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Abstract: In response to the need for improvement in the utilization of ammonium-rich solutions after
the electrochemical reduction of nitrate (NO3

−–RR), this study combined phosphorus-containing
wastewater and adopted the electrochemical precipitation method for the preparation of struvite
(MAP) to simultaneously recover nitrogen and phosphorus resources. At a current density of
5 mA·cm−2 and an initial solution pH of 7.0, the recovery efficiencies for nitrogen and phosphorus
can reach 47.15% and 88.66%, respectively. Under various experimental conditions, the generated
struvite (MgNH4PO4·6H2O) exhibits a typical long prismatic structure. In solutions containing
nitrate and nitrite, the coexisting ions have no significant effect on the final product, struvite. Finally,
the characterization of the precipitate product by X-ray diffraction (XRD) revealed that its main
component is struvite, with a high purity reaching 93.24%. Overall, this system can effectively
recover ammonium nitrogen from the NO3

−–RR solution system after nitrate reduction, with certain
application prospects for the recovery of ammonium nitrogen and phosphate.

Keywords: struvite; resource utilization; nitrogen recovery; phosphorus recovery; electrochemistry

1. Introduction

In recent years, the presence of large amounts of nitrate in surface water and ground-
water has posed a significant threat to the ecological environment and human health [1–3].
Removing nitrates from environments such as surface water and groundwater is crucial
for preventing such problems. Among them, electrochemical methods have emerged as a
promising technique for nitrate treatment due to their simplicity, high efficiency, and lack
of secondary pollution [4–6].

The main products of the electrochemical reduction of nitrate are mainly nitrogen
gas (N2) or ammonium nitrogen (NH4

+–N) [7,8]. Nitrogen gas is formed and directly
released into the air in a non-toxic and harmless form, while the utilization form and
pathway of ammonium nitrogen existing in the solution need to be improved. Ammonia
stripping, ion exchange, membrane separation, crystallization precipitation, and other
technologies are commonly used for ammonia nitrogen recovery [9,10]. Among them,
the crystallization precipitation method of struvite has become a promising method for
recovering ammonia nitrogen due to its advantages of simple operation, high efficiency,
and effective reduction in treatment costs [11,12]. For instance, Huang demonstrated the
feasibility of simultaneously recovering phosphate and removing ammonia nitrogen from
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piggery wastewater using a coupled electrochemical process. Under optimal experimental
conditions, the removal rate of ammonia nitrogen in wastewater can exceed 90% [13]. Kruk
reported that struvite precipitation using a magnesium sacrificial anode as the source of
magnesium allowed actual phosphorus removal and direct recovery as struvite [14]. The
electrochemical precipitation method for preparing struvite not only enables the effective
recovery of ammonia nitrogen but also removes phosphate from wastewater.

Therefore, combining the ammonia nitrogen solution after NO3
−–RR with phosphorus-

containing wastewater to construct an electrochemical struvite crystallization precipitation
process system not only efficiently utilizes low-grade ammonia nitrogen but also achieves
phosphorus removal, thereby achieving the synergistic and efficient treatment of ammonia
nitrogen and phosphate. The resulting struvite precipitate can also serve as a slow-release
agricultural fertilizer [15,16], enhancing the economic viability of the recovery process system.

This study intended to utilize this electrochemical method to investigate the effects of
factors such as the current density, initial pH, and coexisting ions on the recovery of the
ammonia nitrogen solution after NO3

−–RR and the formation of the struvite precipitate.
Key parameters affecting the process flow were evaluated from the aspects of nitrogen and
phosphorus recovery rates and the purity of the struvite precipitate, and XRD and SEM
were used for the characterization and analysis of the precipitated crystals. The successful
application of the recovery process system achieved the efficient removal of phosphate
in phosphorus-containing wastewater and the high-efficiency recovery and utilization of
ammonia nitrogen resources in the solution after nitrate reduction, providing new insights
for the development of ammonia nitrogen resource recovery technology.

