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Abstract: Borylation has become a powerful method to synthesize organoboranes as versatile building
blocks in organic synthesis, medicinal chemistry, and materials science. Copper-promoted borylation
reactions are extremely attractive due to the low cost and non-toxicity of the copper catalyst, mild
reaction conditions, good functional group tolerance, and convenience in chiral induction. In this
review, we mainly updated recent advances (from 2020 to 2022) in the synthetic transformations in
C=C/C≡C multiple bonds, and C=E multiple bonds mediated by copper boryl systems.
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1. Introduction

Organoboron-containing molecules have diverse reactivities and versatile properties in or-
ganic chemistry, medicinal chemistry, and materials science [1]. The formed
boron-containing molecules can be converted into different functional groups such as hydroxy
groups, amino groups, halogens, etc., and especially the boryl compounds are important cross-
coupling partners in organic synthesis. Thus, organoboron-containing molecules have been
attracting numerous effects towards their synthesis [2]. Transition metal catalysis has led to a
variety of synthetic strategies and methods for the synthesis of organoboron compounds [3–6].
Copper-boryl-promoted borylation reactions are some of the most powerful for transition
metal catalysis [5,7], which have several advantages including: (1) using an abundant and
environmentally benign metal; (2) mild reaction conditions; (3) versatile functionalities,
and (4) chiral induction [8]. The combination of boryl reagents, particularly boronate
esters, shows advantages of easy accessibility, non-toxicity, air and moisture stability, and
a tolerance of many functional groups [9]. The copper-boryl complex is suggested to be
the key intermediate for subsequent borylative reactions. The first isolated copper-boryl
complex was reported by Sadighi et al. in 2005, in which the Cu-boryl center was stabilized
by N-heterocyclic carbene (NHC) ligands [10]. This NHC copper boryl complex adopted
a linear coordination geometry with the Cu-B distance being 2.002(3) Å; however, for many
borylation reactions, the Cu-boryl complexes can be generated in situ by using diboron reagents
with a catalytic amount of copper(I) salt. In situ, Cu-boryl-promoted borylation can be traced
back to 2000 by Miyaura and Hosomi, who employed a CuCl/KOAc or a copper(I) phosphine
catalyst with diboron reagents for conjugate additions to enones, respectively [11,12]. More
importantly, boryl reagents have a unique bifunctional characteristic constructed by the
Lewis acidic boron atom and the Lewis basic oxygen/nitrogen atoms, which shows an
advantage in generating chiral boryl intermediates [13]. Commonly used boron reagents
are shown in Figure 1.
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generating chiral boryl intermediates [13]. Commonly used boron reagents are shown in 
Figure 1. 

 
Figure 1. Commonly used boron reagents involved in Cu-boryl promoted reactions. 

The organic synthesis promoted by copper-boryl intermediates has attracted enthusi-
asm for developing various reactions including hydroboration, carboboration, diboration, 
and heteroboration with unsaturated substrates of C=C/C≡C/C=E multiple bonds (Figure 2) 
[14–16]. For most of the borylation reactions, the copper alkoxide species is formed in situ 
by the reaction of copper(I) salt and an alkoxide base [17]. After that, it will react with a 
diboron reagent to produce the copper-boryl complexes. Finally, the electrophile partici-
pates in the reaction. Thus, the ligand exchanges with the alkoxide base and regenerates the 
copper alkoxide species. The general mechanism is given in Scheme 1 [18]. 
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Figure 2. Commonly used substrates for Cu-boryl promoted reactions. 

Figure 1. Commonly used boron reagents involved in Cu-boryl promoted reactions.

The organic synthesis promoted by copper-boryl intermediates has attracted enthu-
siasm for developing various reactions including hydroboration, carboboration, dibora-
tion, and heteroboration with unsaturated substrates of C=C/C≡C/C=E multiple bonds
(Figure 2) [14–16]. For most of the borylation reactions, the copper alkoxide species is
formed in situ by the reaction of copper(I) salt and an alkoxide base [17]. After that, it
will react with a diboron reagent to produce the copper-boryl complexes. Finally, the elec-
trophile participates in the reaction. Thus, the ligand exchanges with the alkoxide base and
regenerates the copper alkoxide species. The general mechanism is given in Scheme 1 [18].
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During recent years, copper-boryl-promoted organic synthesis has advanced compre-
hensively and rapidly, including in multicomponent reactions, asymmetric synthesis, and 
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scaled up to a 6 g scale and obtained an 87% yield [20]. 

  

Scheme 1. The general mechanism for copper-boryl-mediated reaction with an unsaturated molecule.

During recent years, copper-boryl-promoted organic synthesis has advanced compre-
hensively and rapidly, including in multicomponent reactions, asymmetric synthesis, and the
functionalization of reagents [5,19]. Herein, this review will describe the very recent updated
progress of the copper-catalyzed borylative functionalization of unsaturated molecules.

2. Reaction of Copper-Boryl Species with C-C Multiple Bonds

Alkenes, allenes, and alkynes are widely used in this type of reaction as reactants
with copper-boryl intermediates, but control of the regioselectivity in the hydroboration of
terminal alkene remains a notorious challenge. Hence, the development of regioselective
and stereoselective hydroboration reactions for the non-polar multiple bonds, such as
alkenes and alkynes, is highly desired and has attracted numerous interests. This section is
mainly focusing on issues with chemo-, regio-, and stereo-selectivity. This has been realized
by employing different sets of phosphine and NHC ligands [5].

