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Abstract: Iron oxide nanoparticles (NPs) have attracted substantial interest due to their superparam-
agnetic features, biocompatibility, and nontoxicity. The latest progress in the biological production of
Fe3O4 NPs by green methods has improved their quality and biological applications significantly. In
this study, the fabrication of iron oxide NPs from Spirogyra hyalina and Ajuga bracteosa was conducted
via an easy, environmentally friendly, and cost-effective process. The fabricated Fe3O4 NPs were
characterized using various analytical methods to study their unique properties. UV-Vis absorp-
tion peaks were observed in algal and plant-based Fe3O4 NPs at 289 nm and 306 nm, respectively.
Fourier transform infrared (FTIR) spectroscopy analyzed diverse bioactive phytochemicals present
in algal and plant extracts that functioned as stabilizing and capping agents in the fabrication of
algal and plant-based Fe3O4 NPs. X-ray diffraction of NPs revealed the crystalline nature of both
biofabricated Fe3O4 NPs and their small size. Scanning electron microscopy (SEM) revealed that
algae and plant-based Fe3O4 NPs are spherical and rod-shaped, averaging 52 nm and 75 nm in size.
Energy dispersive X-ray spectroscopy showed that the green-synthesized Fe3O4 NPs require a high
mass percentage of iron and oxygen to ensure their synthesis. The fabricated plant-based Fe3O4 NPs
exhibited stronger antioxidant properties than algal-based Fe3O4 NPs. The algal-based NPs showed
efficient antibacterial potential against E. coli, while the plant-based Fe3O4 NPs displayed a higher
zone of inhibition against S. aureus. Moreover, plant-based Fe3O4 NPs exhibited superior scavenging
and antibacterial potential compared to the algal-based Fe3O4 NPs. This might be due to the greater
number of phytochemicals in plants that surround the NPs during their green fabrication. Hence, the
capping of bioactive agents over iron oxide NPs improves antibacterial applications.

Keywords: Ajuga bracteosa; Spirogyra hyalina; nanoparticles; antibacterial; antioxidant

1. Introduction

Metallic oxide nanoparticles have revolutionized the field of nanotechnology by fur-
nishing fundamental biomedical applications to resolve various complex problems [1–3].
These nanoparticles have developed into promising biomedicinal agents for diverse pur-
poses, including targeted drug delivery [4], tissue engineering, bio-sensing [5], imaging [6],
and wound healing [7,8]. The green fabrication of iron oxide nanoparticles (Fe3O4 NPs) has
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achieved outstanding significance in the biomedical sector in a sustainable manner [9,10].
These nanoparticles are superparamagnetic, biodegradable, sustainable, and have an el-
evated surface area [11,12]. Iron oxide nanoparticles (NPs) are generally utilized in the
pharmaceutical industry to produce various efficacious drugs used for the prevention of
infections [13]. Iron oxide nanoparticles are used as potent therapeutic and theranostic
agents and have superb biomedical engineering applications due to their magnetic proper-
ties [13,14]. After the surface modification of iron oxide NPs, they have been applied widely
for diagnosis, envisaging melanoma cells, visualizing severe metastases in the liver, and as
a blood pool agent for angiographic purposes [15]. Fe3O4 NPs have been used to advance
novel, extensive-spectrum antimicrobials against various pathogenic microbes [16]. Further-
more, Fe3O4 NPs have shown strong antioxidant [17], antifungal, antiviral, antibacterial,
and anti-inflammatory activities [18].

The fabrication of NPs via green synthesis has attracted considerable attention because
it is the easiest, most sustainable, reliable, and eco-friendly method [19]. Green synthesis is
a potential alternative to the chemical process where non-ecofriendly products are released
with adverse and potentially lethal effects [20–22]. The fabrication of NPs via chemical
methods requires high temperatures or pressures to initiate the chemical reaction and gain
the necessary stability for potent toxic stabilizers [23–25]. In contrast to chemical synthesis,
the green strategy proved inexpensive and nontoxic. Moreover, green-synthesized NPs
are promising in the biomedical arena because they are less detrimental to human health
than chemically synthesized NPs [26]. The potency of green biofabricated NPs has been
attributed to various phytochemicals used to reduce the metal salt, cap the NPs during their
synthesis, and contribute efficaciously to the fabrication of potent NPs [27]. NPs created
via green synthesis have achieved significant value for researchers because of their unique
features [28]. Therefore, protocols to produce harmless metallic oxide NPs are essential.