2. Results and Discussion
2.1. The Impact of the Current Density

The current density determines the rate at which magnesium ions are dissolved from
the magnesium electrode, directly affecting the ratio of magnesium ions to nitrogen and
phosphorus concentrations in the solution, thereby influencing the efficiency of struvite
precipitation in the solution [17,18]. Therefore, the influence of the current density on
the recovery of nitrogen and phosphorus resources and the purity of the formed struvite
was studied by the electrochemical precipitation method in 50 mL of a mixed solution
of 160 mg·L−1 NH4

+–N and 176 mg·L−1 PO4
3−–P. The experimental conditions were as

follows: initial pH: 7.0; initial PO4
3−–P concentration: 176 mg·L−1; concentration of other

coexisting ions: 0 mg·L−1. The experimental results are shown in Figure 1.
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In Figure 1a,b, it can be observed that with the increase in the current density, the
concentrations of PO4

3−–P and NH4
+–N decrease with time. This is because, at higher

current densities, more magnesium ions are released from the magnesium anode within
the same period, prompting the struvite precipitation reaction to move in the positive
direction. Therefore, the rate of formation of struvite when combining ammonium nitrogen
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and phosphate in the solution is faster. Comparatively, at a higher current density, the
slope of the ion concentration change curve is greater, indicating a faster recovery rate of
phosphate and ammonium nitrogen. From the figure, it can be seen that as the current
density increases from 3 mA·cm−2 to 7 mA·cm−2, the recovery rates of ammonium nitrogen
and phosphate also increase accordingly. A purity analysis of the precipitates formed at
different current densities (Figure 1c) shows that as the current density increases, the purity
of the precipitate decreases from 94.08% to 86.02%. An excessive current density may have
a negative impact on electrolysis efficiency. The hydrogen evolution reaction occurring
at the cathode increases the pH near the cathode, and the oxidation reaction at the anode
leads to corrosion, with the formation of a stable oxide layer on the anode surface causing
passivation effects. This passivation effect increases resistance, ultimately leading to higher
operating costs and reduced electrolysis efficiency [19,20]. Although the purity of the
precipitates is highest at a current density of 3 mA·cm−2, achieving the same recovery rate
requires a longer time, increasing the energy consumption of the reaction.

Additionally, the characterization of the precipitates was conducted via XRD analysis
(Figure 2), revealing that the peak positions and intensities of the XRD patterns of the
precipitates closely match those of standard struvite, indicating the presence of struvite
in all precipitates under various experimental conditions. This confirms the formation
of struvite precipitates in the electrochemical system. Moreover, at a current density of
5 mA·cm−2, the peak intensity of struvite is higher and sharper, suggesting the highest
degree of crystallinity at this current density.
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Through a study at different current densities, it was found that at a current density of
5 mA·cm−2, the struvite purity is highest, accompanied by maximum electrolysis efficiency
and minimal energy consumption. Therefore, a current density of 5 mA·cm−2 was selected
for subsequent experiments.

2.2. The Impact of the Initial pH

The initial pH of the solution is an important indicator affecting the electrochemical
precipitation method for the struvite recovery of nitrogen and phosphorus resources.
Different forms of NH4

+ and PO4
3− ions exist at different pH values, leading to differences

in the types and morphologies of the precipitated products [21,22]. The influence of
the initial pH on the electrochemical precipitation method for the struvite recovery of
nitrogen and phosphorus resources was investigated, with an initial current density of
5 mA·cm−2, electrolysis time of 50 min, initial PO4

3−–P of 176 mg·L−1, and other coexisting
ion concentrations of 0 mg·L−1. The experimental results are shown in Figure 3.
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With the variation in the initial solution pH, there is no significant change in the
phosphate concentration in the solution, and at the end of the 50 min reaction, it decreases to
similar values (Figure 3a). However, the decrease in the ammonium nitrogen concentration
shows a trend of initially increasing and then decreasing with the increase in the initial
pH, reaching the maximum recovery rate at pH = 7.0 (Figure 3b). This is mainly due to the
relationship between the decrease in phosphate and ammonium nitrogen concentrations
and the conditional solubility product of struvite. At higher pH values, Mg2+ reacts with
OH− in the solution to generate Mg(OH)2 precipitates, while NH4

+ reacts with OH−

to generate NH3, thereby affecting the recovery efficiency of ammonium nitrogen and
phosphate [23].

