aqueous media where the 
actual biological interactions occur. Table 2 lists both the gas phase (∆E ( ) ) and the 
solution phase (∆E   ) intermolecular interaction energies for all 49 motifs. The gas phase 
interaction energies were calculated at the CCSD(T) level and extrapolated to the complete 
basis limit (CBS) via the two-point basis set extrapolation scheme [66,67], with the basis 
set superposition error (BSSE) corrections (see Section 3 for details). Following Equation 
(3), the CCSD(T)/CBS level interaction energy was obtained by Δ𝐸CBSCCSD( ) = Δ𝐸CBSMP2 +(Δ𝐸CCSD( ) − Δ𝐸MP2)|aug-cc-pVDZ. The first term Δ𝐸CBSMP2  defines the MP2 level interaction en-
ergy with complete basis set, and was evaluated using Equation (4) with the cc-pVTZ and cc-
pVQZ basis sets. The second term, commonly referred to as “coupled cluster correction” 
in the literature [68], was calculated using the aug-cc-pVDZ basis set. Given the demand-
ing scaling of the CCSD(T) method with the system size, the CCSD(T)/aug-cc-pVDZ pro-
tocol employed here represents what is computationally feasible currently for the large 
size motifs studied. It is important to note that achieving convergence for the “coupled 
cluster correction” term might necessitate a basis set more extensive than aug-cc-pVDZ 
[68]. In the case of benzene dimer, for example, the “coupled cluster correction” term for 
π–π stacking interactions evaluated at the CCSD(T)/aug-cc-pVDZ level deviates from that 
of “best estimate” CCSD(T)/CBS by approximately 0.1 kcal/mol [68]. The solution phase 

Figure 1. Motifs of nonbonded interactions between PKIs (labeled by the three-letter ligand IDs) and
their interacting residues (labeled by the residue IDs) in a licorice representation with carbon, oxygen,
nitrogen, sulfur, hydrogen and chlorine atoms colored in cyan, red, blue, yellow, white and brown,
respectively. The electric charges of constituting monomers are labeled for motifs of cation-π and salt
bridge interactions. All motifs have a spin multiplicity of 1. This figure is produced with the program
VMD 1.9.3 [65].

2.2. Energies of Intermolecular Interactions Calculated at the CCSD(T)/CBS Level

The strengths of the intermolecular interaction energies for all 49 motifs were cal-
culated at both the gas phase and the solution phase. The former serves as the refer-
ence for benchmarking the DFT methods in the next subsection. The latter aims at a
realistic evaluation of the strengths of the intermolecular interactions in the aqueous
media where the actual biological interactions occur. Table 2 lists both the gas phase
(∆Eg

CCSD(T)) and the solution phase (∆Eaq
int ) intermolecular interaction energies for all

49 motifs. The gas phase interaction energies were calculated at the CCSD(T) level and
extrapolated to the complete basis limit (CBS) via the two-point basis set extrapolation
scheme [66,67], with the basis set superposition error (BSSE) corrections (see Section 3 for
details). Following Equation (3), the CCSD(T)/CBS level interaction energy was obtained
by ∆ECCSD(T)

CBS = ∆EMP2
CBS +

(
∆ECCSD(T) − ∆EMP2

)
|aug−cc−pVDZ. The first term ∆EMP2

CBS de-
fines the MP2 level interaction energy with complete basis set, and was evaluated using
Equation (4) with the cc-pVTZ and cc-pVQZ basis sets. The second term, commonly re-
ferred to as “coupled cluster correction” in the literature [68], was calculated using the
aug-cc-pVDZ basis set. Given the demanding scaling of the CCSD(T) method with the
system size, the CCSD(T)/aug-cc-pVDZ protocol employed here represents what is com-
putationally feasible currently for the large size motifs studied. It is important to note
that achieving convergence for the “coupled cluster correction” term might necessitate
a basis set more extensive than aug-cc-pVDZ [68]. In the case of benzene dimer, for ex-
ample, the “coupled cluster correction” term for π–π stacking interactions evaluated at
the CCSD(T)/aug-cc-pVDZ level deviates from that of “best estimate” CCSD(T)/CBS by
approximately 0.1 kcal/mol [68]. The solution phase interaction energies were obtained
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indirectly by means of a thermodynamic cycle according to Equation (5) (see Theory
and Methods): ∆Eaq

int = ∆Eg
CCSD(T) + ∆EDeh. The dehydration energy ∆EDeh itself was

calculated utilizing the SM5.42R solvation model of Cramer and Truhlar [69].