The green fabrication of metallic oxide NPs using various bio-reductants involving
microorganisms, fungi, and algal and plant extracts has been previously reported by di-
verse researchers [29]. Algal and plant sources have been significantly explored for the
fabrication of metallic oxide NPs and are frequent options for many researchers because of
their convenience and accessibility. Furthermore, algae and plants are stockpiles of chief
phytochemicals, such as carotenoids, flavonoids, and phenolic compounds, which may
confer various biological features to the NPs [30]. Many researchers have reported the fabri-
cation of Fe3O4 NPs from algal and plant extracts, such as Petalonia fascia, Colpomenia sinuosa,
Padina pavonica, Moringa oleifera, Ananas comosus, Perilla frutescens, Mimosa pudica, Acacia
mearnsii, and Caricaya papaya. The green fabrication of Fe3O4 NPs was safe, sustainable,
and eco-friendly [31].

The Spirogyra hyalina is a green alga belonging to the family Zygnemataceae and it is
abundant in freshwater regions throughout the world [32]. There is strong evidence that S.
hyalina is commercially and economically prominent as it is employed in the production of
bioethanol in a fermentative process with Zymomonas mobilis [33]. This alga played a vital
role in decreasing the degree of salinity in seawater toward freshwater by biosorption [34].
It also has the potential to overcome the diverse organic waste and monitor water quality
more effectively in an optimized way. Dried biomass has an aptitude for eliminating
heavy metals from bodies of water, such as Cd, Pb, Hg, and Co, by biosorption [35].
Spirogyra sp. is a rich source of antioxidants because of various phytochemicals, such as
terpenoids, saponins, tannins, and flavonoids [22]. Ajuga bracteosa is a perennial evergreen
herbaceous plant located in hilly regions and belongs to the family Lamiaceae. Because it
contains essential pharmacologically active agents, it is an important medicinal plant in the
Himalayan region for a variety of ailments. The species is grown at a 2000 m altitude in
subtropical and temperate regions around the world, and it is found in Pakistan’s northern
sectors [36]. The respective plant is used to treat various skin ailments, respiratory disorders,
alimentary issues, and malarial problems. A. bracteosa is highly prevalent, particularly as
a purifier of blood, a diaphoretic, cough relief, an appeaser of asthma, and a palliator of
asthma. The bark is utilized to overcome sore throat and jaundice [37]. It also has a good
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scavenging effect, antimicrobial potency, and anticancer and antimalarial activities [38].
Previously, the antioxidant potential of A. bracteosa was attributed to various biological
phytochemicals, including flavonols, neo-clerodane, glycosides, diterpenoids, ergosterols,
phytoecdysones, and iridoid glycosides [39].

This paper reports the biofabrication of Fe3O4 NPs by exploiting the biomolecules of
Spirogyra hyalina and Ajuga bracteosa as bioreductants. Moreover, the capping of diverse
phytochemicals on Fe3O4 NPs may enhance the bioactivities of these biofabricated NPs.
The green-fabricated Fe3O4 NPs were characterized using different analytical methods
to determine their unique properties. Furthermore, the present study also explored the
biomedicinal potential of green-synthesized Fe3O4 NPs and algal and plant extracts by
accessing their antibacterial and antioxidant activities. The outcomes revealed the enhanced
biological potential of Fe3O4 NPs, which might be because the capping of bioactive agents
around NPs is present. Nevertheless, further research will be needed to understand the
chemistry of metallic oxide NPs.

2. Results
2.1. Characterization of Iron Oxide NPs

The Fe3O4 NPs were biofabricated using the algal and plant extracts of S. hyalina and
A. bracteosa. In the case of algal-based Fe3O4 NPs, the color change from yellow to reddish-
brown was observed. The instantaneous dark brownish color change from light yellow
confirmed the fabrication of plant-based Fe3O4 NPs. The color change was attributed to
surface plasmon resonance and the interaction of biomolecules with metal ions. These
biosynthesized NPs were analyzed via various analytical techniques.

