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Abstract: Epilepsy and major depressive disorder are the two of the most common central nervous
system (CNS) diseases. Clinicians and patients call for new antidepressants, antiseizure medicines,
and in particular drugs for depression and epilepsy comorbidities. In this work, a dozen new triazole-
quinolinones were designed, synthesized, and investigated as CNS active agents. All compounds
reduced the immobility time significantly during the forced swim test (FST) in mice at the dosage
of 50 mg/kg. Compounds 3f–3j gave superior performance over fluoxetine in the FST with more
reductions of the immobility time. Compound 3g also reduced immobility time significantly in
a tail suspension test (TST) at the dosage of 50 mg/kg, though its anti-immobility activity was
inferior to that of fluoxetine. An open field test was carried out and it eliminated the false-positive
possibility of 3g in the FST and TST, which complementarily supported the antidepressant activity of
3g. We also found that almost all compounds except 3k exhibited antiseizure activity in the maximal
electroshock seizure (MES) model at 100 or 300 mg/kg. Compounds 3c, 3f, and 3g displayed the
ED50 of 63.4, 78.9, and 84.9 mg/kg, and TD50 of 264.1, 253.5, and 439.9 mg/kg, respectively. ELISA
assays proved that the mechanism for the antiseizure and antidepressant activities of compound 3g
was via affecting the concentration of GABA in mice brain. The molecular docking study showed a
good interaction between 3g and the amino acid residue of the GABAA receptor. Excellent drug-like
properties and pharmacokinetic properties of compound 3a–l were also predicted by Discovery
Studio. These findings provided a new skeleton to develop agents for the treatment of epilepsy and
depression comorbidities.

Keywords: quinolinone; triazole; antidepressant; antiseizure; anticonvulsant; forced swim test;
GABA; maximal electroshock seizure

1. Introduction

Epilepsy and major depressive disorder are two of the most common central nervous
system (CNS) diseases worldwide [1,2]. According to the data provided by the World
Health Organization (WHO), the estimated incidence of depression is about 4.4% globally,
which means that more than 350 million people are now living with depression [1]. The
WHO listed depression as the top cause of disability in the world (responsible for 7.5% of
disabled patients in 2015), and is also the leading cause of suicide, with nearly 800,000 per
year. Meanwhile, more than 50 million people worldwide are struggling with epilepsy. It
causes more than 125,000 deaths per year. According to the Global Burden of Epilepsy Report,
13 million disability-adjusted life years were contributed by epilepsy per year [2].

During the last 20 years, depression was frequently found as a clinical co-morbidity
or sequel to epilepsy and anxiety [3–5]. The common pathological basis of them has been
found successively [6–9]. Clinical studies have found that patients with epilepsy (PWE) are
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more likely to also suffer from depression [10]. A community-based epidemiologic study
estimated that one-third of PWE will develop depressive symptoms in their lifetime [11].

The high frequency of this comorbidity requires early diagnosis and pharmacother-
apy, which presented clinicians with an arduous task: how to prescribe the patients with
epilepsy and depression comorbidities. The relatively high proconvulsant risk of tricyclic
antidepressants (TCAs) prevents their use in PWE [12,13]. The majority of reports and
research have supported the choice of selective serotonin reuptake inhibitors (SSRIs) and
serotonin noradrenaline reuptake inhibitors (SNRIs) as the first-line drugs for patients with
this comorbidity. However, the side effects of SNRIs and SSRIs, including anxiety, agitation,
gastrointestinal symptoms, changes in appetite and weight, and sexual disturbances limit
their application for this comorbidity. SSRIs can aggravate the weight gain induced by
antiseizure medicines (ASMs), including, for instance, carbamazepine, pregabalin, valproic
acid, and gabapentin. All SNRIs and SSRIs can cause sexual disturbances, which are also
relatively common among PWE. SSRIs can also induce osteoporosis and/or osteopenia,
which could inhibit the therapeutic effect of enzyme-inducing ASMs [14–16]. In summary,
the combination of available antidepressants and ASMs is not an ideal choice for this comor-
bidity considering the existing and potential side effects and drug-drug interactions [17–20].
Based on the above, it is valuable and urgent to find effective and low-toxic agents for
patients with this comorbidity.

Quinolinone and its derivatives comprise an important group of heterocyclic com-
pounds that exhibit a wide range of pharmacological properties such as anticonvulsant [21],
anti-cancer [22], antifungal, anti-inflammatory [23], and antidepressant activities [24]. Per-
sistent efforts have been made over the years to develop novel congeners with superior
biological activities and the minimal potential for undesirable side effects. Earlier stud-
ies by Oshiro et al. [25] have demonstrated that 3,4-dihydro-2(1H)-quinolinones have
promising antidepressant activities. Several studies in this area have confirmed the antide-
pressant properties of aripiprazole, which is a 3,4-dihydro-2(1H)-quinolinone-containing
compound [26–28].

