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Figure S1. "H NMR spectrum of 2 in CDCls.
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Figure S2. °C NMR spectrum of 2 in CDCls.
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Figure S3. ?°Si NMR spectrum of 2 in CDCls.
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Figure S4. "H NMR spectrum of 3 in CDCls.
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Figure S5. '°C NMR spectrum of 3 in CDCls.
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Figure S6. °Si NMR spectrum of 3 in CDCls.
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Figure S7. "H NMR spectrum of 4 in CDCls.

Figure S8. '°C NMR spectrum of 4 in CDCls.
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Figure S9. °Si NMR spectrum of 4 in CDCls.
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Figure S10. '"H NMR spectrum of 6 in CDCls.
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Figure S12. ?°Si NMR spectrum of 6 in CDCls.
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Optimized structures for all LM’s and TS’s on the trans route with RhCl(CO) model.

Figure S13. Optimized structure of 1.

. 9

2.760 A

9

2388 A

o

1.963 A % l

Figure S14. Optimized structures for dimer, and decomposed and disproportionated monomer
Rh complexes. (RhCI(CO)2)2 (left), RhCI(CO) (center) and RhCI(CO)3 (right). The sum of
energies of isolated 1 and (RhCI(CO)2). was adopted as the reference energy throughout the

reactions.
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From Figures S15 to S21, LM and TS structures on trans route with RhCI(CO) model are drawn.

Figure S15. Optimized structure of model 0(1). Model 0 is a combined structure
of 1 and RhCI(CO).
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Figure S16. Optimized structure of TS 0-1(1). TS 0-1(1) is the TS between model
0(1) and model 1(1) with RhCI(CO) model.
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Figure S17. Optimized structure of model 1(1) with RhCI1(CO) model.
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Figure S18. Optimized structure of TS 1-2(1) with RhCI(CO) model. TS 1-2(1) is the
TS between model 1(1) and model 2(1).
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Figure S19. Optimized structure of model 2(1) with RhCI1(CO) model.
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Figure S20. Optimized structure of TS 2-3(1) with RhCI(CO) model. TS 2-3(1) is the
TS between model 2(1) and model 3(1).
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Figure S21. Optimized structure of model 3(1) corresponding to combined structure
of compound 3 and RhCI(CO).
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Figure S22. Optimized structure of RhCI1(CO)o.
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From Figures S23 to S29, LM and TS structures on trans route with RhCI(CO)2 model are drawn.

For clarity of figures, H atoms are omitted in the drawing.

Figure S23. Optimized structure of model 0(2). Model 0(2) is a combined structure of 1 and
RhCI(CO)2.
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Figure S24. Optimized structure of TS 0-1(2).

model 1(2) with RhCI(CO)2 model.

TS 0-1(2) is the TS between model 0(2) and
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Figure S25. Optimized structure of model 1(2) with RhCI(CO)2 model.
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Figure S26. Optimized structure of TS 1-2(2). TS 1-2(2) is the TS between model 1(2) and
model 2(2) with RhCI(CO)2 model.
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Figure S27. Optimized structure of model 2(2) with RhCI1(CO)2 model.
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Figure S28. Optimized structure of TS 2-3(2). TS 2-3(2) is the TS between model 2(2) and
model 3(2) with RhCI(CO)2 model.
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Figure S29. Optimized structure of model 3(2) with RhCI1(CO)2 model.

S22




SiMe,SiMe, Si------SiMes

X X \\\ )/
| P + RhClcoy —— || _ RhCI(CO)x
N™ Sc=csiMe, N" e
C
1 SiMe3
(reactant) TS0-1
N2 SiMes o2
| A AN | Xy 1 . CI(CO)
RhCI(CO)y — ' h
NG e (COk N N TT-SiMes
C% C%///
C C
SiMes SiMe
model 1 TS1-2B
SiM62 S|M92 CI CO
| CI(CO)y ‘
N Rh\S'M
C%C/ tVies [ —SlMe3
\SiMe3 \SIMe
model 2B TS2-3B 3
SIMGZ
—_— (ji +  RhCI(CO),
\ /SlMe3
SiMeS
model 3B

(cis-bis-silylation product)

Scheme S1. Proposed Mechanism for Production of cis-bis-silylation product. The structures from
model 0 to model 1 are common to trans-bis-silylation product formation route. Each LM and TS

names are discriminated by adding suffix “B” from those on trans-bis-silylation product formation

route.
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From Figures S30 to S33, LM and TS structures on cis route with RhCI(CO) model are drawn.

Figure S30. Optimized structure of TS 1-2B(1) with RhCI(CO) model. TS 1-2B(1) is the
TS between model 1(1) and model 2B(1).
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Figure S31. Optimized structure of model 2B(1) with RhCI(CO) model.
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Figure S32. Optimized structure of TS 2-3B(1) with RhCI(CO) model. TS 2-3B(1) is
the TS between model 2B(1) and model 3B(1).
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Figure S33. Optimized structure of model 3B(1) corresponding to combined structure of
cis-bis-silylation product and RhCI(CO).
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From Figures S34 to S37, LM and TS structures on cis route with RhCI(CO)2 model are drawn.

For clarity of figures, H atoms are omitted in the drawing.

Figure S34. Optimized structure of TS 1-2B(2) with RhCI(CO)2 model. TS 1-2B(2) is the
TS between model 1(2) and model 2B(2).
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Figure S35. Optimized structure of model 2B(2) with RhCI(CO)2 model.
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Figure S36. Optimized structure of TS 2-3B(2) with RhCI(CO)2 model.
the TS between model 2B(2) and model 3B(2).

TS 2-3B(2) is
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Figure S37. Optimized structure of model 3B(2) corresponding to combined structure of
cis-bis-silylation product and RhCI(CO)z.
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