2.1.1. UV-Vis Analysis of Fe3O4 NPs

UV-visible spectroscopy was used to monitor and approve the fabrication of Fe3O4
NPs. The absorption peaks of biofabricated Fe3O4 NPs were observed because surface
plasmon vibrations reached the excitation stage. The figure shows that algae and plant
extracts had no distinct peaks. In the case of algal-based Fe3O4 NPs, the sharp peak
was displayed at 289 nm. While in the case of plant-based Fe3O4 NPs, the peak value
for absorbance was observed at 306 nm shown in Figure 1. Many studies revealed the
maximal absorbance at 250, 291, 297, 300, 328, and 330 nm for Fe3O4 NPs synthesized
from algae and plants, including Petalonia fascia [40], Ficus carica [41], Mimosa pudica [42],
Moringa oleifera [31], Bauhinia tomentosa [43], and Phyllanthus niruri [44], which supported
these findings. These variations of maximal absorbance were attributed to the capping
of biomolecules on NPs. These biomolecules affect the size of NPs through bioreduction,
which also affects maximal absorbance [30,31].

2.1.2. FTIR Analysis of Fe3O4 NPs

FTIR spectroscopy was performed to determine the functional groups of various
biomolecules interacting with the fabricated Fe3O4 NPs. The FTIR spectra revealed the
active biomolecules present in the algal and plant extracts that had played an essential role
in reducing the precursor salt during the fabrication of iron oxide NPs and maintaining
their stability. In the FTIR spectrum of the algal extract, shown in Figure 2, the prominent
peak detected at 3313 cm−1 corresponded to the stretch of the O–H group of either alcohol
or algal phenolics. Kale et al. also reported the presence of an O–H bond close to this
position [37]. The peaks at 2924 cm−1 and 2852 cm−1 indicate the stretching vibration of a
C–H bond (alkane) [45]. The C=C (alkene) stretching vibration was observed at 1641 cm−1

as a stretched vibration form. The peak at 1033 cm−1 was attributed to the stretching
vibration of the primary amine C–N [34]. The FTIR spectrum of algal-based iron oxide NPs
revealed a peak at 3373 cm−1 representing the O–H stretching vibration of alcohol or algal
phenolics [35]. The peaks at 2932 cm−1 and 2852 cm−1 refer to the C–H stretched vibrations
of an alkane. The peak at 2355 cm−1 was attributed to the absorption of atmospheric CO2,
and the peak at 1646 cm−1 was assigned to the C=C or alkene stretching vibration [33].
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The dominant peak at 674 cm−1 was attributed to the Fe–O in iron oxide, confirming
the fabrication of NPs. The current result strongly agrees with the study reported by
Aisida et al. [46].
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Figure 2. FTIR spectra of AE, PE, and biofabricated algal and plant based Fe3O4 NPs show vari-
ous functional groups for biomolecules from Ajuga bracteosa and Spirogyra hyalina involved in the
bioreduction of NPs.

The FTIR spectrum of the plant extract revealed a peak at 3305 cm−1, confirming
the presence of the O–H bond in a stretched state for alcohol or plant phenolics [37]. The
absorption peaks at 2918 cm−1 and 2854 cm−1 denote the C–H bond of the alkane in the
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mode of stretched vibrations [45]. The peak at 1609 cm−1 might be due to the C=C bond
of an alkene in the stretched state [33]. In contrast, the absorption peak at 1020 cm−1 is
probably due to the C–N bond of the amine in a stretched form [34]. The FTIR spectrum of
plant-based iron oxide NPs suggests that there are diverse phytochemicals that play a vital
role in the fabrication of iron oxide NPs. The peak at 3312 cm−1 was attributed to the O–H
functional group of alcohol or plant phenolics. These findings are correlated with the study
reported by Qasim et al. [45]. The absorption peaks at 2926 cm−1 and 2852 cm−1 were
assigned to the stretching vibration of the alkane C–H group [36]. The peak at 2362 cm−1

was attributed to the absorption of CO2 in the sample. At 1635 cm−1, the absorption band
corresponds to the C=C bond of an alkene in its stretched state [33]. The peak at 622 cm−1

is the typical peak of the Fe–O of iron oxide, confirming the fabrication of iron oxide NPs,
and it is consistent with the findings reported by Liu et al. [47]. A. bracteosa has been
used to incorporate diverse bioactive agents, such as ergosterol, diterpenoids, glycosides,
phytoecdysones, and flavonols that assist the present FTIR spectra [38]. Many studies
disclosed the existence of essential bioactive molecules in Fe3O4 NPs and their binding to
the NPs [39].

