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Abstract: In this work, we report on the synthesis and characterization of six new iridium(III)
complexes of the type [Ir(CˆN)2(NˆN)]+ using 2-phenylpyridine (C1–3) and its fluorinated derivative
(C4–6) as cyclometalating ligands (CˆN) and R-phenylimidazo(4,5-f )1,10-phenanthroline (R = H, CH3,
F) as the ancillary ligand (NˆN). These luminescent complexes have been fully characterized through
optical and electrochemical studies. In solution, the C4–6 series exhibits quantum yields (ϕ) twice
as high as the C1–3 series, exceeding 60% in dichloromethane and where 3MLCT/3LLCT and 3LC
emissions participate in the phenomenon. These complexes were employed in the active layer of
light-emitting electrochemical cells (LECs). Device performance of maximum luminance values of up
to 21.7 Lx at 14.7 V were observed for the C2 complex and long lifetimes for the C1–3 series. These
values are counterintuitive to the quantum yields observed in solution. Thus, we established that the
rigidity of the system and the structure of the solid matrix dramatically affect the electronic properties
of the complex. This research contributes to understanding the effects of the modifications in the
ancillary and cyclometalating ligands, the photophysics of the complexes, and their performance in
LEC devices.

Keywords: iridium; LEC; phenylimidazo(4,5-f )1,10-phenanthroline; photophysical

1. Introduction

Ionic transition metal complexes (iTMCs) based on iridium(III) have been widely used
in OLED (Organic Light Emitting Diodes) or LEC (Light Emitting Electrochemical Cells)
devices due to their attractive photochemical and photophysical properties [1–4]. These
complexes present a strong ligand field and an efficient spin-orbital coupling (SOC) leading
to high emission quantum yields and long triplet excited state lifetimes [4].

Regarding electroluminescent devices, OLEDs possess an intricate multilayer structure
and require elaborate processing methods, rendering them challenging to produce at
lower costs [5–7]. Due to these limitations, LECs could be one of the most promising
lighting devices in terms of architectural simplicity, which leads to reduced production
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costs and enhanced processability, thereby fostering rapid development. In their simplest
configuration, these devices comprise a single active layer placed between a transparent
anode and an air-stable cathode. In this context, significant results have been obtained
using iTMC as active layer [3,8]. Another advantage of LEC active components is their
solubility in common solvents [9], which allows their application at the anode by simple
techniques such as spin-coating. Due to the high solubility range, various types of ionic
additives, such as polyelectrolytes (PI) or ionic liquids (IL), can be also incorporated to
improve device performance due to ionic mobility [10,11].

The most common complexes employed in LEC devices are based on [Ir(CˆN)2(NˆN)]+,
where CˆN is a cyclometalating ligand, such as 2-phenylpyridine (ppy), and NˆN is an
ancillary ligand, such as bipyridine (bpy) or 1,10-phenanthroline (phen) derivatives. Due
to the localization of the frontier orbitals onto these ligands, structural variations play a
significant role in color tuning and emission efficiency in optoelectronic devices [12]. In
general, the ligands can be modified with the purpose of stabilizing or destabilizing the
frontier orbitals, changing the HOMO-LUMO energy gap (H-L gap), and therefore the dif-
ferent electronic properties and emission energy. For example, the use of NˆN ligands with
high rigidity and electron delocalization, such as ligands derived from phenylimidazo(4,5-
f )-1,10-phenanthroline, affects the LUMO energy due to an increase in the acceptor π*
character [13–15]. Ligands with electron-donating substituents increase the LUMO energy,
while electron-withdrawing substituents have the opposite effect [16–18]. In this way, com-
plexes with NˆN ligands derived from 2-phenyl-1H-imidazo-(4,5-f )-1,10-phenanthroline
exhibit high electron delocalization, showing high emissions and longer excited state
lifetimes, a sought-after feature for electroluminescent devices [19,20].

Although numerous reports of LECs have displayed performance in terms of effi-
ciency, stability, and brightness [21,22], the challenge persists in identifying systems that
effectively integrate these parameters. Based on the above and to explore solid-state light-
ing with a simple system based on Ir-iTMC, this work presents the development of six
new LEC devices based on Ir(III) complexes using cyclometalated ligands derived from 2-
phenylpyridine and ancillary ligands derived from 1H-imidazo-(4,5-f )-1,10-phenanthroline.
The properties of these complexes allow us to propose them as effective and promising
active layer luminescent materials for artificial lighting applications.