We prepared numerous triazole-quinolinones and evaluated their antidepressive and
antiseizure effects as new CNS agents in our previous report (Figure 1) [29]. Most com-
pounds showed antiseizure action in the maximal electroshock seizure (MES) model at
the dosage of 100 or 300 mg/kg. Compounds 5i (R = CH2C6H4(o-F)), 5j (R = CH2C6H4
(m-F)), 5m (R = CH2C6H4(m-Cl)), and 5n (R = CH2C6H4(p-Cl)) showed potent antidepres-
sant activity in the forced swim test (FST). It is interesting to find that compounds 5i and
5m exhibited antidepressant and antiseizure effects simultaneously. Unfortunately, their
antiseizure activity was just found at the maximum dose applied (300 mg/kg). Their
antiseizure activity needs to be improved further.
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Aiming to search for and obtain new molecules with higher antiseizure and antidepres-
sive activities, in this work, some new derivatives were designed using the triazolequinoli-
nones as leading compounds (Figure 1). An imide group was inserted between triazole and
quinolinone by using the vinylogy principle, which will keep the core pharmacophores
and electron distribution, but alter the distance from triazole to quinolinone. Herein, the
synthesis and pharmacological screening of 12 new triazole-quinolinone derivatives (3a–l)
were described for their antidepressant and antiseizure.
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For drugs of the CNS, their neurotoxicity is unavoidable. The CNS drugs, especially
antiseizure drugs and antidepressants, have different degrees of neurotoxicity. Therefore,
a rotarod test was carried out in order to evaluate the neurotoxicity of the synthetic com-
pounds. As described above, a common pathological basis of epilepsy and depression has
been found. Some neurotransmitters such as GABA and 5-HT are associated with their
common pathogenesis. Therefore, some tests related to the GABA and 5-HT were also
undertaken to explore their possible mechanisms of action.

2. Results and Discussion
2.1. Chemistry

According to the route depicted in Scheme 1, the target compounds 3a–l were pre-
pared. First, 3,4-dihydro-2(1H)-quinolinone (1) was acetylated with acetyl chloride in CS2
using AlCl3 as Lewis acid to give 6-acetyl-3,4-dihydroquinolin-2(1H)-one (1) [30]. The
intermediate 1 was alkylated by haloalkanes in the presence of NaOCH3 to provide the
intermediates 2a–l [29]. Finally, compounds 3a–l were synthesized by the condensation of
compounds 2a–l with 4H-1,2,4-triazol-4-amine under the catalytic condition of PTSA in
refluxed toluene. 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy, as well as
high-resolution mass spectroscopy (HR-MS), were conducted for all the target compounds
to characterize their structures.
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Scheme 1. The synthetic route of target compounds 3a–l.

Take compound 3a as an example in the structure confirmation. In the 1H-NMR
spectrum, the absorption peak of CH3 in the propyl group was found to be 0.98 ppm as
a triplet. The absorption peaks of CH2 in the propyl group were found at 1.64–1.62 ppm.
Another CH2 in the propyl group was found at 3.94 ppm. A singlet due to CH3 was
observed at 2.37 ppm. Two triplets due to CH2 in the quinoline ring was observed at
2.70 and 2.98 ppm, respectively. Three aromatic hydrogens on the benzene ring gave
the absorption peak at 7.01 and 7.78–7.81 ppm. Two hydrogens from triazole gave the
singlet at 8.24 ppm due to the symmetry. The absorption peak in the hydrogen spectrum of
compounds 3a is completely in conformity with the hydrogen signal in the structure. The
13C-NMR spectra also gave accurate information about the structure of the compounds
3a, which involved 15 kinds of carbon in different chemical environments. Moreover, the
HR-MS of 3a displayed an [M + H]+ signal at m/z 298.1659, which corresponded to its
molecular weight of 298.1662.

2.2. Antidepressant Activities

After intraperitoneal administration (i.p.) of 50 mg/kg, the antidepressive effect of
compounds 3a–l were evaluated using FST. Fluoxetine (FXT), as a representative drug of
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the SSRIs, was used as the positive control with the same dosage (i.p., 50 mg/kg). The
FST, as a classic animal model imitating a depressive environment [31], is one of the most
commonly used antidepressant screening models due to its low cost, high efficiency, and
reliability [32–34]. It can be considered that a compound has an antidepressant activity if it
can decrease the immobility time of mice in FST. As present in Figure 2, all compounds could
shorten the immobility time of mice effectively, which indicated their potent antidepressant
activities. Compounds 3b, 3d, and 3f–3l showed better performance in reducing immobility
time with p < 0.001 compared with the control group. Fluoxetine also contributed to a
significant reduction for the immobility time with p < 0.001. In particular, compounds 3f–3j
exhibited more reductions in the immobility time than fluoxetine, although there was no
statistical difference.
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Figure 2. Effects of compounds 3a–l and FXT (i.p., 50 mg/kg) on the duration of immobility time in
the FST. Ten animals were used for each group. * p < 0.05 compared to the control group, ** p < 0.01
compared to the control group, *** p < 0.001 compared to the control group.