In Figure 3c, it can also be observed that the purity of struvite in the final precipitate
shows a trend of initially increasing and then decreasing with the increase in the initial pH,
which is consistent with the variation trend of the ammonium nitrogen concentration in the
solution. At a lower pH of 6.5, phosphorus (P) mainly exists in the form of H2PO4

− and
HPO4

2− in the solution [24,25], which does not reach the optimal conditions for producing
struvite precipitates, resulting in a slower rate of struvite crystallization and possibly the
precipitation of other phosphate by-products such as Mg(H2PO4)2. However, when the
initial pH is above 7.0, the concentration of OH− in the initial reaction solution increases,
leading to a final solution pH greater than 10 after the reaction. At this point, P mainly exists
in the form of PO4

3−, and the pH exceeds the optimal pH for struvite formation [26]. This
may also result in the appearance of other by-products, such as Mg(OH)2 and Mg3(PO4)2,
and the ammonium nitrogen in the solution may combine with OH− to form ammonia gas,
leading to a decrease in the purity of the final struvite [23].

As shown in Figure 4a, the peak positions and heights of the XRD patterns of various
precipitates are similar to those of standard struvite, indicating that struvite was formed
in the precipitates under various experimental conditions, and the peak intensity gradu-
ally decreased with increasing pH. An SEM characterization analysis of the precipitates
(Figure 4b–f) revealed that the precipitates exhibited typical elongated prismatic structures.
With increasing pH, a small number of blocky crystals gradually appeared, consistent with
literature reports [27].

At an initial solution pH of 7.0, the efficient and rapid recovery and conversion of
phosphate and ammonium nitrogen resources can be achieved. Therefore, pH = 7.0 was
chosen for subsequent experiments.
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2.3. The Impact of Coexisting Ions in Nitrate Reduction Wastewater

In previous studies, the electrochemical reduction of nitrate has effectively treated
nitrate-containing wastewater. The main reaction products are primarily present in the
solution in the form of ammonium nitrogen (NH4

+–N), but there are also small amounts of
unreacted nitrate (NO3

−–N) and nitrite (NO2
−–N). Therefore, the influence of coexisting

ions in the solution after the electrochemical reduction of nitrate on the electrochemical pre-
cipitation preparation of struvite for nitrogen and phosphorus recovery was investigated.

2.3.1. The Effect of Nitrate

The influence of the nitrate concentration in the solution after the electrochemical reduc-
tion of nitrate is relatively small. Therefore, the effect of 0, 5, 10, 15, and 20 mg·L−1 NO3

−–N
on the preparation of struvite by the electrochemical precipitation method was investigated.

In Figure 5a,b, it can be observed that the addition of nitrate has little effect on the final
recovery rate of phosphate, but as the concentration of nitrate increases, the recovery rate
of phosphate decreases to some extent. This may be because the presence of nitrate during
the formation of struvite crystals affects the binding of phosphate to ammonium nitrogen,
and the slowed recovery rate leads to the occurrence of other side reactions during the
formation of struvite crystals, resulting in phosphate precipitation. With the addition of
nitrate, the recovery rate of ammonium nitrogen also remains largely unchanged, but it
does have a noticeable impact on the recovery rate. The higher the concentration of nitrate,
the more significant the slowdown in the recovery rate of ammonium nitrogen. This may
be because nitrate, being negatively charged, hinders the binding of positively charged
ammonium nitrogen to phosphate, thereby affecting the rate of formation of struvite crystal
precipitates, resulting in a slight decrease in struvite purity (Figure 5d). Figure 5c shows
the change in NO3

−–N concentration during the electrochemical precipitation process.
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There is no significant change in the concentration of NO3
−–N during the reaction process,

indicating that NO3
−–N does not participate in the electrochemical reaction. The XRD

analysis in Figure 6 indicates that struvite is present in all precipitates.
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2.3.2. The Effect of Nitrite

In the solution, after the electrochemical reduction of nitrate, there are still some
unreacted intermediate products: nitrites. Therefore, the influence of 0, 10, 15, 20, and
30 mg·L−1 NO2

−–N on the preparation of struvite by the electrochemical precipitation
method was investigated.