2. Results and Discussion
2.1. Synthesis and Characterization of Compounds

The synthesis of the ancillary ligand (NˆN) was carried out starting from 1,10-phenanthrolin-
5,6-dione as a precursor, as reported by Eisenberg and Paw [23], resulting a reddish solid in the
case of the three ligands, after column purification, with a yield close to 50%. The obtention and
purity of these compounds were corroborated by NMR spectroscopy. For further details, see
the Supporting Information.

Iridium (III) complexes C1–C6 were synthesized following a general protocol
(Figure 1), where IrCl3 x H2O reacts with the cyclometalated ligand, it forms the re-
spective dimers corresponding to 2-phenylpyridine (ppy) in case of C1–C3 complexes
or 2-(2′,4′-difluorophenyl)pyridine (F2ppy) in case of C4–C6, by Nonoyama reaction [24].
Subsequently, this dimer reacted with the L1–3 ligand to give the expected monomer, which
later is precipitated as PF6-salt, favored with the addition of the respective equivalent of
KPF6 and reaction with dimer.

The dimer intermediates obtained were confirmed by NMR, finding 16 and 12 signals
in the aromatic zone that correspond to ppy and F2ppy ligands, respectively, which agree
in terms of displacement and multiplicity as already reported [24]. Finally, complexes C1–6
were structurally characterized by NMR, FT-IR, and HRMS evidencing the obtention of the
compounds. The characterization confirms the monometallic structure shown in Figure 1,
with two cyclometalated and one ancillary ligand. The complexes were obtained with
a yield between 63 and 70%, like the analogous complex with the phenatroline derivate
ligand. When comparing the 1H-NMR spectroscopy for C1, and its respective dimer and
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NˆN ligand (Figure 2), a clear shift for hydrogens adjacent to the Ir-N bond in L1, labeled
as 1, is observable, from 8.99 ppm to 8.35 ppm. This behavior verifies its inclusion in
the final complex. Likewise, for ([Ir(ppy)2(µ-Cl)2], the lowest field signals, (labeled h/p)
a clear up-shift is noticeable due to proximity to another Ir-N bond in the final complex
(9.81/9.53 ppm to 7.75 ppm). A loss of the asymmetry present in the dimer implies cleavage
of the bridging chlorine atoms, as only one of the sets of symmetrical Ir(ppy)2 signals is
present in the C1 complex.
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Figure 2. RMN of L1 (top), dichloro-bridged iridium intermediate (middle) and complex C1 (bottom).

For all complexes, the characterization by infrared spectroscopy shows the characteris-
tic bands of PF6 counterion around 843 and 557 cm−1 [25].

The characterization of all complexes within the same series via NMR spectroscopy
does not exhibit significant differences among the various complexes, primarily due to
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the high symmetry inherent in this system, as depicted in Figure 2 for C1. However, in
the aliphatic region, complexes C2 and C5 display singlets at 2.37 ppm and 2.43 ppm,
respectively. This observed distinction aligns with the electron-withdrawing effect of
2-(2′,4′-difluorophenyl), as evidenced in analogous systems [26,27].

2.2. Electrochemical Behavior

The electrochemical behavior of the six complexes (C1–6) was determined by cyclic
voltammetry in acetonitrile at room temperature using Ag/AgCl as the reference elec-
trode and ferrocene as the standard for all measurements (see Supporting Information
Figure S18). The values of the oxidation/reduction potentials (reported vs. Fc+/Fc) and
the experimental HOMO-LUMO energy gaps, calculated as the difference between the
oxidation and reduction potentials, are summarized in Table 1. The assignments of the
redox processes were based on comparisons with electrochemical data previously reported
for similar Ir(III) complexes [28,29]. While scanning towards positive potentials, C1–C3
display a quasi-reversible process attributed to Ir(III)/(IV) oxidation, whereas the C4–C6
complexes exhibit an irreversible behavior [3,25,30,31]. Quite expectedly, the oxidation
potentials of the C4–6 series (~1.1 V vs. Fc+/Fc) are more positive than those of the C1–3
series (~0.9 V vs. Fc+/Fc) due the higher electron-accepting nature of the F2ppy ligands.

Table 1. Electrochemical properties of iridium (III) complexes (potentials vs. Fc+/Fc).

Complex Eox (V) Ered,1 (V) Ered,2 (V) ∆E (V)

C1 0.88 −1.81 −2.04 2.69
C2 0.89 −1.81 −2.06 2.70
C3 0.88 −1.80 −2.06 2.68
C4 1.10 −1.74 −1.98 2.84
C5 1.11 −1.75 −1.98 2.86
C6 1.12 −1.74 −1.98 2.86

Under a cathodic scan, it is possible to observe two consecutive reduction processes that
are attributable to the ancillary ligands [31]. As a matter of fact, these reductions occur in a
very narrow range (~−1.8 and −2 V vs. Fc+/Fc, respectively), consistent with weak electronic
effects exerted on the ancillary ligand by the R2 substituents of the cyclometalated ligand.