Table 2. Intermolecular interaction energies (in kcal/mol) calculated at the CCSD(T)/CBS level for
the 3D binding motifs of protein kinase inhibitors in protein kinases.

No. Mode of
Interaction PDB ID Intermolecular Pair ∆Eg

CCSD(T)
(kcal/mol)

∆EDeh
(kcal/mol)

∆Eaq
int

(kcal/mol) a

1

CH–π

1H1Q 2A6. . .A31 −1.9 0.5 −1.4
2 4BDB ODO. . .L354 −2.2 0.4 −1.8
3 2BTS U32. . .I10 −2.4 0.8 −1.6
4 2XIY XIY. . .L174 −2.3 0.3 −2.0
5 1UU9 BI3. . .L88 −3.6 0.3 −3.3
6 2IO6 330. . .I374 −0.7 0.0 −0.7
7 4GUE QCT. . .L147 −3.4 0.7 −2.7
8 3OOG YTP. . .A70 −1.9 0.7 −1.2
9 4FKO 20K. . .I10 −2.3 0.0 −2.3
10 3QL8 X01. . .L134 −2.5 0.0 −2.5
11 4RC2 3O8. . .L174 −2.1 0.2 −1.9
12 4RC3 3OA. . .A56 −1.0 −1.0 −2.0
13 3QX4 X4B. . .L134 −1.0 0.1 −0.9

14

π–π
Stacking

2V7O DRN. . .F90 −1.3 0.0 −1.3
15 3I4B Z48. . .Y134 −1.0 0.3 −0.7
16 4DGO 0JW. . .F113 −4.4 1.6 −2.8
17 3QQF X07. . .F82 −2.4 0.7 −1.7
18 3B2T M33. . .Y566 −2.0 0.5 −1.5
19 3R6X X84. . .F82 −1.9 0.4 −1.5
20 4WG4 UWB. . .Y131 −0.6 0.3 −0.3
21 1PXN CK6. . .F82 −0.7 0.6 −0.1
22 3ROY 22Z. . .F82 −2.4 0.6 −1.8
23 2C6O 4SP. . .F82 −1.1 0.8 −0.3
24 3RAK 03Z. . .F82 −1.7 0.1 −1.6
25 4EL9 AFE. . .F79 −1.9 0.4 −1.5

26

Cation–π

1PXL CK4. . .K33 −6.5 5.3 −1.2
27 1FGI SU1. . .K514 −4.4 2.5 −1.9
28 1M2Q MNX. . .K68 −2.0 −0.3 −2.3
29 2VGP AD6. . .K180 −1.5 1.0 −0.5
30 3OWP 2SB. . .K72 −9.2 4.5 −4.7
31 3SQQ 99Z. . .K33 −2.1 0.8 −1.3
32 3RJC 06Z. . .K33 −2.1 0.5 −1.6
33 3QTW X3A. . .K89 −8.4 8.6 0.2

34

H-Bond

3SW4 18K. . .L83 −6.0 4.8 −1.2
35 3ZLY YSO. . .M146 −4.9 3.7 −1.2
36 3RZB 02Z. . .L83 −7.0 5.2 −1.8
37 3RPY 27Z. . .L83 −7.0 4.4 −2.6
38 3R28 XA0. . .L83 −4.8 4.0 −0.8
39 3QZI X72. . .L83 −4.6 0.6 −4.0
40 3SXF BK5. . .Y131 −3.8 3.1 −0.7
41 2R3P 3SC. . .L83 −6.1 3.3 −2.8