2.1.3. X-ray Diffraction of Fe3O4 NPs

The XRD analysis of algal-based Fe3O4 NPs detected seven characteristic peaks for
magnetite (Fe3O4) positioned at various angles of 2θ such as 30.55◦, 35.45◦, 43.25◦, 53.61◦,
57.27◦, 63.1◦, and 74.20◦, corresponding to the (200), (311), (400), (422), (511), (440), and
(533) planes, respectively, as shown in Figure 3a. The XRD peaks observed for the algal-
based iron oxide NPs were similar to the standard magnetite XRD pattern in the ICCD
file (00-003-0863), confirming the cubic structure of the crystalline system. The mean
crystallite size of the respective NPs was 42 nm. The intense, sharp peaks showed that
the plant-based Fe3O4 NPs were crystalline (Figure 3b). The XRD pattern revealed six
peaks at 2θ of 30.06◦, 35.63◦, 43.13◦, 53.62◦, 56.90◦, and 62.86◦, which were assigned to the
planes of (220), (311), (400), (422), (511), and (440), respectively. The XRD peaks were cross-
referenced with the ICCD file, which has the number 00-019-0629. The average crystallite
size of the plant-based iron oxide NPs, determined by the Debye–Scherrer formula, was
36 nm. Kale et al. (2018) biofabricated Fe3O4 NPs by exploiting the extract of Cymbopogon
citratus via the reduction method. The XRD pattern showed six sharp peaks at various
positions of 2θ, which corresponded to the (311), (220), (400), (422), (511), and (440) planes,
which is consistent with the XRD findings of plant-based Fe3O4 NPs [37]. Yew et al., 2016
synthesized iron oxide NPs using the extract of Kappaphycus alvarezii, a seaweed. XRD
revealed seven characteristic sharp peaks to confirm the crystalline nature of algal-based
Fe3O4 NPs [38]. The broad XRD peaks might be linked to the small size of NPs [48].
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2.1.4. Scanning Electron Microscopy

Figure 4a,b show the morphology of fabricated algal-based Fe3O4 NPs. As shown
in the SEM image, the synthesized NPs were spherical and spindle-shaped. The mean
size of biosynthesized NPs was 52 nm (35–80 nm). A few clusters of agglomerates were
also observed, probably due to the accretion of bioactive reductive agents in algal extract
or the magnetic tendency of Fe3O4 NPs [40]. Figure 4d–e shows the morphology of
plant-based NPs. The fabricated Fe3O4 NPs were spherical and rod-shaped. The mean
size of the NPs was 75 nm (45–100 nm). Some of the NPs were in an aggregated form.
The aggregation of NPs might be due to the accumulation of diverse reductive agents
in plant extracts or the magnetic tendency of biofabricated Fe3O4 NPs. SEM confirmed
the fabrication of spindle-shaped Fe3O4 NPs via forced hydrolysis with a size range of
60–250 nm [49]. Another study reported the fabrication of spherical-shaped Fe3O4 NPs
from Perilla frutescens, approximately 50 nm in size, which is also consistent with the
present findings [50]. Previous research reported that the size of the Fe3O4 NPs from the
peel extract of plantains and the seed extract of pomegranates were 30–50 nm and 25–55 nm,
respectively [51,52].
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2.1.5. EDX Analysis of Fe3O4 NPs