For all the oxidation and reduction processes, the effect of the R1 substituent is ap-
parently negligible regardless of its electron-donating or -withdrawing character. This is
evident as the reduction values remain similar within the C1–C3 and C4–C6 series and can
be explained considering that the phenyl ring of the ancillary ligand is presumably twisted
with respect to the phenanthroline moiety, so that the LUMO of the complexes is not appre-
ciably located on the substituted phenyl ring [32,33]. Consistent with these considerations,
similar redox gaps can be determined within the C1–C3 and C4–C6 subgroups (see Table 1)
and the larger values for C4–C6 series than C1–C3 mainly reflect the energy of the HOMO
in the fluorinated complexes due to the stabilization imparted by the R2 substituents.

2.3. Photophysical Properties

Figure 3 shows the absorption spectra of ligands, C1 and C4 complexes as representa-
tive examples of each Ir(III) complex subgroup according to the different cyclometalating
ligand (C1–C3 using ppy and C4–6 using F2ppy; see Supporting Information for the absorp-
tion spectra of the remaining complexes). Table 2 summarizes the absorption properties
for the whole series of complexes C1–6. In the case of ligands, the absorption bands in the
ultra-violet region between 250 and 340 nm are ascribed to intense spin-allowed (π→π*)
transitions of 40,000–60,000 M−1 cm−1, being more intense for L2, with a low shoulder near
to 350 nm, like observed in other imidazo-phenanthroline ligands [34].
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Figure 3. Absorption spectra of (a) L1–3 in methanol (b) C1 and (c) C4 complexes in acetonitrile and
dichloromethane.

Table 2. Summary of the absorption data.

λabs/nm
Complex CH3CN CH2Cl2

C1 276, 297, 345, 384, 403 278, 298, 346 (sh), 388, 412
C2 279, 294 (sh), 381, 403 280, 299 (sh), 389, 414
C3 274, 295, 341 (sh), 381, 406 276, 296, 345 (sh), 387, 412
C4 277, 300, 347, 378 278, 303 (sh), 352, 387
C5 279, 301, 349, 384 281, 304 (sh), 358, 390
C6 277, 301 (sh), 346, 379 278, 303 (sh), 355, 390

For all complexes, intense absorption bands are observed in the UV region approximately
between 250 and 320 nm (ε ~ 60,000–80,000 M−1 cm−1), assigned to spin-allowed π–π*
transitions involving both the ancillary and the cyclometalating ligands [33]. In addition, all
complexes showed absorption bands in the range 350–420 nm (ε ~ 5000–11,000 M−1 cm−1),
attributable to a combination of 1MLCT (metal-to-ligand charge transfer) transitions from
the iridium(III) center to the ancillary ligand and 1LLCT (ligand-to-ligand charge transfer)
transitions from the CˆN to the NˆN ligand [35]. As can be seen in Table 2, in the case of the
C4–6 complexes a slightly blue shift of these latter bands is observed in comparison with the
same patterns in C1–3, which can be related to the electron-withdrawing character of R2 in the
cyclometalating ligand, which is in agreement with the electrochemical gaps experimentally
calculated (see above, Table 1) [36]. Moreover, for all the complexes, it is also possible to
observe weak bands above 450 nm (ε < 5000 M−1 cm−1) attributable to spin-forbidden 3MLCT
transitions which are enabled, thanks to the high spin-orbit coupling of the iridium metal [37].
When comparing the lower energy absorptions for each complex in different solvents, a slight
red-shift (ca 10 nm) is apparent when moving from acetonitrile to dichloromethane.

This solvatochromic effect is characteristic of charge transfer transitions (MLCT/
LLCT) [37,38]. The luminescence properties of the C1–6 complexes were then studied both in so-
lution and in the solid state at 77 K. Figure 3 depicts the emission spectra of all complexes, while
Table 3 presents the relevant photophysical data. It should be highlighted that for complexes
C1–6, the emission profile is independent of the excitation wavelength.
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Table 3. Summary of the luminescence data.