2.1. Hydroboration of Alkenes

The hydroboration reaction allows the formation of valuable organoboron compounds [4].
For the hydroboration of alkenes, Tortosa et al. recently reported a CuCl-catalyzed regios-
elective borylation of spirocyclobutenes under room-temperature (Scheme 2) [20]. The
regioselective transformation mainly depends on the xantphos ligand. By using xantphos
and a CuCl catalyst they obtained a single regioisomer with a good yield. Other ligands
such as dppp, dppf, BINAP, and dppbz provided a 50:50 mixture of regioisomer. Under
the optimized conditions, they synthesized a variety of borylated building blocks with
different functional groups such as sulfone, sulfonamide, ether, thioether, difluoromethane,
and acetal that are different connectors that can be embedded in the borylated spirocyclic
framework. The copper-catalyzed hydroborylation was effectively scaled up to a 6 g scale
and obtained an 87% yield [20].
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McAlpine, Liu, and Engle et al. [21] came up with a method of copper-catalyzed
hydroboration of benzylidene four-membered rings to offer synthetically-useful tertiary
boronic ester products by using various ligands and reagents with excellent yields of up to
99% (Scheme 3). They also suggested that the roles of ligands in reactions, for example, 4-F
and 4-CF3-dppbz, were to provide T-shaped π/π interactions among themselves and the
substrate. The reactivity was affected mainly by bond interactions between the catalysts
and the substrates with varying electronic properties [21].
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Scheme 3. Copper-catalyzed hydroboration of benzylidene-cyclobutanes and related compounds.

Diver et al. examined a regio- and enantio-selective Cu-catalyzed hydroboration of
1,3-disubstituted-1,3-dienes (Scheme 4) [22]. The authors utilized the catalytic ene-yne
metathesis to attain functionalized 1,3-dienes. The enantio-selective reaction was accom-
plished by using a chiral ligand (EtDuPhos), whereas a diphosphine
1,2-bis(dipheneylphosphino)benzene ligand was incorporated in achiral reactions. Based
on the integrated mechanistic studies, the authors assumed that the reaction went through
an allylic copper intermediate.
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In 2020, Fananas-Mastral et al. [23] reported an efficient pathway for the hydroboration
of borylated dendralenes which can synthesize functionalized 1,4-addition products by
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using a NHC-Cu catalyst with good chemo-, regio-, and stereo-selectivity and that can
yield up to more than 95% under optimized conditions (Scheme 5). The Z-configured diene
was attained through a rapid SE2 protonation with CH3OH, due to the strong stabilization
of the allyl/benzyl copper intermediate that causes E-selectivity.
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Scheme 5. Hydroboration of borylated dendralenes.

Specifically, using a non-precious transition metal, Tyurin and Zamilatskov et al.
examined the direct C-H borylation of porphyrinoids through a Cu-catalyzed vinylic
C-H activation strategy (Scheme 6) [24]. By employing this method, the β- and meso-
(2-(pinacolboryl)vinyl) porphyrinoids were obtained in good yields with high E-stereo-
selectivity. Furthermore, the authors studied the synthetic utility of borylated methyl
pyropheophorbide-a that was reacted with iodobenzene in the presence of 10 mol% of
Pd(PPh3)4 and three equivalents of Cs2CO3, resulting in the formation of phenylated
derivatives with 50–86% of yields.
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Scheme 6. Copper-catalyzed borylation of β-vinyl porphyrinoids.

Besides the development of homogeneous catalytic systems, heterogeneous systems
were also developed for reusable catalysts for the hydroboration of alkene. Nano-ferrite-
supported Cu-nanoparticles (Fe-dopamine-Cu NPs) as heterogeneous catalysts for the
hydroboration of alkenes with B2pin2 was reported by Kumar Bose et al. (Scheme 7) [25].
Additionally, the same catalyst was utilized for the C-H borylation of benzylideneacetophe-
none derivatives with B2pin2 to obtain alkylboronate esters. This protocol tolerated the
variety of the functional group (Scheme 8). The catalyst was re-used up to five cycles
without a loss of its catalytic activity.
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Xiong et al. developed the bimetallic (Co/Cu) catalytic system for the asymmetric
borylation of unactivated alkenes (Scheme 9) [26]. The authors optimized the reaction
conditions and found that the use of CoBr2 and CuCl as the catalysts with a chiral ligand
provided 80% of the target product with 94% ee. Using these optimized reaction con-
ditions, and varieties of electron donating with electron withdrawing, the substituents
on the aryl ring in alkenes were efficiently transferred in to chiral organoboronates in
good yields with enantiocontrol; however, this developed protocol is not suitable for
alkene-containing ketones, esters, and amides. The authors performed several mechanistic
studies and, based on these results, they suggest that this reaction proceeded through the
β-H elimination/olefin insertion endorsed by CoH species produced in situ, followed by
Cu-catalyzed asymmetric hydroboration.
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Using a novel β-fluoroelimination process, the synthesis of optically-active
gem-difluoro-1-silylallylboronates through the copper-catalyzed enantioselective bory-
lation of trifluoromethyl- and silyl-substituted alkenes using a QuinoxP*-type bispho-
sphine ligand was disclosed by Ito et al. [27]. The subsequent allylboron compounds
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went through allylboration with a diverse range of aldehydes to give chiral silyl- and
difluoromethylene-containing homoallylic alcohols with a good enantiomeric purity. The
mechanism proceeded with the formation of a borylcopper(I) intermediate and the desired
product was obtained via a rapid β-fluoroelimination step (Scheme 10).
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Scheme 10. Cu(I)-catalyzed enantioselective γ-borylation of silyl-substituted alkenes.