42

Salt bridge

3MA3 01I. . .K67 −111.0 102.6 −8.4
43 4L9I 8PR. . .D271 −100.3 94.5 −5.8
44 1NVQ UCN. . .E91 −100.0 98.6 −1.4
45 4JIK 1KO. . .D148 −115.9 112.2 −3.7
46 1BX6 BA1. . .E127 −68.2 67.5 −0.7
47 4WG4 UWB. . .E135 −92.6 87.5 −5.1
48 4MTA 2D2. . .K67 −106.6 99.4 −7.2
49 1E9H INR. . .K33 −101.5 98.5 −3.0

a The solution phase interaction energy was calculated via ∆Eaq
int = ∆Eg

CCSD(T) + ∆EDeh according to Equation (5).
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As shown in the fifth column of Table 2, the pairwise interactions between PKIs and
their targets are energetically favorable in the gas phase; all the calculated interaction ener-
gies are negative (attractive). For example, hydrogen bonding interactions exhibit energies
ranging from −7.0 to −3.8 kcal/mol, with an average of −5.5 kcal/mol. The energies for
salt bridge interactions span from an extraordinary −115.9 to −68.2 kcal/mol, averaging at
−99.5 kcal/mol. Non-bonded π-interactions have a smaller magnitude, with an average
gas-phase interaction energies of −2.1 kcal/mol, −1.8 kcal/mol, and −4.5 kcal/mol for
CH–π interaction, π–π stacking interactions, and cation–π interactions, respectively.

The last column of Table 2 presents the solution phase interaction energies for all
49 motifs, which sheds some light on the molecular recognition of PKIs in protein kinases.
All modes of nonbonded interactions in the 49 motifs display a favorable (negative) interac-
tion energy, making an energetically stabalizing contribution to the binding of PKIs with
protein kinases. Although the dispersion forces dominated CH–π interactions and π–π
stacking interactions are relatively weak in the gas phase in comparison with polar and
charged interactions (hydrogen bonding, salt bridge, and cation–π interactions), there is a
much lower (or near zero) energetic cost of dehydration involved. As a result, significant
interaction strengths remain in the aqueous phase for both CH–π interactions and π–π
stacking interactions. This agrees with our published findings that, in addition to hydrogen
bonding, aromatic rings of PKIs function as important molecular determinants for the
binding of PKIs with protein kinases. From the perspective of aromatic rings, hydrophobic
regions I, II, and III (see Ref. [6] for details), plus the adenine region, are the most relevant.
Those four regions are loaded with hydrophobic residues that can participate in nonbonded
π-interactions (i.e., π–π stacking interactions, CH–π interactions). The aliphatic residues
Ala, Val, Leu, and Ile in the hydrophobic regions of the ATP binding site can form CH–π
interactions with aromatic rings of PKIs. Additionally, aromatic residues Phe, Tyr, and Trp
can form π–π stacking interactions with aromatic rings of PKIs.

It is worth noting, from the perspective of methodology, the importance of including
dehydration energy in any theoretical treatment of nonbonded interactions. For example,
one particularly noteworthy observation involves the strength of salt bridge interactions,
which feature very strong gas-phase interaction energies of around −100 kcal/mol. While
these energies might appear extremely strong, it becomes evident that the dehydration
energy ∆EDeh is also substantial, roughly around 100 kcal/mol. Consequently, the aver-
age intermolecular interaction energies reduce from −99.5 kcal/mol in the gas phase to
−4.4 kcal/mol in the solution phase for salt bridge interactions. The same can be said about
other motifs of nonbonded interactions involving polar or charged species. The average
dehydration energies are 2.9 and 3.6 kcal/mol for cation–π interactions and hydrogen
bonding, respectively. This underlines the necessity of incorporating desolvation energy
corrections in any theoretical calculations aiming for a realistic modeling of ligand binding
in proteins.