λmax (nm) Φ b τ/µs c

Complex CH3CN CH2Cl2 77 K a CH3CN CH2Cl2 CH3CN CH2Cl2 77 K a

C1 602 574 577,540 0.18 0.35 0.63 0.89 4.47
C2 600 576 550,524 0.16 0.36 0.58 0.96 5.48
C3 603 588 577,540 0.18 0.31 0.53 0.77 4.70
C4 528 522 544,507,473 0.39 0.60 4.66 3.95 7.5; 37.9
C5 528 525 553,509,474 0.27 0.61 5.67 5.02 13.6; 62.4
C6 527 523 549,508,475 0.35 0.63 4.99 4.57 12.5; 57.1

a 1/4 methanol/ethanol glassy matrix; b estimated using Ru(bpy)3
2+ in water (Φ = 0.028) as standard for C1–3

and fluorescein in 0.1 M NaOH (Φ = 0.96) as standard for C4–6; c excitation at 355 nm.

Complexes C1–3 (Figure 4a) present broad emission profiles in fluid solution at room
temperature. The emission maximum falls at ~600 nm in acetonitrile, whereas it is blue-
shifted (~580 nm) in dichloromethane. This solvatochromic effect is characteristic of excited
states of charge transfer nature and, accordingly, the luminescence of complexes C1–3
can be safely assigned to phosphorescence from triplet excited states of 3MLCT or 3LLCT
nature or a mixture of both, as typically described for phenanthroline-derived cationic
Ir(III) complexes [38]. Consistent with this attribution, the emission bands of complexes
C1–3 measured in the glassy matrix at 77 K are additionally blue-shifted with respect to
solution conditions (maxima at ~540 nm) due to the peculiar rigidochromic effect of the
3MLCT/3LLCT-excited states [39].
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In the case of complexes C4–6, emission is observed at higher energies than the parent
complexes C1–3, which is consistent with the higher stabilization of the HOMO in the irid-
ium(III) complexes involving the fluorinated cyclometalated ligands and the larger redox gap
experimentally determined via electrochemical assays (Table 1) [40]. As a matter of fact, the
luminescence in acetonitrile solution occurs at ~530 nm, while in dichloromethane it occurs
at ~520 nm. The small solvatochromic effect experienced by the luminescence of complexes
C4–6 very likely suggests that for the latter, the emission may take place from an excited
state admixture involving 3MLCT/3LLCT-excited states and an 3LC state on the ancillary
ligand [41]. The observation of a structured emission pattern in the same wavelength range
in the rigid matrix at 77 K (Figure 4b) further supports this hypothesis. As a matter of fact,
the 3MLCT/3LLCT state is expected to increase in energy with respect to room temperature
conditions, thus leading to pure ligand-based phosphorescence.

Quantum yields in the range 0.16–0.18 and 0.31–0.36 were measured for complexes
C1–3 in degassed acetonitrile and dichloromethane solutions, respectively. In the case of
complexes C4–6, on the other hand, improved luminescence yields were recorded, with
values in the range 0.27–0.39 in acetonitrile and 0.60–0.63 in dichloromethane. The emission
enhancement with the decrease in solvent polarity can be qualitatively explained based on
energy gap law arguments [42,43].

Time-resolved emission measurements were then performed on the whole set of
complexes. For the C1–3 series, both in fluid solution and at 77 K, the luminescence decays
can be well fitted using a single exponential function (see Supporting Information and
Table 3). Lifetimes between 530–630 ns and 770–960 ns can be extracted for acetonitrile
and dichloromethane solutions, respectively. The increase in the lifetime from acetonitrile
to dichloromethane parallels the increase in quantum yield and can be still associated
with the deceleration of the radiationless transition upon decreasing solvent polarity (viz.,
energy-gap law). As a matter of fact, comparable radiative constants can be calculated for
both solvent conditions (kP ~ 3 × 105 and ~4 × 105 s−1 for acetonitrile and dichloromethane,
respectively), while a decrease in the non-radiative constant can be estimated when moving
from acetonitrile (average kISC ~ 1.4 × 106 s−1 for C1–3) to dichloromethane (average kISC ~
7.6 × 105 s−1 for C1–3). In the glassy matrix at 77 K, the lifetimes substantially increase
with values up to 4.47–5.48 µs. These values are characteristic of the excited states of
3MLCT/3LLCT nature, thus confirming the attribution previously made.

In the case of complexes C4–6, the luminescence decays at room temperature in fluid
solution were also fitted using single exponential functions with lifetimes in the order
of µs (see Supporting Information and Table 3). Similar values were obtained for both
acetonitrile and dichloromethane solvents (in the range 4.66–5.67 µs and 3.95–5.02 µs,
respectively). The radiative constants calculated for complexes C4–6 (average kP ~6.7 × 104

and ~1.4 × 105 s−1 for acetonitrile and dichloromethane, respectively) are appreciably
lower than those previously estimated for C1–3 (see above). This is consistent with an
important 3LC character of the emitting excited state in complexes C4–6, thus confirming a
mixed 3LC/3MLCT/3LLCT nature at room temperature, as previously envisioned. Inter-
estingly, the luminescence decays measured for complexes C4–6 in the rigid matrix at 77 K
show two time-components in the µs time scale (Table 3). The observation of a long time
constant in the order of 40–60 µs strongly points towards a dominant LC phosphorescence
at low temperature, while the presence of two time components reflects a slow equilibration
kinetics between the 3LC and 3MLCT/3LLCT-excited states under these conditions.