Oestreich et al. [28] identified a chiral bis(phosphine) monoxide (BPMOs) ligand that
induced greater levels of enantioselectivity in the copper-catalyzed conjugate borylation
of α, β-disubstituted cyclobutenones (Scheme 11). Under the optimized protocol, the
substrate scope was investigated by the authors. The electron-rich substituents such as
t-butyl and methoxy groups reduced the diastereo-selectivity of the target molecule. On
the other hand, the electron-withdrawing groups, including CF3 and esters, produced
the expected products in high enantioselectivities. Advantageously, the 1,6-borylation of
para-quinone methide also employed this reaction, where it furnished the expected product
in a good yield and a moderate enantioselectivity was obtained [28].
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Scheme 11. Enantioselective conjugate borylation of cyclobutenones under copper catalysis.

To obtain chiral cyclobutylboronates, which are valuable synthetic intermediates for the
synthesis of bioactive cyclobutanes, Lee and Hall et al. [29] introduced an asymmetric conju-
gate borylation method via a high throughput ligand screening approach (i.e., 118 ligands).
They found that the ferrocene-based ligand could enantio-selectively lead to a cis-β-boronyl
cyclobutylcarboxyester scaffold with 99% ee, and >20:1 d.r. The diastereo-selectivity of the
copper-catalyzed conjugate borylation could be well rationalized by the quadrant model of
the ferrocene-based ligand (Scheme 12).
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Scheme 12. Cu-catalyzed synthesis of a cis-β-boronyl cyclobutylcarboxyester.

2.2. Hydroboration of Alkynes

Bertrand, Jazzer, and Engle et al. [30] found a Cu-catalyzed hydrofunctionalization of
alkynes that was enabled by a cyclic (alkyl)(amino)carbene (CAAC) ligand (Scheme 13). Us-
ing CAAC/CuCl as the precatalyst, the authors evaluated the scope concerning
alkyl-substituted alkynes. By using this developed protocol, electron-rich and
electron-deficient substituents, such as halides, COO−, CN−, and OH− groups, partic-
ipated in this reaction and provided the expected products in good yields with a high
regioselectivity. Upon scaling up the reaction using 5-phenyl-1-pentyne (4.0 mmol) as the
substrate, two representative hydroboration reactions proceeded smoothly, furnishing the
target product with 81% and 60% yields over two steps [30].
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Ganesh et al. [31] presented a facile, copper catalyzed, regioselective hydrobora-
tion of 1,3-diynes with a Bpin-Bdan reagent to give enynylboronates in a reasonable yield
(Scheme 14). The authors identified the suitable reaction conditions to attain
1,4-diboryl,-1,3-dienes in decent yields and regioselectivities. Moreover, the authors
executed the synthetic utility of the obtained products by incorporating them in to a
Suzuki–Miyaura cross-coupling reaction [31].
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3. Carboborylation of C-C Multiple Bonds

Carboborylation is another kind of borylation, with some similar characteristics to
hydroboration, such as regioselectivity and stereoselectivity, as well as a sensitivity to tem-
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perature and solvents [32]. The scope of the carboborylation reaction is large and diverse,
including using substrates such as ketones, allenes, alkenes, imines, enones, dienes, etc.,
whilst using versatile carbo-electrophiles as partners in the reaction. The carboborylation
of C=C/C≡C multiple bonds are widely investigated recently.

3.1. Carboborylation of Alkenes

Following previous work on the Cu-catalyzed borylation of alkenes, Morken et al. [33]
developed a Cu-catalyzed coupling of vicinal bis(boronates) with a series of allyl or alkenyl
bromides (Scheme 15). Using this operationally simple method, the authors obtained a
wide range of terminal alkenes in good yields. This developed catalytic strategy delivered
the target molecules in high regioselectivity. On the basis of DFT studies, the authors
identified that the key role was played by the cyclic ate complexes [33].
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Scheme 15. Cu-catalyzed regioselective cross-coupling of alkene.