2.3. Benchmarking of DFT Methods

Based on the gas phase interaction energies of 49 motifs of nonbonded interactions
calculated at the CCSD(T)/CBS level above, the performance of BLYP, TPSS, B97, ωB97X,
B3LYP, M062X, PW6B95, B2PLYP and PWPB95 functionals was benchmarked. As shown in
Table 3, these nine exchange-correction functionals span the entire spectrum of the Jacob’s
ladder, featuring two (meta-)GGAs, five (meta-)hybrid functionals, and two double-hybrid
functionals. Given the dual objectives of our performance benchmarking, i.e., accuracy and
efficiency (see the Introduction section), different algorithms of implementation for several
functionals are also evaluated. For functionals BLYP, TPSS, B97, B2PLYP, and PWPB95,
the Resolution of Identity (RI) approximation (also called Density Fitting) [70] is imple-
mented. In addition, the PW6B95 functional is implemented with the RIJCOSX approxima-
tion that uses density fitting for the Coulomb (J) integrals and numerical chain-of-sphere
integration for the HF Exchange integrals (COSX) [71]. For efficiency, B2PLYP and PWPB95
functionals were also implemented with the resolution of identity (RI) approximation for
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the perturbation step and RIJK (RI approximation is applied to both Coulomb and HF
Exchange integrals) [72] for the HF-SCF step. Basis set dependence was also studied system-
atically. For this purpose, the Ahlrichs def2 basis set family [31,73] was employed, includ-
ing def2-SVP (split valence), def2-TZVP (triple zeta valence), and def2-QZVP (quadruple
zeta valence).

Table 3. List of DFT methods.

Functional Implementation a HF Exchange b (%) Type c Ex. Functional
Corr Functional Ref.

BLYP RI BLYP 0 GGA Becke 1988
Lee-Yang-Parr 1988 [19,20]

TPSS RI TPSS 0 Meta-GGA TPSS
TPSS [21,74]

B97 RI B97 26.93 hybrid GGA B97-2
B97-3 [29,75]

ωB97X ωB97X 15.77 range-separated
hybrid-GGA

LRC hybrid
functionals [23]

B3LYP B3LYP 20 hybrid GGA Becke 1988
Lee-Yang-Parr 1988 [19,20]

M062X M062X 54 Meta-hybrid GGA M06-2X
M06-2X [26]

PW6B95
PW6B95

28 Meta-hybrid GGA PW6B95
PW6B95

[27]
RIJCOSX PW6B95

B2PLYP
RI B2PLYP

54 Double-Hybrid-GGA
Becke 1988 [19,20]

RIJK RI B2PLYP Lee-Yang-Parr 1988 [28]

PWPB95
RI PWPB95

50 Double-Hybrid-
Meta GGA

Perdew–Wang32 [76,77]

RIJK RI PWPB95 Becke9533 [29,78]
a: RI denotes the Resolution of Identity (RI) approximation [70]. RIJCOSX is an approximation that uses density
fitting for the Coulomb (J) integrals and numerical chain-of-sphere integration for the HF Exchange integrals
(COSX) [71]. “RI RIJK” stands for resolution of identity (RI) approximation for the perturbation step and RIJK (RI
approximation is applied to both Coulomb and HF Exchange integrals) [72] for the HF-SCF step. b: the percentage
of HF exchange in the functional. c: GGA denotes generalized gradient approximation.

Gas phase interaction energies for all 49 motifs of nonbonded interactions were cal-
culated according to Equation (1) for all nine exchange–correlation functionals listed in
Table 3. In order to compensate for the lack of adequate account of dispersion interac-
tions, the D3 level dispersion correction [30] is added for all DFT calculations. BSSE was
corrected by the Boys and Bernardi Counter Poise Method [79]. The resulting gas phase
interaction energies for each of the nine dispersion-corrected DFT methods, in combination
with basis sets def2-SVP, def2-TZVP, and def2-QZVP are tabulated in Tables S1–S3 of the
Supplementary Material section, respectively. It is worth noting that, for functionals with
various numerical algorithms of implementation, i.e., RI, RIJCOSX, and RI RIJK, there
was no noticeable difference in the calculated interaction energies from those calculated
with their corresponding original functionals. Hence, interaction energies are presented
only using the original functionals in Tables S1–S3. The same applies to all the subsequent
data analyses presented in all the tables and figures hereafter. As can be seen from the
Supplementary Tables S1–S3, a majority of the DFT methods, with dispersion corrections,
yielded interaction energies that are either identical or closely aligned with those obtained
from CCSD(T)/CBS calculations in the gas phase. This close agreement emphasizes the po-
tential utility of specific dispersion-corrected DFT methods as accurate yet computationally
efficient tools for modeling these critical biological interactions.