The EDX spectrum in Figure 5a revealed the intense peaks of iron at 6.4 keV and
oxygen at 0.6 keV that affirmed the formation of Fe3O4 NPs. Their mass percentages were
36.27% and 38.47%, respectively. The chlorine peak was also observed in the EDS graph
with a 14.33% mass. It was determined from Figure 5b that the EDX spectrum of plant-
based Fe3O4 NPs were comprised of significant iron peaks at 6.4 keV and oxygen peaks at
0.6 keV, with mass percentages of 51% and 29%, respectively, confirming the fabrication of
Fe3O4 NPs. Figure 5 shows other elements, such as Cl and Cr. The Cl peak was attributed
to the ferric chloride salt precursor utilized to fabricate Fe3O4 NPs [21]. The chromium
peak might be due to the sputtering of Fe3O4 NPs before SEM analysis. Sputter coating
prevents specimen charging and increases the signal-to-noise ratio to produce better quality
images [53]. The EDX analysis of the currently biofabricated Fe3O4 NPs is also consistent
with other studies [54,55]. According to other studies, the expected values from EDX are
closely related to the current findings [43].
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low mass percentages.

2.2. In Vitro Studies

Different biological activity measures, such as the antibacterial and antioxidant proper-
ties of various fractions and Fe3O4 NPs, were used to demonstrate that these NPs performed
better than algae and plant fractions.

2.2.1. Antibacterial Activity

The antibacterial activity of the AE, PE, and Fe3O4 NPs was investigated for both
gram-positive (B. pumilus and S. aureus) and gram-negative (E. coli and P. aeruginosa) bacteria.
Based on the zone of inhibition produced, both algal and plant-based Fe3O4 NPs showed
remarkable antibacterial activity compared to the algal and plant extracts against both types
of investigated bacteria shown in Figures 6 and 7. Overall, the antibacterial graphs shown
in Figure 8 that plant-based Fe3O4 NPs had strong antibacterial potency compared to that
of algal-based Fe3O4 NPs against the various types of gram-positive and gram-negative
bacterial strains. This result might be due to the higher number of phytochemicals found
in plant extracts compared to algal extracts.
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In many studies, the same results of antibacterial potency were revealed by Fe3O4
NPs biofabricated from extracts of Carcia papaya [55], Sida cordifolia [56], Purpureocillium
platinum [57], and Phoenix dactylifera [58] against gram-positive and gram-negative bacterial
strains. These metallic oxide NPs may decrease the expression of an antibiotic-resistant gene
in an antibiotic-resistant bacterium [59]. Iron oxide NPs have an aptitude for adsorption and
penetration into bacterial biofilms because of their distinct physicochemical characteristics,
such as hydrophobicity, surface charge, and large surface area [60]. Moreover, the respective
NPs attach directly to the cell walls of various microorganisms and destroy themselves
efficiently [58].

2.2.2. Antioxidant Activity

The scavenging activity of biofabricated Fe3O4 NPs was compared with algae and
plant extracts determined by DPPH assay. The methanolic extract of S. hyalina and the aque-
ous extract of A. bracteosa showed IC50 values of 21 ± 1.23 µg/mL and 15.8 ± 1.3 µg/mL,
respectively. Both algal- and plant-based Fe3O4 NPs showed remarkable scavenging poten-
tial (IC50 = 16.1 ± 0.74 µg/mL and 11.6 ± 0.76 µg/mL) compared to that of algal and plant
extracts. A low IC50 value shows that the substance has a higher antioxidant potential.
Plant-based Fe3O4 NPs outperformed the algal-based Fe3O4 NPs in terms of antioxidant
potential. This might be due to the increased activity of phenolic molecules after the fabri-
cation of Fe3O4 NPs shown in Figure 9. Phenolic active agents found in plant extracts play
a crucial role in producing Fe3O4 NPs due to their high antioxidant activity and ability to
act as reducing agents [47].
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needed to inhibit 50% of the scavenging activity of DPPH.

Plant-based Fe3O4 NPs exhibited better antioxidant potency than various oxidants
that might be linked to plentiful bioactive agents [37]. The phytochemicals capped on the
small-sized NPs may be amenable to the best scavenging activity by acting as a stabilizing
agent [61]. The pharmacological features of bioactive agents accelerated the therapeutic
efficacy of NPs with enhanced biological applications [53]. Another study investigated the
scavenging effect of Fe3O4 NPs using the DPPH method and revealed the best antioxidant
potential that supports these findings [17].