For the synthesis of chiral borylated γ-lactams, Lautens et al. [34] have shown the
copper-catalyzed intramolecular borylacylation of either 1,2- or 1,1-disubstituted alkenes
with a tethered carbamoyl chloride (Scheme 16). The authors explored the substrates’ scope
of styrenyl substituents by utilizing various electron-donating and electron-withdrawing
groups, with 3,4-disubstituted γ-lactams having electron-donating groups on the para posi-
tion giving the lower yield; however, 3,4-disubstituted γ-lactams having electron-donating
groups provided a higher yield. The asymmetric borylacylation of 1,1-disubstituted alkenes
was performed under optimal conditions, and the mechanism of the reaction proceeded
through the S-configured benzyl-copper intermediate. A chiral borylated γ-lactam ring
was formed via the cyclization of a benzyl-copper intermediate. [34].
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The copper-catalyzed borylative ring closing of unactivated alkenes bearing elec-
trophilic sites involves a strategic intramolecular 1,2-carboborylation process and was
reported by Carbo and Fernandez et al. [35]. They achieved the copper(I) catalyzed boryla-
tive cyclization method to synthesize anti-diastereoselective 2-(borylmethyl)cycloalkanols
with γ-alkenyl aldehydes as the starting materials. This reaction occurred through a regios-
elective boryl addition to the C=C bond followed by an intramolecular 1,2-addition of the
Cu-C bond onto the C=O bond (Scheme 17).
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In the same year, Procter et al. [37] published the enantioselective synthesis of pyr-
roloquinazolinone via copper-catalyzed borylative cyclization (Scheme 19). A higher yield 
of the desired product was obtained when using Cu(MeCN)4PF6 with KOt-Bu in THF. 
This strategy allowed various aryl-substituted alkenes to proceed efficiently and deliver 
pyrroloquinazolinones with good to excellent enantio- and diastereo-control. The authors 
proposed a mechanism for this reaction that proceeded through the formation of copper-
boryl species as one of the key intermediates [37]. 
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In 2021, Lautens et al. [36] documented a protocol to synthesize enantioenriched
N-heterocycles through a copper-catalyzed conjugate borylation or a Mannich cyclization
(Scheme 18). This reaction was first published to generate imines with high enantioselectivity
under mild conditions. Strategies to capitalize on the enolate intermediates to α, β-unsaturated
carbonyl systems are rare, while the few examples existing are limited to either being
non-enantioselective or intermolecular. This catalytic system is easy to handle, is readily
open to scale-up and creates complex N-heterocycles with stereocenters. Furthermore, several
Michael acceptors illustrate that this method is widely available (Scheme 18).
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In the same year, Procter et al. [37] published the enantioselective synthesis of pyrrolo-
quinazolinone via copper-catalyzed borylative cyclization (Scheme 19). A higher yield of
the desired product was obtained when using Cu(MeCN)4PF6 with KOt-Bu in THF. This
strategy allowed various aryl-substituted alkenes to proceed efficiently and deliver pyrrolo-
quinazolinones with good to excellent enantio- and diastereo-control. The authors proposed
a mechanism for this reaction that proceeded through the formation of copper-boryl species
as one of the key intermediates [37].
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The borylacylation of alkenes is an important and efficient method for the rapid synthesis
of carbonyl compounds with structural diversity. For example, Zhang and Peng et al. [38]
recently reported a copper catalyzed 1,2-borylacylation of 1,3-enynes with B2pin2 and acid
chlorides in 2022 (Scheme 20). After screening several ligands, they obtained good results
with a P(4-FPh)3 ligand. The reaction proceeded with a range of highly functionalized α,α-
disubstituted β-alkynyl ketones that were readily synthesized under mild conditions in
moderate to good yields with high regioselectivity. Furthermore, the authors treated the
products with NaBO3, while 4H2O provided 1,2-allenyl ketones, which was anticipated to
proceed via a retro-aldol process of the corresponding homopropargyl alcohols. The authors
suggested that the reaction proceeded via a borylated allenyl-copper intermediate [38].
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The exploration of multicomponent reactions to install boron and fluorine-containing
fragments into alkenes is highly desired. In this regard, Gong and Fu, et al. [39] investi-
gated the first example of dual Cu/Pd catalyzed borylfluoroallylation of alkenes via the
C(sp3)–C(sp3) coupling of gem-difluorinated cyclopropane with alkenes and B2pin2
(Scheme 21). The authors were systematically optimizing the reaction conditions and they
obtained a high yield of the expected product by using a SIMesCuCl and
t-Bu-Xphos-Pd-G3 catalytic system. The scope of alkenes and gem-difluorinated cyclo-
propanes was explored. In all the attempts, the expected alcohols were obtained in good
yields and heterocyclic compounds were easily incorporated into this reaction and afforded
the expected product in a good yield. A gram-scale synthesis (up to 3 mmol) of this protocol
was conducted and they obtained 92% of the yield. In order to elucidate the mechanism of
the three-component coupling reaction, a model reaction was performed by using an alkyl
diborate reagent under the optimized conditions. In this case, the authors did not obtain
the target product. Based on this result, the authors confirmed that the diboron compound
was not an intermediate for the three-component reaction [39].
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Scheme 21. Three-component reaction of alkenes for the synthesis of boryl-substituted fluoroalkenes.