To conduct an in-depth assessment of the performance of the various DFT methods and
basis sets under consideration, we employed a series of statistical metrics for a comparative
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analysis against the benchmark CCSD(T)/CBS calculations. Specifically, we calculated the
Root Mean Square Deviation (RMSD), Mean Unsigned Error (MUE), Average Signed Error
(AVG), and the Maximum Deviation (MAX). RMSD serves as a widely accepted metric in
computational chemistry for performance evaluation, facilitating a meaningful comparison
between DFT-derived interaction energies and those ascertained via CCSD(T) calculations.
The MUE metrics offer additional insights into the primary discrepancies associated with
the DFT methods relative to the benchmark CCSD(T) values.

Table 4 elucidates the errors associated with the nine DFT methods in relation to the
benchmark CCSD(T)/CBS calculations. Overall, the MAE values are slightly less than
the RMSD values. This is not unexpected since RMSD penalizes large discrepancies more
severely while offering an excellent measure of overall accuracy. Conversely, MAE, though
less prone to outliers, overlooks the direction of errors (over/underestimation) and does not
penalize large errors as heavily as RMSD. The AVG values are even smaller. Although AVG
provides a simple measure of the error’s central tendency, it is easily skewed by outliers and
lacks information about the error distribution. The MAX% values are quite large, which
should not be a cause of alarm. That is because %MAX highlights the worst-case scenario
for individual predictions. To a large extent, the small magnitude of interaction energies for
several modes of nonbonded interactions (see Tables 2 and S1–S3) are responsible for the
large discrepancy in MAX%. So, we will focus on the RMSD values for our error analysis.
As can be seen from Table 4, the def2-QZVP basis set consistently outperformed its def2-
TZVP and def2-SVP counterparts. Notably, the most accurate RMSD value recorded was
0.46 kcal/mol, achieved using the B3LYP functional in combination with the def2-QZVP
basis set. The B3LYP/def2-TZVP combination yielded second best RMSD of 0.50 kcal/mol.
The third best RMSD value of 0.51 kcal/mol belongs to the double hybrid functional
B2PLYP with the def2-QZVP basis set. Interestingly, for a subset of DFT methods—namely
ωB97X, TPSS, B97, and PW6B95—the def2-QZVP and def2-TZVP basis sets yielded nearly
identical RMSD values. However, it is crucial to point out that these RMSD values were
considerably higher than those produced by the B3LYP and B2PLYP methods.

Table 4. Errors of the studied methods for 49 motifs with respect to the benchmark (CCSD(T)/CBS)
calculations.

DFT
Method

RMSD (kcal/mol) MAE (kcal/mol) AVG (kcal/mol) MAX%

def2-
QZVP

def2-
TZVP

def2-
SVP

def2-
QZVP

def2-
TZVP

def2-
SVP

def2-
QZVP

def2-
TZVP

def2-
SVP

def2-
QZVP

def2-
TZVP

def2-
SVP

BLYP 0.70 0.73 1.25 0.48 0.48 0.76 0.15 0.09 −0.28 33.2 34.0 38.1
TPSS 0.76 0.77 0.97 0.52 0.51 0.64 0.23 0.21 −0.09 39.7 41.2 38.5
B97 0.96 0.95 1.11 0.70 0.66 0.77 0.14 0.11 −0.18 50.4 51.3 51.0

ωB97X 0.75 0.77 0.88 0.43 0.43 0.55 0.23 0.20 0.01 43.1 43.5 39.8
B3LYP 0.46 0.50 0.96 0.29 0.32 0.55 0.08 0.05 −0.24 25.9 26.6 26.6
M062X 1.13 1.17 1.14 0.93 0.94 1.00 0.93 0.93 0.82 103.1 106.4 118.6
PW6B95 0.93 0.92 0.90 0.57 0.54 0.62 0.50 0.47 0.23 46.1 47.6 54.4
B2PLYP 0.51 0.66 0.93 0.35 0.45 0.75 0.32 0.45 0.50 26.9 43.4 76.3
PWPB95 0.98 1.07 1.05 0.68 0.74 0.79 0.67 0.74 0.65 51.7 61.9 86.5

RMSD: root mean square deviation. MAE: mean absolute error. AVG: average signed error. MAX%: the largest
percentage error in the set relative to the CCSD(T)/CBS interaction energy.