3. Materials and Methods
3.1. Preparation of Algal and Plant Extract

Ajuga bracteosa Wall ex Benth and Spirogyra hyalina were collected from Azad Kashmir,
Pakistan, at coordinates 34.22◦ N 73.28◦ E in April 2022. A taxonomist of the Department
of Biotechnology, Mirpur University of Science and Technology Mirpur, Azad Kashmir,
Pakistan, identified the plant and algae. The voucher specimens (MUST1402- MUST1403)
were deposited at the Herbarium of the Department of Biotechnology.

Spirogyra hyalina was collected from the freshwater region of Jatlan Head, district
Mirpur, Azad Kashmir, Pakistan. The material was washed with distilled water to remove
unwanted particles and placed in a dark area to maintain dryness. For the methanolic algal
extract, the material was soaked in methanol for 72 h by keeping it in a shaker. After a
specified period, the methanolic algae extract was obtained by concentrating it in a vacuum
via a rotary evaporator. Subsequently, 10 g of algae was dissolved in 200 mL of distilled
water and then filtered via Whatman filter paper No. 1 before being stored in a refrigerator
for later use. The herbaceous plant, Ajuga bracteosa, was gathered from Samahni, District
Bhimber, Azad Kashmir, Pakistan. The fresh plant parts were washed with distilled water
to remove the undesirable particles. These were dried in the shade. The whole plant parts
were minced into a fine powder, and 10 g of the minced powder was dissolved in 200 mL
of distilled water. The suspension was placed on a hot plate at 60 ◦C for one hour with
constant stirring. After the specified period, it was filtered through Whatman filter paper
No. 1 before being stored in a refrigerator for later use. Previous studies also reported the
green fabrication of iron oxide NPs using the methanolic and aqueous solutions of algal
and plant extracts [56–58].
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3.2. Green Biofabrication of Algal- and Plant-Based Iron Oxide NPs

Ferric chloride hexahydrate was used as a salt precursor to fabricate IONPs. An
amount of 1.35 g (0.1M) of FeCl3.6H2O was dissolved in 50 mL of distilled water in a bottom
flask and heated for 20 min at 70 ◦C with mild stirring using a hot plate. Subsequently,
50 mL of the algal extract was added dropwise to the iron solution and heated to 60 ◦C for
30 min. The reddish-brown color that appeared indicates the formation of iron oxide NPs.
The resulting product was centrifuged to remove impurities by washing two times with
distilled water and three times with ethanol at 6000 rpm for 20 min. The final product was
dried and stored for future use. In the case of the fabrication of iron oxide NPs from Ajuga
bracteosa, the same salt precursor was applied shown in Figure 10. A 0.1 M FeCl3.6H2O
solution in 100 mL of distilled water was prepared in a bottom flask and heated for 20 min
at 70 ◦C with continuous mild stirring using a hot plate. Thirty milliliters of the plant
extract were added dropwise to the iron solution and heated to 60 ◦C for 30 min. The dark
brownish color indicated the formation of iron oxide NPs. The rest of the experiment was
the same.
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3.3. Characterization of Fe3O4 NPs

The fabricated Fe3O4 NPs were characterized using various analytical techniques to
determine their size, shape, functional groups, crystallographic structure, and elemental
analysis. The characterization techniques include UV-Vis spectroscopy, scanning electron
microscopy (SEM), Fourier transform infrared (FTIR, spectrum 65, Mirpur, Azad Jamu
and Kashmir), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX).
The optical qualities of fabricated Fe3O4 NPs were investigated and approved by utiliz-
ing a double-beam UV-Vis spectrophotometer (Optizen, 3220) with a spectral range of
200–500 nm. The FTIR spectra were used to determine bioactive agents amenable to fabri-
cated NPs and their stabilization in the range of 4000–500 cm−1. The XRD (Quaid-i-Azam
University, Islamabad, Pakistan) pattern of the synthesized NPs was revealed at 40 kV and
40 mA using CuKα radiation (1.5406) from 10–80◦ 2θ at 2◦/step. The morphology and
size of NPs were determined using the SEM technique (Institute of Space and Technology,
Islamabad, Pakistan) operating at 10 kV. The EDX technique was used to determine the
elemental composition of synthesized NPs, which was estimated by employing the EDX
detector connected to the SEM instrument.
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3.4. Measuring Antibacterial Activity