Wu et al. [40] developed a strategy for the synthesis of sodium cyclic borate intermedi-
ates through the one-pot borofunctionalization of styrenes, B2pin2, CO, and NaOt-Bu in the
presence of xantphos/CuCl as a catalyst (Scheme 22). By using this developed protocol, they
utilized CO as the C1 source to easily prepare a multifunctional β-boryl vinyl ether, β-boryl
aldehydes, β-boryl carbonates, and β-boryl vinyl esters. In addition, nerol, (−)-borneol,
(−)-menthol, diacetonefructose, 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose, and
5α-cholestan-3β-ol derived styrenes participated this reaction successfully, furnishing
the products in good yields.
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Ito et al. [41] launched the intermolecular 1,2-alkylborylation of unactivated olefins
that proceeded via a radical-relay mechanism (Scheme 23). Initially, the authors screened
the reaction conditions and found that the desired product was obtained by using a
[Cu(MeCN)4]BF4/ligand catalyst system with K(Ot-Bu), and a catalytic amount of ZnBr2
as an additive in 1,4-dioxane/DMF (4/1, v/v) at 50 ◦C. Using the optimized conditions,
the authors further investigated the scope of mono- and di-fluoro alkyl bromides. All the
substrates underwent this reaction successfully and gave the target product in a good yield.
Nevertheless, aromatic olefins did not furnish this reaction under the optimal reaction
conditions and this may be due to the copper(I)-boryl intermediate first reacting with the
aromatic alkene rather than with the alkyl bromide [41].
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Scheme 23. Cu-catalyzed intermolecular 1,2-alkylborylation of olefins.

Peng et al. [42] synthesized γ-boryl-γ, δ-unsaturated carbonyl compounds through
the copper-catalyzed borocarbonylation of benzylidenecyclopropanes (BCP) via a proximal
C-C bond cleavage. By using this methodology, a broad range of γ-boryl-γ, δ-unsaturated
esters were prepared with excellent regio- and stereo-selectivity (Scheme 24). This devel-
oped catalytic methodology involved the cleavage of a C=C bond and the formation of new
C-C and C-B bonds.
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The carbonylative aminomethylation using carbon monoxide (CO) as a C1 building
block was reported by Wu et al. [43] to execute a copper-catalyzed boroaminomethylation
of olefins via a four-component coupling reaction to achieve γ-borylamines (Scheme 25).
This catalytic process allowed a vast range of functional group tolerance and afforded
the γ-boryl amines in reasonable yields. The non-requirement of an additional reducing
agent to reduce the CO is the added advantage of this methodology. This reaction pathway
occurred via an in situ tailored carbene intermediate insertion into the amine N-H bond
followed by a borylation reaction. (Scheme 26). The authors performed 13C labeling studies
in order to confirm that the “C” in the CH2 group was raised from one molecule of CO.
The obtained products through this reaction were further transformed into high-value
compounds including aromatization to afford quinolines [43].
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Wu et al. [44] developed the borocarbonylation of alkenes through cooperative Pd/Cu
catalysis (Scheme 27). For this reaction, an 8-aminoquinoline directing group and slower
CuBpin formation by using KHCO3 were important for a successful reaction design. Differ-
ent substituted aryl iodides and aliphatic alkenes were transformed into the desired β-boryl
ketones in moderate to excellent yields; however, no desired products were obtained in
the case of 3-butenoic amide, 2-vinylbenzamide, or internal alkene tested under the opti-
mized conditions [44]. The proposed mechanism involves the 8-aminoquinoline directing
group coordinating with Pd(0) (Scheme 28), which promotes the oxidative addition of aryl
iodides to generate aryl iodo Pd(II). After a ligand exchange, the CO insertion leads to
the acyl-Pd(II) species, which undergoes a migratory insertion with alkene to generate a
C(sp3)-Pd(II) intermediate. Subsequently, the C(sp3)-Pd(II) complex reacts with CuBpin to
give the product, β-boryl ketone, and to regenerate the Pd(0) complex (Scheme 28) [44].
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In 2020, Baik and Yun et al. [45] found a Cu-catalyzed stereoconvergent coupling
reaction of vinyl arenes and racemic acyclic allylphosphates with B2pin2 (Scheme 29).
Using this methodology, a new stereoselective C-C bond was formed. Furthermore, the
authors explored the scope of vinyl (hetero) arenes and 2◦ allylic phosphates bearing alkyl
and phenyl substituents and these reactions provided the expected products with higher
enantioselectivities up to 95% ee.
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According to the DFT calculation result, three possible reaction pathways were consid-
ered for the allylic substitution of the organocopper intermediate, i.e., the SN2-oxidative
addition (pathway 1) toward the allyl phosphate with the simultaneous dissociation of a
leaving group, the oxidative addition pathway with the association of the cupper center and
a leaving group (pathway 2), or a stepwise organocupration followed by the β-elimination
of a copper complex (pathway 3) (Scheme 30) [45].
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Lu and Li et al. [46] showcased the enantioselective copper-catalyzed borylacylation
of aryl olefins with acyl chlorides and bis(pinacolato)diboron (Scheme 31). The merits of
this reaction are (i) a low catalyst loading (2 mol%), (ii) a shorter reaction time and (iii) at
room-temperature. The reaction can be scaled up and the β-borylated ketone products
could undergo several further transformations.
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3.2. Carboborylation of Allenes

The borylative functionalization of allenes catalyzed by copper with diverse elec-
trophiles, including alkyl halides, aldehydes, and ketones, has become a predominant tool
to develop complex molecular architectures [6]. From allenes, allylic boronates can be
constructed as important building blocks in synthetic organic chemistry on account of their
synthetic utility, high thermal stability in terms of the C-B bond, and nontoxicity [5,6].