The basis set dependence is further illustrated in Figure 2. As depicted, the perfor-
mance of most DFT methods is closely tied to the sizes of the basis sets employed. Generally
speaking, the larger def2-QZVP basis set delivers superior results when compared to the
def2-TZVP basis set, which in turn outperforms the more diminutive def2-SVP basis set
across a majority of the DFT methods tested. While there are a few anomalies to this trend,
it is worth noting that the disparities in RMSD values calculated at the def2-QZVP and
def2-TZVP levels are negligible. This analysis accentuates the importance of carefully
selecting the appropriate basis set for electronic structure calculations, especially those
focused on delineating complex biological interactions. The demonstrated improvement in
performance with increasing basis set size suggests that for studies requiring a high degree
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of accuracy, the use of larger basis sets such as def2-QZVP is recommended, although the
computational cost must also be considered in the selection process.
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(in kcal/mol) for the nine DFT methods against those of CCSD(T)/CBS.

Figure 3 provides a more detailed and distributed analysis of the root-mean-square
deviation (RMSD) in calculated interaction energies as a function of modes of nonbonded
interactions across nine different DFT methods, each assessed at three distinct basis set
levels: def2-SVP, def2-TZVP, and def2-QZVP. Overall, the performance of all nine DFT
methods, as judged from the RMSD values, are generally much better for nonbonded
π-interactions (CH–π, π–π stacking, and cation–π interactions) than the polar and charged
interactions (hydrogen bonding and salt bridge interactions). Notably, Figure 3a unveils
an unexpected observation: a remarkably high RMSD for salt bridge interactions when
using methods like B3LYP, BLYP, PW6B95, PW6B95 RIJCOSX, RI B97, RI TPSS, and ωB97X,
coupled with the def2-SVP basis set. Intriguingly, for the def2-TZVP and def2-QZVP
basis sets, the highest RMSD is associated with hydrogen bond interactions. A careful
examination of detailed interaction energies as listed in Tables 2 and S1–S3 for hydrogen
bonded motifs uncovers two important characteristics of the errors. First, the computed
nonbonded interaction energy from all DFT approaches is significantly less negative than
the very attractive (negative) values obtained using the CCSD(T)/CBS method. Second,
there appears to be a consistent bias (positive difference between DFT and CCSD(T))
across all DFT techniques, as indicated by the strong resemblance between the magnitudes
of the mean unsigned error (MUE) and average error (AVG) and the root-mean-square
deviation (RMSD).
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Another dimension of consideration, particularly relevant for large biological sys-
tems, is the computational cost associated with DFT calculations. A delicate trade-off
exists between methodological accuracy and computational efficiency. The accuracy can be
quantified by RMSD values relative to the CCSD(T)/CBS benchmarks. The computational
cost is measured by CPU time. For equal configuration of computing hardware, all DFT
calculations were carried out on Dell workstations equipped with 2.7 GHz Intel Core i7
6820HQ CPU and 32 GB core memory. The ORCA program was executed in parallel on
four processors using the PAL4 command. CPU times are calculated as the average over
the entire set of 49 motifs of nonbonded interactions. Figure 4 presents a comparative
analysis of various DFT methods, evaluating them on the dual criteria of accuracy and
computational cost. The plot maps accuracy against CPU time (in min) for various imple-
mentations of the nine exchange-correlation functionals (see Table 2) coupled to def2-TZVP
and def2-QZVP basis sets. Lower RMSD values signify greater accuracy and short CPU
times indicate less computational expense. Consequently, the optimal DFT method would
ideally be situated in the lower-left quadrant of the plot, representing both high accuracy
and low computational cost. Based on these considerations, the B3LYP/def2-TZVP com-
bination, with an RMSD of 0.50 kcal/mol and an average CPU time of 27.7 min, aligns
closest with the criteria of achieving the lowest RMSD while also requiring the least CPU
time, making it the top performing choice under the metrics considered. For applica-
tions that require the highest accuracy, B3LYP/def2-QZVP offers the best RMSD value of
0.46 kcal/mol, but with an extremely high average CPU cost of 479.8 min. The next best
performing combination is RIJK RI-B2PLYP/def2-QZVP with an RMSD of 0.51 kcal/mol
and an averaged CPU time of 33.2 min. For applications that can tolerate a slight loss
of accuracy, the RIJK RI-B2PLYP/def2-TZVP combination (with a RMSD 0.66 kcal/mol)
has the advantage of consuming nearly one fourth of the CPU time (7.7/33.2) required by
RIJK RI-B2PLYP/def2-QZVP.