For both steady-state and time-resolved luminescence measurements, no remarkable
differences were appreciated upon changing the R2 group, still suggesting a minor effect of
the differently substituted phenyl of the ancillary NˆN ligand in the photophysics of the
investigated iridium(III) complexes.

2.4. Electroluminescent Properties (EL)

Considering the interesting luminescence properties of complexes C1–6, LEC devices
were fabricated following previously reported protocols [44], as described in the exper-
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imental section. The electroluminescence (EL) properties of each C1–6 complex as an
emissive layer in a ITO/PEDOT:PSS/Ir complex:EMIM-PF6(4:1)/Ga:In configuration are
given in Table 4. Light emission was observed using all complexes with a rapid increase
in luminance. A luminance maximum was reached after five minutes of device operation
upon gradually increasing the voltage.

Table 4. Electroluminescent data of C1–6-based LEC devices.

iTMC λEL Vturn.on (V) a Lmax (Lx) b Vmax (V)

C1 596 3.5 15.5 15
C2 587 2.9 21.7 14.7
C3 579 3.9 16.1 14
C4 527 4.4 3.5 8
C5 523 3 4.4 8.3
C6 528 3.5 4.1 7.9

a: Defined as the bias at brightness of 1 cd m−2. b: associated with the maximum voltage.

The devices exhibit low turn-on voltage, with the lowest value of 2.9 V being observed
for C2 and the highest value of 4.4 V for the C4 complex. Complexes C2 and C5, featuring
methyl groups on the ancillary ligand, exhibit the lowest turn-on voltages of each sub-
group. Recently, Cao et al. reported improved electroluminescence efficiencies for related
iridium(III) complexes upon the insertion of methyl groups in the ancillary ligand and
attributed this enhancement to the minimization of intermolecular interactions in the solid
state [45].

Figure 5 shows the CIE (International Commission on Illumination) graph and the
electroluminescence spectra for C1 and C4 as examples of the two series of complexes.
The C1–3 series shows yellow-orange electroluminescent with CIE coordinates near (0.41,
0.57) with an electroluminescence maximum located between 596 and 579 nm, while
electroluminescence from C4–6 displays a green-yellow color, with CIE coordinates near
(0.52, 0.47) for all series with maxima in the range 528–523 nm, akin to solution conditions
(see above). Surprisingly, the luminance of C1–3 is approximately 10 times higher than
that measured for the C4–6 series, showing an opposite trend with respect to the emission
quantum yield in solution (see above). This can be associated with possible differences in
the solid state structure of the complexes within the active layer due to the presence of the
different cyclometalated ligands with flour atoms and to the long excited state lifetime for
the C4–6, both potentially leading to a detrimental quenching phenomena. In addition,
the C1–3 series showcases a superior degree of reversibility based on voltage criteria, with
∆Ep values averaging a mere 51 mV, resulting in its capacity to act as an effective charge
transport material, and thereby resist electrochemical degradation processes having an
impact on device lifetimes and luminesce maxima [44].

While the devices exhibit relatively low turn-on voltages compared to other [Ir(R2-
CˆN)2(NˆN)]+-type complexes [3,44], they have not surpassed the luminance of some
more prominent counterparts in the literature that exceed 7000 cd m−2 [2]. As previously
mentioned, this outcome is not solely or at least not directly attributed to properties
predictable through their photophysical properties in solution. Rather, it is linked to a
combination of effects within the device as we observed with this series of complexes.
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3. Experimental Section
3.1. General Information and Materials