A challenging intermolecular three-component coupling reaction of allenes, alkyl
halide, and a diboron reagent in the presence of a copper catalyst was reported by Ito
et al. [47] to construct straightforward access to multi-alkylated allylic boronates (Scheme 32).
The allylboration of aldehydes allows the diastereoselective construction of quaternary
carbon atoms. The stereoselectivity mechanism of this multicomponent reaction was eluci-
dated by using DFT calculations. This reaction was extended to the different substrates of
gem-dialkylallenes [47].
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Jiang and Liu et al. disclosed a Cu-catalyzed cyanoboration of allenes with B2pin2 and
NCTs (N-cyano-N-phenyl-p-toluenesulfonamide). From this reaction, the authors obtained
cyanoborylated products with higher regio- and stereo-selectivity (Scheme 33) [48]. They
found that the use of Cu(OTf)2 (10 mol%), a ligand (10 mol%), Na2CO3 (1.2 equiv), and
MeOH (2.0 equiv) in THF at 30 ◦C provided a single isomer. Furthermore, the bidentate
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ligands with large bite angles enhanced the regioselectivity and the yield of the product as
well. In addition, derivatizations of the cyanoborylated products were established by using
different varieties of allenes and provided the target products with acceptable yields. On
the basis of DFT calculations and experimental observations, the rate-determining step of
transmetalation with B2pin2 was suggested [48].

Molecules 2023, 28, x FOR PEER REVIEW 20 of 33 
 

 

 
Scheme 33. Copper-catalyzed regiodivergent cyanoboration of allenes. 

The three-component carboborylation of allenes typically involves several challenges 
associated with the regio- and stereo-selective generation of the catalytic Bpin-substituted 
allyl copper intermediate. In connection with this, Fañanás-Mastral et al. [49] identified a 
method to obtain α-functionalized cyclic secondary amines from O-benzoyl hydroxyla-
mine through a Cu-catalyzed coupling reaction of allene and B2pin2 (Scheme 34). Due to 
the addition of a catalytic amount of Lewis base into this reaction, the authors observed 
higher chemoselectivity. 

 
Scheme 34. Borylative α-C-H allylation and their key mechanistic aspects. 

The diastereoselective Cu-catalyzed reductive intramolecular cyclization of allene-
tethered ketoamine was recently reported by Cho et al. (Scheme 35) [50]. This reaction 
progressed via a borylative allyl copper intermediate formed from allenes and this inter-
mediate underwent intramolecular diastereoselective cyclization followed by cascade 
copper-catalyzed hydrodeborylation, to give 3-hydroxypyrrolidines in good yields. 

 
Scheme 35. Cu-catalyzed reductive cyclization of ketoallenes. 

Scheme 33. Copper-catalyzed regiodivergent cyanoboration of allenes.

The three-component carboborylation of allenes typically involves several challenges
associated with the regio- and stereo-selective generation of the catalytic Bpin-substituted
allyl copper intermediate. In connection with this, Fañanás-Mastral et al. [49] identified a
method to obtain α-functionalized cyclic secondary amines from O-benzoyl hydroxylamine
through a Cu-catalyzed coupling reaction of allene and B2pin2 (Scheme 34). Due to the
addition of a catalytic amount of Lewis base into this reaction, the authors observed higher
chemoselectivity.
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Scheme 34. Borylative α-C-H allylation and their key mechanistic aspects.

The diastereoselective Cu-catalyzed reductive intramolecular cyclization of allene-
tethered ketoamine was recently reported by Cho et al. (Scheme 35) [50]. This reaction
progressed via a borylative allyl copper intermediate formed from allenes and this in-
termediate underwent intramolecular diastereoselective cyclization followed by cascade
copper-catalyzed hydrodeborylation, to give 3-hydroxypyrrolidines in good yields.
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Zhang et al. [51] used 2H-azirines as the electrophile for the three-component car-
boboration of arylallenes catalyzed by an NHC-Cu catalytic system (Scheme 36). The
reaction exhibited excellent diastereoselectivity and good yields. The borylated products
were further chlorinated by using CuCl2. This catalytic approach was further extended to
different azirines, alky and aryl allenes. A scaled-up (up to 1 mmol) synthesis was then
evaluated by the authors and obtained 61% of the yield.
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3.3. Carboborylation of Alkynes

Unsaturated alkynes with a C≡C triple bond offer similar characteristics to alkenes,
dienes, and allenes, thus, the borylative difunctionalization of alkynes has emerged as a
powerful approach to the synthesis of highly functionalized alkenes. Gong and Fu et al. [52]
put forward a method catalyzed by Cu/Pd to synthesize densely (i.e., tetra-, penta-, and
hexa-) substituted ene-allenes in an acceptable yield using readily available reagents such
as propargylic carbonates and bis(pinacol)diboron, which had high stereoselectivity and
high regioselectivity (Scheme 37) [52].
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Scheme 37. Cu and Pd-catalyzed carboborylation of alkyens.