As pointed out earlier, for functionals with various numerical algorithms of imple-
mentation, i.e., RI, RIJCOSX, and RI RIJK, there was no noticeable difference in accuracy.
Remarkably, large differences in CPU time were observed. For example, the averaged
CPU time for RIJK RI B2PLYP/def2-QZVP and RI B2PLYP/def2-QZVP are 33.2 min and
444.2 min, respectively. This represents a CPU time reduction of 13.4 fold, which can
be a favorable factor of consideration for large biological systems like the PKI-bound
protein kinases.
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3. Theory and Methods
Quantum Chemical Calculation of Intermolecular Interaction Energies

Gas phase intermolecular interaction energy. The energies of intermolecular in-
teractions in the gas phase were calculated by means of the supramolecular approach.
In the supramolecular approach, the energy of interaction between molecules A and B is
defined as the difference between the energy of the interacting dimer and the energies of
the monomers:

∆Eg
int = EAB − EA − EB (1)

Nine DFT methods are employed to calculate the gas phase intermolecular interaction
energies according to Equation (1) for benchmarking purpose: BLYP [19,20], TPSS [21],
B97 [22], ωB97X [23], B3LYP [24,25], M062X [26], PW6B95 [27], B2PLYP [28] and
PWPB95 [29]. For each of the DFT methods, three basis sets are applied: def2-QZVP,
def2-TZVP, and def2-SVP [31,73]. It is well known that traditional pure DFT functionals
lack an account of dispersion interactions, and thus are inadequate for the treatment of
dispersion force dominated nonbonded interactions such as CH–π interactions and π–π
stacking interactions. To overcome this problem, the D3 level dispersion correction devel-
oped by Grimme [30] is applied. Specifically, the atom-pairwise dispersion correction with
the Becke–Johnson damping scheme (D3BJ) [80] is adopted. Here, the dispersion correction
is calculated as follows by adding over all atom pairs in the systems:

ED3(BJ)
disp = −1

2∑A ̸=B s6
CAB

6

R6
AB + [ f (R0

AB)]
6 + s8

CAB
8

R8
AB + [ f (R0

AB)]
8 (2)

where CAB
6 and CAB

8 are the averaged dispersion coefficients for the interacting atoms A
and B at sixth and eighth order. RAB represents internuclear distance between atom A and
atom B and Sn (n = 6, 8) are global scaling factors that are used to adjust the correction to
the repulsive behavior of the used DFT method [81].

In practical calculations, the coordinates of all atoms are taken directly from X-ray
crystal structures of the PKI-bound protein kinases. The positions of hydrogen atoms are
patched through geometry optimization calculations at the HF/6-31+G level using the
Gaussian 09 program [64]. All the DFT calculations are carried out using the ORCA 04 [33]
program. Last but not least, the basis set superposition error (BSSE) was corrected by the
Boys and Bernardi Counter Poise Method [79].
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The CCSD(T)/CBS Method. To establish a benchmarking reference, the CCSD(T)
method at the complete basis set is employed to calculate the gas phase intermolecular in-
teraction energy according to Equation (1). As mentioned in Section 2.1, the CCSD(T)/CBS
Method is widely regarded as the gold standard for treatment of intermolecular interaction
energies. Due to the high computational cost of CCSD(T) calculation, the complete basis
set (CBS) limit is achieved by means of an extrapolation scheme [14]. In that scheme,
the CCSD(T)/CBS level interaction energy is given by:

∆ECCSD(T)
CBS = ∆EMP2

CBS + (∆ECCSD(T) − ∆EMP2)
∣∣∣
small basis set

(3)

where ∆EMP2
CBS is the MP2 level interaction energy with complete basis set. It is calcu-

lated using the two-point basis set extrapolation scheme developed by Halkier and co-
workers [66,67]:

Ecorr,lim =
X3

X3 − (X − 1)3 Ecorr,X − (X − 1)3

X3 − (X − 1)3 Ecorr,X−1 (4)

where Ecorr,X is the correlation energy obtained with the correlation consistent basis set
(cc-pVXZ) with cardinal number (X = T and Q) and Ecorr,lim is the basis set limit value
of the correlation energy. The post-MP2 correction (∆ECCSD(T) − ∆EMP2), also known as
“coupled cluster correction”, is calculated using the augmented correlation consistent basis
set aug-cc-pVDZ.