An antibacterial study of Fe3O4 NPs, algae, and plant extracts was performed using
the agar well diffusion method against gram-positive (B. pumilus and S. aureus) and gram-
negative (E. coli and P. aeruginosa) bacteria. A stock solution of 1 g/10 mL of each sample
was used to assess the antibacterial and antioxidant activities. The antimicrobial activity
was evaluated in a sterilized laminar flow. The sterilized nutrient agar medium was poured
into Petri dishes. The medium was allowed to cool naturally, and the bacterial inoculum
was spread gently with the help of cotton buds over the nutrient agar surface. The 6–8 mm
wells were made using a sterilized cork borer in the agar medium. The antibiotic rifampicin
and sterilized water were used as positive and negative controls, respectively. The algal
and plant extracts (20 µL) were used in two wells of their respective plates. Iron oxide NPs
were added to the wells at 20 µL, 30 µL, and 40 µL. The Petri plates were sealed cautiously
with parafilm. These plates were incubated in an incubator for a day at 37 ◦C. After a given
period, the widths of the growth inhibition zones were scaled in millimeters.

3.5. Antioxidant Potential

A 0.12 mg sample of DPPH was measured on a spring balance and mixed with 83 mL
of methanol. The reagent bottle containing DPPH was covered with aluminum foil and
kept in the dark for some time. A solution containing 1 mg of ascorbic acid in 100 mL
of distilled water was used as a standard (control). Five samples of iron oxide NPs in
triplets had concentrations of 10 µg/mL, 20 µg/mL, 30 µg/mL, 40 µg/mL, and 50 µg/mL.
Methanol with varying concentrations including 690 µg/mL, 680 µg/mL, 670 µg/mL,
660 µg/mL, and 650 µg/mL was added to the 10 µg/mL, 20 µg/mL, 30 µg/mL, 40 µg/mL,
and 50 µg/mL of iron oxide NP samples, respectively. Subsequently, 800 µg/mL of DPPH
was added to each aliquot of iron oxide NPs and placed in the dark for 30 min. A major
change in color from violet/purple to yellow was observed because of the scavenging
action of samples. The absorbance was recorded at 517 nm via a spectrophotometer. The
antioxidant potential of NPs was compared with that of ascorbic acid. The scavenging
activities for iron oxide NPs and ascorbic acid were calculated using the following formula
(Equation (1)):

Scavenging activity (%) = (A control − A sample)/A control × 100 (1)

The same protocol was followed to determine the antioxidant potential of both the
algal and plant extracts. After measuring scavenging activity, the IC50 values for all the
desired samples were calculated.

4. Conclusions

The significance of herbal medicine well recognized in the medical sector because
of their multitudinous benefits and limited complications for human health. The current
research involves the fabrication of iron oxide NPs via green chemistry by exploiting the
extracts of Spirogyra hyaline, a green alga, and Ajuga bracteosa, a medicinal plant. The pro-
posed critically active biomolecules are flavonol glycosides, neo-clerodane, diterpenoids,
phytoecdysones, ergosterol, iridoid glycosides, and many other polyphenols. The antioxi-
dant action of the respective NPs, as assessed via the DPPH assay, showed that plant-based
Fe3O4 NPs have a stronger ability to restrict oxidative stress than algal-based Fe3O4 NPs.
Moreover, multidrug-resistant bacteria enhance the various infections that day-by-day lead
to greater mortality around the world. The current biofabricated Fe3O4 NPs may provide an
appealing alternative to combat bacteria or act as vehicles for the targeted delivery of drugs.
In the current work, it is evinced that both algal- and plant-based Fe3O4 NPs exhibited
remarkable antibacterial potency against both gram-positive and gram-negative bacteria.
Plant-based Fe3O4 NPs showed many bactericidal effects that were fatal to gram-positive
and gram-negative bacterial strains. The efficient antioxidant and remarkable antibacterial
actions of plant-based NPs compared to algal-based NPs might be due to a higher num-
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ber of various bioactive agents in the plant extract. The present study emphasized the
importance of green-fabricated Fe3O4 NPs in the biomedical field, particularly as a potent
antioxidant and an effective antimicrobial agent.
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