As shown in Figure 7a,b, with the increase in nitrite concentration, there is no signifi-
cant impact on the recovery rate of phosphate. However, the presence of nitrite ions affects
the recovery rate of ammonium nitrogen, but it has little effect on the final recovery rate of
ammonium nitrogen. That is, the negatively charged NO2

−–N has a certain inhibitory effect
on the binding of phosphate ions to ammonium nitrogen, resulting in a slight decrease in
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the final struvite precipitate purity (Figure 7d). Figure 7c indicates that there is little change
in the concentration of NO2

−–N during the reaction process, indicating that NO2
−–N does

not participate in the electrochemical precipitation reaction. The XRD analysis in Figure 8
shows that struvite is present in all precipitates.
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In the presence of coexisting NO3
− and NO2

− ions, the recovery rates for nitrogen
and phosphorus were not significantly affected. However, the coexisting ions may slightly
decrease the purity of the struvite precipitation product.

2.4. The Impact of Coexisting Metal Cations

In the process of treating phosphorus-containing wastewater and recovering ammonia
nitrogen to form struvite, the presence of coexisting metal cations in actual wastewater
should be considered. The presence of metal ions may affect the interactions between ions,
and the extent of their interaction with struvite depends on the contents of elements at
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competitive sites [28]. Therefore, the effects of common coexisting metal cations (including
Ca2+, Ni2+, Mn2+, and Co2+) [29,30] in phosphate wastewater were studied on the electro-
chemical precipitation method for preparing struvite. The experimental conditions were as
follows: initial current density of 5 mA·cm−2; initial pH: 7.0; initial PO4

3−–P concentration:
176 mg·L−1. The experimental results are shown in Figure 9.
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As shown in Figure 9a, the addition of Ca2+ and Co2+ resulted in a slight decrease
in the recovery rate of phosphate, while the addition of Ni2+ and Mn2+ led to a certain
degree of improvement in the phosphate recovery rate. Additionally, after the addition of
coexisting metal cations, the recovery rate of ammonia nitrogen showed varying degrees of
decrease, as shown in Figure 9b. When Ca2+ is present in the solution, the proportion of
Mg2+ decreases, possibly leading to competition with Mg2+ and competitive reactions with
phosphate to form calcium phosphate compounds such as Ca3(PO4)2 precipitates, affecting
the purity of struvite [31–33]. Ni2+ in the solution competes with Mg2+, reacts with NH4

+–
N and PO4

3−–P, and also undergoes enrichment and adsorption on the surface of struvite,
resulting in the precipitation of NiNH4PO4·6H2O (Ni-MAP) and Ni3(PO4)2 [34]. After the
addition of Ni2+, the concentrations of phosphate and ammonia nitrogen showed increasing
trends at the 50th minute of the reaction, which may be due to the easier combination
of Ni2+ with phosphate to form precipitates, leading to the decomposition of the formed
struvite precipitate and thus affecting the purity of the final struvite precipitate. When
preparing struvite by electrochemical precipitation in a solution containing Mn2+, struvite
can act as an adsorbent and adsorb Mn2+ into the lattice, inhibiting the growth of struvite
by adsorbing Mn2+ on the surface of struvite crystals or nuclei, thereby affecting the purity
of the struvite precipitate [29]. The addition of Co2+ only affected the recovery rate and
efficiency of phosphate and ammonia nitrogen and had little effect on the purity of the
struvite precipitate [35], as shown in Figure 9c.