Commercially available reagents and solvents were used, unless otherwise speci-
fied. Ligands L1–3 were synthesized according to previously reported methodologies [46].
Iridium dimers ([Ir(ppy)2(µ-Cl)2] and [Ir(F2ppy)2(µ-Cl)2]) were synthesized according to
previous literature procedures [24,47], so were the complex C1 [26]. One-dimensional and
two-dimensional NMR measurements were performed in a Bruker spectrophotometer,
model AV 400 MHz. Chemical shifts are presented in parts per million relative to TMS [1H
and 13C, δ (SiMe4) = 0] or an external standard [δ (CFCl3) = 0 for 19F NMR]. HR-MS(ESI)
experiments were carried out using a ThermoFisher Scientific Plus Orbitrap mass Spectrom-
eter, with positive polarity and ionization voltage equal to 4 kV. The FT-IR spectra were
recorded on a Shimadzu IRTracer 100 Fourier transform spectrophotometer, on KBr pellets
in the range of 4000 to 500 cm−1. Cyclic voltammetry was measured on a CH Instruments
model CHI-620C potentiostat using platinum as the working electrode, Ag/AgCl (ferrocene
has been used as the standard for all measurements) as the reference electrode and a Pt wire
as the counter electrode. Measurements were carried out with a 1 mM concentration of the
complexes in CH3CN and 1 M of tetrabutylammonium hexafluorophosphate (TBAPF6) as
the supporting electrolyte at a scan rate of 0.1 V s−1. The UV-Vis spectra were registered
using a Shimadzu UV-Vis spectrometer, model 1900. To determine the molar extinction
coefficient, a calibration curve was performed in CH3CN with concentrations ranging from
1 × 10−5 to 5 × 10−5 mol/L. Photoluminescence spectra were obtained on an Edinburgh
Instrument spectrofluorometer. Solutions of the compounds were previously degassed with
nitrogen for approximately 20 min. The emission quantum yields were calculated using a
relative method according to a description in the literature [48]. Additionally, 77 K lumines-
cence measurements were performed by freezing alcoholic solutions (ethanol/methanol,
4/1) of complexes and ligands.

General synthetic procedure of complexes C1–6. Two equivalents of the correspond-
ing ligand (L1–3) and one equiv. of the respective bimetallic precursor [Ir(R1-ppy)2(µ-Cl)]2,
with R2 = H or F, were dissolved in 50 mL of MeOH/CH2Cl2 (1:3). The mixture was stirred
and refluxed for 12 h under a nitrogen atmosphere in darkness. Then, the volatiles were
removed under reduced pressure, and 500 mL of water was added to the crude product.
The mixture was filtered, and two equivalents of KPF6 were added to the obtained solution,
precipitating a yellow-orange solid. This solid was filtered and washed with water, dried,
and re-precipitated through CH2Cl2/diethyl ether [26,49].
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Complex C2. Yellow-orange colored solid with a yield of 63%. 1H NMR (400 MHz,
acetone d6, 298 K): δ ppm 9.03 (d, J = 7.9 Hz, 2H), 8.30 (d, J = 4.7 Hz, 2H), 8.23 (d, J = 8.2 Hz,
2H), 8.08 (d, J = 7.5 Hz, 2H), 7.93 (d, J = 7.7 Hz, 2H), 7.89 (t, J = 7.5 Hz, 4H), 7.76 (d, J = 5.6 Hz,
2H), 7.30 (d, J = 7.6 Hz, 2H), 7.06 (t, J = 7.8 Hz, 2H), 7.07–6.98 (m, 2H), 6.96 (t, J = 7.3 Hz,
2H), 6.48 (d, J = 7.5 Hz, 2H), 2.37 (s, 3H). 13C NMR (101 MHz, Acetone-d6, 298 K) δ 167.84,
153.21, 150.48, 149.46, 148.82, 144.69, 144.27, 140.62, 138.58, 132.12, 131.78, 130.37, 129.69,
126.54, 124.93, 123.53, 122.55, 119.85, 20.56. 31P NMR (162 MHz, Acetone-d6, 298 K) δ 144.20
(hept, JP-F = 708.0 Hz). 19F NMR (376 MHz, Acetone-d6, 298 K) δ−72.39 (d, JF-P = 708.0 Hz).
HRMS (ESI): m/z [M]+ for C42H30IrN6: calc: 811.2161; found: 811.2202.

Complex C3. Yellow-orange colored solid with a yield of 66%. 1H NMR (400 MHz,
acetone d6, 298 K): δ ppm 9.08 (dd, J = 8.3, 1.1 Hz, 2H), 8.34 (dd, J = 5.0, 1.3 Hz, 2H), 8.29
(dd, J = 8.8, 5.3 Hz, 2H), 8.24 (d, J = 8.1 Hz, 2H), 7.95 (dt, J = 11.4, 4.3 Hz, 4H), 7.92–7.87 (m,
2H), 7.75 (d, J = 5.6 Hz, 2H), 7.31 (t, J = 8.8 Hz, 2H), 7.07 (td, J = 7.7, 1.0 Hz, 2H), 7.04–6.99 (m,
2H), 6.96 (tt, J = 9.8, 4.9 Hz, 2H), 6.47 (d, J = 6.9 Hz, 2H). 13C NMR (101 MHz, Acetone-d6,
298 K) δ 167.83, 163.90 (d, JC-F = 249.1 Hz), 152.22, 150.43, 149.22 (d, JC-F = 51.7 Hz), 138.59,
132.13, 131.78, 130.37, 128.89 (d, JC-F = 8.8 Hz), 126.73, 124.93, 123.53, 122.56, 119.85, 116.05
(d, JC-F = 22.4 Hz). 31P NMR (162 MHz, Acetone-d6, 298 K) δ −144.22 (hept, JP-F = 708.0 Hz).
19F NMR (376 MHz, Acetone-d6, 298 K) δ −72.40 (d, JF-P = 708.0 Hz), −111.34. HRMS (ESI):
m/z [M]+ for C41H27FIrN6: calc: 815.1910; found: 815.1954.