Recently, Bertrand, Jazzar, and Engle et al. [53] demonstrated a regioselective
three-component carboborylation of terminal alkynes through cyclic alkyl amino carbene
(CAAC) copper catalysis (Scheme 38). A series of CAAC·CuCl catalytic systems with
different steric and electronic properties were tested. The authors found that an ethyl
substituted EtCAAC5-ligated Cu catalytic system (CAAC ligand with CuCl) promoted
transformations with both a high conversion and high α-selectivity. The replacement of
the ethyl substituent with either an electron-withdrawing group or more sterically-bulky
groups led to a decreased yield and α:β ratio. Various substitutions on the terminal alkynes
and alkyl iodides were well tolerated in this reaction and delivered the expected products
in good yields with high regioselectivity. The authors proposed a mechanism through a
reversible borylcupration that accounted for the change in regioselectivity as a function of
the electrophile identity [53].
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Scheme 38. α-selective allylboration of terminal alkynes.

Zhu et al. [54] portrayed a copper-catalyzed carboborylation of acetylene with B2pin2
and Michael acceptors (Scheme 39). This catalytic approach is successful for the substrates
such as acrylates, thioacrylates, acrylonitrile, vinyl ketones, and vinyl sulphones and it
afforded the target molecules with decent yields. This transformation was successfully
applied in a large-scale synthesis [54].
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Fañanás-Mastral et al. [55] reported the copper-catalyzed allylboration of alkynes in
2022, using gem-dichlorides to obtain difunctional E,Z-dienes in good yields (Scheme 40).
The combined Cu/NHC ligand catalytic system was robust and delivered the target
molecules with enantio- and diastereo-selectivity. The in situ generated complex of an
NHC ligand with a Li cation played a vital role in the stereo-control of this reaction, and
this fact was supported by DFT calculations [55].
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Scheme 40. Copper-catalyzed allylboration of alkynes with allylic gem-dichlorides.

Sun et al. [56] recognized a route to access alkenyl boronates via a copper-catalyzed
three-component reaction of alkynes, B2pin2, and a diazo compound (Scheme 41). The
authors found that the combination of CuI with a bipyridine ligand yielded 88% of
the expected product. The scope of different alkynes and diazo compounds was ex-
plored and all the reactants successfully participated in this reaction with moderate to
good yields. Furthermore, the synthetic utility of this boroalkylation of terminal alkynes
was demonstrated by conducting versatile derivatization reactions of Suzuki–Miyaura
cross-coupling. This three-component reaction was supposed to be initiated by the forma-
tion of a copper acetylide intermediate from the copper catalyst and phenylacetylene [56].
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Scheme 41. Cu-catalyzed borylative alkylation of terminal alkynes.

The carbonylative borylation of alkynes is one of the important transformations in the
transition-metal-catalyzed borofunctionalization of alkynes. For example, Wu et al. [57]
established a cooperative Pd/Cu-catalysis for the multicomponent carbonylation and
borylation of alkynes (Scheme 42). This methodology was successfully extended to varieties
of aryl alkynes and obtained the expected molecules in good yields. Aromatic/aliphatic
diynes, internal alhynes, 3-methyl-1-butyne, and 3-phenyl-1-propyne, were unsuccessful
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for this approach. Preliminary mechanistic studies revealed that the three hydrogen atoms
of the product originated from ethyl acetate [57].
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Scheme 42. Pd/Cu-catalyzed carbonylation and borylation of alkynes.

Tao et al. [58] reported a borylative aminomethylation of alkene and alkynes with
B2pin2 (Scheme 43). The combined use of Cu(CH3CN)4PF6 and Cy-JohnPhos as a ligand
efficiently converted the alkenes and alkynes in to the amino borylated products in good
yields. This catalytic protocol was robust and it was easy to access the γ-aminoboronates.
Notably, 67% of the target product was obtained in the case of a bulk scale synthesis. [58].
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3.4. Carboborylation of Imine and Carbonyl Derivatives

Recently, Wu et al. [59] explored the possibility of incorporating imine and alkyl
iodides for the synthesis of α-boryla amides and α-amino ketones. The regioselectivity
problem was overcome by utilizing a (p-CF3-C6H4)P ligand; however, they could obtain
high regioselective-corresponding a-boryl amides, while MeIMes was used as the ligand
(Scheme 44) [59].
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Song et al. [60] reported a developed method of tunable synthesis of α-amino boronic es-
ters using the available aldehydes and amines via copper-catalyzed borylacylation, which had
an excellent functional group tolerance with yields up to 88% among 37 examples (Scheme 45).
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Scheme 45. Cu-catalyzed 1,2-addition of imines.

A novel route to attain secondary α,α-dialkyl boronates via the catalyzed copper
deoxygenative alkylboration of aldehydes was identified by Xu et al. (Scheme 46) [61].
The desired product in a high yield was achieved by using the following conditions of Ni
(5 mol%), and a bpp ligand (6 mol%) in toluene. The authors were unsuccessful while using
tertiary aliphatic aldehyde and aromatic aldehyde [61]; hence, this approach is limited for
aliphatic aldehydes only.
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4. Heteroboration of C-C Multiple Bonds

Some other reactions are limited in application and number, nevertheless, they do have a
place in borylation and they represent significant pieces of boration; however, unfortunately, it
seems that this kind of reaction has ground to a standstill due to some unknown reasons. For
example, Lautens et al. [62] used a Bpin group as a pronucleophile to synthesize benzoxazinone
in a one-pot synthesis (Scheme 47). This one-pot operation involved an initial copper-catalyzed
borylation and subsequent C-B bond oxidation to generate the reactive alcohol intermediate
followed by cyclization. The developed one-pot, three-step method was mild and could
be applied to synthesize a broad range of benzoxazinone scaffolds, while it also could be
applied to enantioselectivity.
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Scheme 47. One-pot synthesis of benzoxazinones using B2pin2.