Figure 10a–d show SEM images illustrating the effects of coexisting metal cations on
the precipitate. Figure 10a displays the elongated prismatic crystal structures formed in
the presence of Ca2+, with many small particles appearing on the surface, which may be
precipitates such as Ca3(PO4)2 generated by side reactions [36]. Figure 10b shows the SEM
image in the presence of Ni2+, which not only affects the structure of struvite crystals but
also produces a small number of fine particles on the surface, collectively impacting the
purity of struvite due to the co-precipitation of these by-products [37]. In the presence of
Mn2+, additional blocky particles are generated due to other side reactions between Mn2+

and PO4
3− and OH− in the solution, occurring simultaneously with the crystallization

precipitation reaction and competing with each other (Figure 10c) [38]. Figure 10d depicts
the SEM image in the presence of Co2+, where the precipitate also exhibits elongated
prismatic structures similar to those without added metal ions, indicating that the added
ions have minimal effect on the crystal structure of struvite, corresponding to the purity of
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struvite obtained from the tests [39]. Figure 10e shows XRD patterns of the precipitates,
revealing a decrease in the peak intensity of each precipitate after the addition of metal ions.
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The presence of metal cations can have a greater impact on the purity and morphology
of struvite products compared to the absence of added metal cations.

Using the electrochemical precipitation method to prepare struvite for recovering the
ammonia-rich solution after NO3

−–RR achieved a good recovery effect and transformed it
into valuable struvite resources. At different current densities, nitrogen and phosphorus
resources can be effectively recovered, and the purity of struvite is relatively high, indicating
the feasibility of this method. Compared to other initial pH values (6.5, 7.5, 8.0, 8.5), a
neutral environment is more conducive to the generation of the struvite precipitate. This is
because this pH value can achieve the optimal pH value for struvite crystallization and
precipitation. In the presence of different initial concentrations of nitrates and nitrites, the
purity of the struvite precipitate is hardly affected. This also demonstrates that the method
can effectively recover ammonia resources from the rich ammonia solution after nitrate
reduction. The presence of coexisting metal ions has little effect on the crystal form of
the struvite precipitate, but the purity decreases significantly. This is because metal ions
compete with Mg2+ in the solution, leading to other side reactions and precipitation. This
study demonstrated the feasibility of resource utilization in treating ammonia-containing
solutions after the electrochemical reduction of nitrates, reducing phosphate pollution in
wastewater, and synthesizing valuable struvite resources, thus achieving economic benefits.

3. Potential Implications

The research above shows that the electrochemical precipitation method can efficiently
recover and utilize ammonia nitrogen resources after the electrochemical reduction of
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nitrate and can also effectively treat phosphorus-containing wastewater. Coupling this
technology system with the electrochemical nitrate reduction system can improve the
economics of the process.

Currently, the international market price of struvite is approximately USD 215.22 per
ton of MAP (with a nitrogen content of 5.7%), equivalent to about USD 3.74/kg N, while
the price of ammonium nitrogen is only USD 138.60 per ton (with a nitrogen content of
21%), equivalent to about USD 0.69/kg N [40]. Therefore, recycling ammonia nitrogen
resources in the form of struvite is economically valuable and environmentally friendly. This
technology not only achieves high-value transformation but also produces struvite, which
can serve as a source of slow-release, high-quality fertilizer for agricultural applications.

4. Materials and Methods
4.1. Materials

Ammonium chloride (NH4Cl, AR), Dipotassium hydrogen phosphate (K2HPO4·3H2O,
AR), Potassium hydroxide (KOH, AR), Hydrochloric acid (HCl, 1 M), Potassium nitrate
(KNO3, AR), Potassium nitrite (KNO2, AR), Anhydrous calcium chloride (CaCl2, AR),
Nickel chloride (NiCl2, AR), Manganese chloride (MnCl2, AR), and Cobalt chloride (CoCl2,
AR) were obtained from Tianjin Kermel Chemical Reagent Co., Ltd. (Tianjin, China).

4.2. Characterization

X-ray diffraction (XRD, Rigaku SmartLab SE, Akishima, Japan) with a Cu-Kα radi-
ation source (λ = 1.5418 Å) was used to analyze crystals loaded on copper foam. The
morphology and chemical compositions of the samples were analyzed using scanning
electron microscopy (SEM, TESCAN MIRA LMS, Brno, Czech Republic).