Complex C4. Yellow-colored solid with a yield of 66%. 1H NMR (400 MHz, acetone d6,
298 K): δ ppm 9.25 (d, J = 8.3 Hz, 2H), 8.51 (d, J = 4.9 Hz, 2H), 8.42 (d, J = 8.5 Hz, 2H), 8.31 (d,
J = 7.0 Hz, 2H), 8.10 (dd, J = 8.2, 5.1 Hz, 2H), 8.02 (t, J = 7.9 Hz, 2H), 7.84 (d, J = 5.7 Hz, 2H),
7.67–7.53 (m, 3H), 7.11 (t, J = 6.6 Hz, 2H), 6.91–6.75 (m, 2H), 5.93 (dd, J = 8.5, 1.8 Hz, 2H). 13C
NMR (101 MHz, Acetone-d6) δ 163.91 (d, JC-F = 7.0 Hz), 163.81 (dd, JC-F = 217.5, 12.7 Hz),
161.24 (dd, JC-F = 221.4, 12.6 Hz), 153.37, 150.02, 149.47, 144.55, 139.68, 132.82, 130.54, 129.56,
129.19, 128.14, 127.14, 126.66, 124.06, 113.91 (dd, JC-F = 17.7, 2.9 Hz), 98.80 (t, JC-F = 27.1 Hz).
31P NMR (162 MHz, Acetonitrile-d3, 298 K) δ −144.26 (hept, JP-F = 707.5 Hz). 19F NMR
(376 MHz, Acetonitrile-d3, 298 K) δ −72.59 (d, JF-P = 707.6 Hz), −107.86 (d, JF-F = 10.6 Hz),
−110.16 (d, JF-F = 10.5 Hz). HRMS (ESI): m/z [M]+ for C41H24F4IrN6: calc: 869,1628; found:
869,1688.

Complex C5. Yellow-colored solid with a yield of 65%. 1H NMR (400 MHz, Acetone-
d6, 298 K) δ 13.38 (broad, 1H), 9.19 (broad, 2H), 8.49 (broad, 2H), 8.40 (d, J = 8.4 Hz, 2H),
8.17 (d, J = 7.8 Hz, 2H), 8.07 (broad, 2H), 8.00 (t, J = 8.0 Hz, 2H), 7.83 (d, J = 5.8 Hz, 2H),
7.41 (d, J = 7.8 Hz, 2H), 7.09 (broad, 2H), 6.79 (ddd, J = 12.1, 9.3, 2.4 Hz, 2H), 5.92 (dd,
J = 8.6, 2.4 Hz, 2H), 2.43 (s, 3H). 13C NMR (101 MHz, Acetone-d6, 298 K) δ 164.77 (d,
JC-F = 6.9 Hz), 164.48 (dd, JC-F = 256.2, 12.5 Hz), 162.30 (dd, JC-F = 260.2, 13.0 Hz), 155.49,
155.43, 154.38, 150.88, 150.24, 140.55, 133.63, 130.66, 129.01 (t, JC-F = 3.7 Hz), 127.95, 127.58,
124.96, 124.43 (d, JC-F = 19.8 Hz), 114.78 (dd, JC-F = 17.8, 3.0 Hz), 99.66 (t, JC-F = 27.1 Hz),
21.41. 31P NMR (162 MHz, Acetone-d6, 298 K) δ −146.44 (hept, JP-F = 708.3 Hz). 19F NMR
(376 MHz, Acetone-d6, 298 K) δ −72.42 (d, JF-P = 708.3 Hz), −107.81 (d, JF-F = 10.3 Hz),
−110.12 (d, JF-F = 10.2 Hz). HRMS (ESI): m/z [M]+ for C42H26F4IrN6: calc: 883,1784; found:
883,1832.