Solution phase intermolecular interaction energy. The energy of intermolecular
interaction in the solution phase was evaluated indirectly by means of a thermodynamic
scheme. For a detailed description of the scheme, interested readers can refer to Refer-
ence [6]. According to the scheme, the binding energy for complex formation in the solution
phase can be evaluated indirectly by calculating intermolecular interaction energies in the
gas phase, ∆Eg

int , followed by a correction for the dehydration energy ∆EDeh:

∆Eaq
int = ∆Eg

int + ∆EDeh (5)

The dehydration energy for the complex formation is defined by:

∆EDeh = ∆Gsol
AB − ∆Gsol

A − ∆Gsol
B (6)

where ∆Gsol
i , i = AB, A, B represents the free energies of solvation for the complex AB,

and the monomers A, B, respectively. The SM5.42R Solvation Model of Cramer and
Truhlar [69] as implemented in the 2008 R1 version of GAMESS [82] was adopted for the
evaluation of those free energies of solvation. The SM5.42R model was chosen for its
reported improvement of accuracy in predicting solvation energies [69]. In comparison to
PCM and COSMO, it takes into account a wider range of solvent parameters, enabling a
more complex and in-depth description of solvent–solute interactions.

4. Conclusions

Accurate quantification of the strengths of nonbonded interactions in large biological
systems, like PKIs in their targeted proteins, is crucial for studying molecular recognition
of ligands in proteins. However, high-accuracy computational methods often come at a
substantial computational cost. This study navigates this trade-off by comprehensively
assessing nine density functional theory (DFT) methods for their ability to balance accuracy
and efficiency.

From a database of 2139 kinase–inhibitor crystal structures, we extracted a library of
49 diverse nonbonded interaction motifs, encompassing CH–π, π–π stacking, cation–π,
hydrogen bonding, and salt bridge interactions. Using CCSD(T)/CBS as reference, we
systematically benchmarked BLYP, TPSS, B97, ωB97X, B3LYP, M062X, PW6B95, B2PLYP,
and PWPB95 functionals with D3BJ dispersion correction alongside def2-SVP, def2-TZVP,
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and def2-QZVP basis sets. RI, RI-JK, and RIJCOSX approximations were employed for
specific functionals. The B3LYP/def2-TZVP combination emerges as the optimal choice,
demonstrating a balanced performance with an RMSD of 0.50 kcal/mol and an average
CPU time of 27.7 min. For applications demanding utmost accuracy, the B3LYP/def2-QZVP
combination excels in RMSD (0.46 kcal/mol) but incurs a significantly higher average
CPU cost of 479.8 min. The RIJK RI-B2PLYP/def2-QZVP combination provides a viable
alternative, achieving a balance with an RMSD of 0.51 kcal/mol and an averaged CPU
time of 33.2 min. Notably, the RIJK RI-B2PLYP/def2-TZVP combination, while slightly less
accurate (RMSD 0.66 kcal/mol), presents a substantial reduction in CPU time (7.7/33.2)
against RIJK RI-B2PLYP/def2-QZVP, making it advantageous for applications that can
tolerate a moderate loss of accuracy. Remarkably, different numerical implementations of
the same functional can drastically impact CPU time, with RIJK RI B2PLYP/def2-QZVP
requiring 13.4 times less time than RI B2PLYP/def2-QZVP.

These findings provide valuable insights for choosing the optimal DFT method for
studying nonbonded interactions in large biological systems, particularly when computa-
tional expense is a major concern. This work paves the way for robust, high-throughput
structure-based drug design targeting protein kinases through accurate modeling of critical
nonbonded interactions.

Moreover, the calculated CCSD(T) energies extend beyond this study, offering a
valuable benchmark for future testing of methods for calculating intermolecular interactions.
Furthermore, the established library of 3D motifs stands as a significant contribution itself,
providing a valuable resource for realistic molecular modeling of ligand binding with
protein in general.
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