4.3. Experimental Apparatus

The electrochemical experimental setup used is depicted in Figure 11. The setup
mainly consists of a DC power supply, electrolysis cell, thermostatic water bath, and pH
meter. The anode employed is a magnesium electrode (composed of magnesium alloy plate
with magnesium content of 98%) with dimensions of 20 mm × 20 mm × 2 mm. The cathode
is made of stainless steel and has dimensions of 20 mm × 20 mm × 2 mm. The volume of
the apparatus is 100 mL. All experiments were conducted using a constant-temperature
water bath to maintain a constant temperature of 25 ◦C.
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4.4. Experimental Method

For the experiments on electrochemical precipitation for struvite formation, a constant
current was provided by a DC power supply. The anode employed is a magnesium
electrode, and the cathode is made of stainless steel. The simulated wastewater comprised
a mixed solution containing 160 mg N L−1 NH4Cl and 176 mg P L−1 K2HPO4 in a final
volume of 50 mL (The initial ammonia nitrogen concentration was fixed at 160 mg N L−1

NH4
+). The experiments were conducted for 50 min at a constant temperature of 25 ◦C
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and a stirring rate of 200 rpm. Batch experiments were conducted to investigate the
effects of the current density, initial pH, coexisting nitrates and nitrites, and coexisting
metal ions on the recovery of nitrogen and phosphorus resources through electrochemical
precipitation for struvite formation, and the optimal operating parameters were obtained.
Every 10 min, 0.2 mL was taken from the solution for NH4

+–N and PO4
3−–P concentration

analysis. The determination of ammonia nitrogen was carried out using the indophenol
blue spectrophotometric method, while phosphate analysis was performed using the
ammonium molybdate spectrophotometric method. The conversion rates were calculated
using the following equations:

R(PO 3−
4 –P) =

C0(PO 3−
4 –P)− Ct(PO 3−

4 –P)

C0(PO 3−
4 –P)

× 100% (1)

R(NH+
4 –N) =

C0(NH+
4 –N)− Ct(NH+

4 –N)

C0(NH+
4 –N)

× 100% (2)

where C0(PO4
3−–P) and Ct(PO4

3−–P) represent the initial concentration and the concentra-
tion of PO4

3−–P in the solution (expressed in terms of P) at the time of observation, mg L−1.
C0(NH4

+–N) and Ct(NH4
+–N) represent the initial concentration and the concentration of

NH4
+–N in the solution (expressed in terms of N) at the time of observation, mg L−1.
In the experiment for determining the purity of struvite, the precipitate obtained after

the completion of the experiment was filtered and collected. The collected precipitate was
dried at room temperature for 48 h. A certain mass of the precipitate was weighed and
dissolved in a hydrochloric acid solution. The solution was then diluted to a certain volume
and mixed evenly, and the concentration of NH4

+–N in the solution was detected at this
point, calculated using Equation (3):

ω =
C × V × MMAP

m × MN
× 100% (3)

where C is the concentration of ammonia nitrogen, mg L−1; V is the final volume, 50 mL;
MMAP is the molar mass of struvite, 245 g mol−1; m is the mass of the collected precipitate,
mg; and MN is the molar mass of nitrogen, 14 g mol−1.

5. Conclusions

In this study, the electrochemical precipitation method was used to efficiently recover
ammonia nitrogen and phosphate resources in the form of struvite while achieving the
efficient recovery and utilization of the ammonia-rich solution after NO3

−–RR. Under the
optimal experimental conditions of a current density of 5 mA·cm−2 and an initial pH of
7.0, the phosphate conversion rate was 88.66%, the ammonia nitrogen conversion rate
was 47.15%, and the purity of the precipitated struvite reached 93.24%. Additionally, the
coexistence of NO3

−–N and NO2
−–N ions in the wastewater after the electrochemical

reduction of nitrates has no significant effect on the electrochemical precipitation of stru-
vite for nitrogen and phosphorus recovery, demonstrating the feasibility of this recovery
process. However, the presence of metal cations significantly affects the purity of struvite
precipitation. This study demonstrates the feasibility of reducing phosphate pollution
in wastewater by treating ammonia-containing solutions after nitrate electrochemical re-
duction, synthesizing valuable struvite resources, and thus obtaining economic benefits,
providing a new pathway for the recovery and utilization of ammonia nitrogen resources
in NO3

−–RR.
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