Complex C6. Yellow-colored solid with a yield of 70%. 1H NMR (400 MHz, Acetone-
d6, 298 K) δ 9.16 (dd, J = 8.3, 1.4 Hz, 2H), 8.48 (dd, J = 5.0, 1.2 Hz, 2H), 8.42 (dt, J = 8.3,
1.6 Hz, 2H), 8.16 (dd, J = 6.8, 3.0 Hz, 2H), 8.05–7.97 (m, 4H, H2), 7.86 (dd, J = 5.8, 1.4 Hz, 2H),
7.65–7.40 (m, 3H), 7.13 (ddd, J = 7.4, 5.8, 1.4 Hz, 2H), 6.81 (ddd, J = 12.2, 9.4, 2.4 Hz, 2H), 5.92
(dd, J = 8.5, 2.4 Hz, 2H). 13C NMR (101 MHz, Acetone-d6, 298 K) δ 164.78 (d, JC-F = 7.1 Hz),
164.49 (dd, JC-F = 256.0, 12.6 Hz), 162.31 (d, JC-F = 260.1, 12.6 Hz), 155.49, 155.43, 154.01,
150.92, 150.32, 145.40, 140.58, 133.78, 131.38, 130.18, 130.02, 129.00 (d, JC-F = 4.5 Hz), 127.98,
127.55, 125.39, 124.97, 124.45 (d, JC-F = 19.9 Hz), 114.78 (dd, JC-F = 17.6, 2.9 Hz), 99.68 (t,
JC-F = 27.0 Hz). 31P NMR (162 MHz, Acetone-d6, 298 K) δ−146.45 (hept, JP-F = 708.1 Hz). 19F
NMR (376 MHz, Acetone-d6, 298 K) δ−72.52 (d, JF-P = 707.1 Hz), −107.83 (d, JF-F = 10.7 Hz),
−110.12 (d, JF-F = 10.8 Hz), −150.74. HRMS (ESI): m/z [M]+ for C41H23F5IrN6: calc: 887,1534;
found: 887,1574.
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3.2. Device Preparation and Measurement

The device preparation was carried out according to previous reports [50]. Poly(3,4-
ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) was purchased from Sigma-
Aldrich. Indium tin oxide (ITO)-coated glass plates, purchased from ossila (14–16 Ω−1),
were used as a transparent substrate and were extensively cleaned using sonification in
a 2-propanol bath. After drying, the ITOs were placed in a Plasma cleaner for 20 min at
room temperature. The electroluminescent devices were prepared as follows. A 100 nm
layer of filtered PEDOT:PSS was deposited at 1100 rpm for 60 s, the film thickness was
determined using an optical profilometer Profilm 3D from Filmetrics. Then, a thin film of
C1–6 containing ionic liquid (1-ethyl-3-methylimidazolium hexafluorophosphate) (EMIM-
PF6) in a 4:1 proportion was obtained in spin-coating equipment from acetonitrile solutions
using concentrations of 20 mg mL−1 at 1100 rpm for 60 s, resulting in an 80 nm thick
film. After spinning the inorganic layers, the samples were dried on a hot plate at 75 ◦C
for 1 h. Ga:In eutectic cathode was deposited on the EMIM/iTMC layer in 1 cm2. A
spectrophotometer model CCS200 was used to record the electroluminescence spectra of
the devices and to obtain the respective CIE coordinates. Finally, a PCE_CR, 40 luxmeter
was used to determine photometric magnitudes.

4. Conclusions

A series of six iridium(III) complexes have been prepared and characterized. Com-
plexes C1–3 with two ppy cyclometalated ligands and three different phenylimidazo(4,5-
f )1,10-phenanthroline ancillary ligand display luminescence in solution of 3MLCT/3LLCT
nature. On the other hand, the related complexes C4–6, featuring F2-ppy cyclometalated lig-
ands in place of ppy, present intense and blue-shifted luminescence arising from an excited
state admixture involving 3MLCT/3LLCT and 3LC-excited states. The complexes behave
as effective active layers in LEC devices. At maximum voltage, the C1–C3 complexes emit
orange light, while the C4–C6 complexes emit yellow-green light, with a turn-on close to
5 s. The C1–C3 group had long on times with luminance near 25 Lx, while the second group
exhibit lower luminance close to 4.0 Lx but high stability. On the other hand, the inclusion
of methyl group in the ancillary ligand reduces the intermolecular interactions, which
results in a lower turn-on voltage in devices. The modification of the ancillary ligands
in the presented complexes does not imply significant changes in the electrochemical or
photophysical properties, which, on the other hand, are mostly influenced by modifica-
tions of the cyclometalating ligands. These results contribute to the understanding of how
structural alterations on iridium(III) complexes impact the performance in LEC devices.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29010053/s1, you can find the Figure S1–S28. Refs [26,47,51–54]
are cited in Supplementary Materials.
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