Very recently, Hirano et al. [63] demonstrated a catalytic way to the synthesis of
acyclic anti-β-boryl-α-amino acids, with a high anti-diastereoselectivity (up to >99:1) via a
copper-catalyzed aminoboration of α, β-unsaturated carboxylic acid derivatives with
B2pin2 and hydroxylamines (Scheme 48). This finding offered a facile route to access
β-boryl amino acid derivatives [63].
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Scheme 48. Cu-catalyzed aminoboration of α, β-unsaturated esters.

In order to synthesize the chiral β-aminoboronate from an easily accessible method,
Jian et al. [64] developed the enantioselective aminoboration of styrenes with
1,2-benzisoxazole as a nitrogen source by using a copper-chiral sulfoxide-phosphine ligand
as a catalytic system (Scheme 49). Under this approach, a variety of β-aminoboronates
were prepared in good yields.
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5. Multiboration

Multi-borylated compounds have received great importance because of their unique
synthetic applications [65]. In connection with this, Wu et al. [66] synthesized a series of
β-diboryl ketones by utilizing Cu/Pd catalysts (Scheme 50). This protocol tolerates differ-
ent substituted aryl alkynes; however, this approach is unfavored for internal alkynes. A
mono-borylated product was obtained when they used diaryl-substituted internal alkynes.
Based on the controlled experiments, the reaction pathway involved in the formation of boro-
carbonylation of aryl alkynes followed by the hydroboration of the terminal π-system [66].
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Scheme 50. Cu/Pd-catalyzed borocarbonylative trifunctionalization of alkynes.

Followed by the carbonylative borylation of alkynes, the same research group [67]
demonstrated a cyclopropanation of alkenes with diboron and CO catalyzed by copper. This
method could generate cyclopropane with two Bpin groups at different sides of the circle with
high regioselectivity and up to a 71% yield under the optimized circumstance (Scheme 51).
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Scheme 51. Cu-catalyzed cyclopropanation of alkenes.

Again, the same group [68] explored the preparation of diborylated cyclopropanes
from aryl olefins and CO via a copper-catalyzed carbonylation process (Scheme 52). After
the identification of the suitable reaction conditions, the authors successfully performed this
on both stable internal and terminal aryl olefins. As a consequence, a series of cyclopropyl
bis(boronates) were prepared in moderate to good yields with complete diastereoselectivity.
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aryl alkenes.

Ge et al. [69] successfully achieved a regioselective quadruple borylation of terminal
alkynes using CuI and dcpe (1,2-bis(dicyclohexylphosphino)ethane) as a catalytic system
(Scheme 53). Under optimal conditions, a wide range of terminal alkynes, including
fluorine, silyl, siloxy, sulfide, tertiary amine, amide, and internal alkyne, underwent this
reaction smoothly and afforded the expected products in good yields. Of note, alkynes
containing heteroaryl groups, such as indole and thiophene, also underwent this reaction
to give the desired 1,1,2,2-tetraborylalkanes in 78 and 75% of yields, respectively [69].
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This quadruple borylation reaction was suggested to proceed through the formation of
a copper hydride intermediate, copper-boryl species, vinyl copper intermediate, and alkyl
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copper species. At last, a tetraborylated target product was released with the regeneration
of active species as sketched in Scheme 54.
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6. Conclusions and Outlook

In summary, unquestionably the borylative functionalization of unsaturated molecules
has expanded the horizon of copper-catalyzed functionalization. From the initial report of
copper-catalyzed borylation, an increasing number of transformations have been reported
in the past two decades. The updated progress summarized herein highlights the frontiers
and hot directions in the field of Cu-catalyzed borylation chemistry. In the future, the
harmonious design of ligand frameworks needs to be focused on achieving regio-, stereo-,
and enantio-selective borylation. The advancements in the asymmetric borylation of unac-
tivated alkenes remain challenging; hence, the quest for structurally-novel chiral ligands
should be appreciated. In addition, more attention needs to be paid to the Cu-catalyzed bo-
rylative alkylation, carbonylative borylation, borylaminomethylation, and aminoboration
of unsaturated molecules. In a nutshell, it is envisioned that more creative and efficient
multiboration of alkenes and alkynes needs to be undertaken for the construction of more
complex-structure molecules. In spite of the advancements, in-depth explorations are
required in this exciting area to make it more applicable in the late-stage functionalization
of bio-active molecules for drug design. We anticipate that a robust and facile synthetic
methodology, that could also find industrial application, needs to be devised in the field of
copper-catalyzed borylation reactions. We hope this updated review will be helpful for the
field of organic synthesis to develop novel copper-catalyzed borylation reactions.
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