Based on the performance of compound 3g in the FST, its anti-immobility effect was
evaluated at lower doses in the FST. As present in Figure 3, the compound 3g and fluoxetine
were effective in reducing the immobility time of mice at 25 mg/kg. Their antidepressive
effects were dose-dependent. However, compound 3g did not significantly affect the
immobility time at the dosage of 10 mg/kg.
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Figure 3. Effects of compound 3g and FXT (i.p., 10 mg/kg and 25 mg/kg) on the duration of
immobility time in the FST at lower dosages. Ten animals were used for each group. ** p < 0.01
compared to the control group, *** p < 0.001 compared to the control group, **** p < 0.001 compared
to the control group.
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Apart from FST, a tail suspension test (TST) was conducted to further verify the
antidepressant effect of 3g. Compounds 3a were i.p. administered with the dosage of
50 mg/kg. FXT (i.p., 50 mg/kg) used as the positive control. TST is also a widely used
behavioral despair model for predicting the potential of an antidepressive candidate [35].
As shown in Figure 4, compound 3g and FXT reduced immobility time significantly in the
TST when taken at 50 mg/kg. This result further confirmed that compound 3g has potent
antidepressant activity.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. Effects of compound 3g and FXT (i.p., 10 mg/kg and 25mg/kg) on the duration of immo-
bility time in the FST at lower dosages. Ten animals were used for each group. ** p < 0.01 compared 
to the control group, *** p < 0.001 compared to the control group, **** p < 0.001 compared to the 
control group. 

Apart from FST, a tail suspension test (TST) was conducted to further verify the an-
tidepressant effect of 3g. Compounds 3a were i.p. administered with the dosage of 50 
mg/kg. FXT (i.p., 50 mg/kg) used as the positive control. TST is also a widely used behav-
ioral despair model for predicting the potential of an antidepressive candidate [35]. As 
shown in Figure 4, compound 3g and FXT reduced immobility time significantly in the 
TST when taken at 50 mg/kg. This result further confirmed that compound 3g has potent 
antidepressant activity. 

 
Figure 4. Effects of compound 3g and FXT (i.p., 50 mg/kg) on the duration of immobility time in the 
TST. Ten animals were used for each group. ** p < 0.01 compared to the control group, *** p < 0.001 
compared to the control group. 

To exclude the possible false-positive of compound 3g due to its effect on locomotor 
activity, the effect of compound 3g on the locomotor activity of mice was assessed via an 
open-field test. The open-field test is a widely used behavioral test for the evaluation of 
the effects of drugs on autonomic activities and the exploratory behavior of animals [36]. 
As shown in Figure 5, compound 3g showed no significant effect on locomotor activity. 
There was no significant difference in the crossing, rearing, and grooming of mice 

Con
tro

l

FXT (2
5 m

g/k
g)

FXT (1
0 m

g/k
g)

3g
 (2

5 m
g/k

g)

3g
 (1

0 m
g/k

g)
0

50

100

150

****

**

Im
m

ob
ili

ty
 ti

m
e (

s)

***

Forced swim test (FST) 

Con
tro

l 3g
FXT

0

50

100

150

200

**

***

Im
m

ob
ili

ty
 ti

m
e (

s)

Tail suspension test (TST) 

Figure 4. Effects of compound 3g and FXT (i.p., 50 mg/kg) on the duration of immobility time in the
TST. Ten animals were used for each group. ** p < 0.01 compared to the control group, *** p < 0.001
compared to the control group.

To exclude the possible false-positive of compound 3g due to its effect on locomotor
activity, the effect of compound 3g on the locomotor activity of mice was assessed via an
open-field test. The open-field test is a widely used behavioral test for the evaluation of the
effects of drugs on autonomic activities and the exploratory behavior of animals [36]. As
shown in Figure 5, compound 3g showed no significant effect on locomotor activity. There
was no significant difference in the crossing, rearing, and grooming of mice between the
compound 3g group and the control group. This result indicated that the anti-immobility
activity of 3g shown in the FST and TST is not led by CNS excitation.
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Figure 5. Effects of single treatment with 3g (50 mg/kg) on the exploratory behaviors in the open-field
test. Locomotion indicates the number of line crossings; rearing indicates the number of times seen
standing on hind legs; grooming indicates the number of modifications. Ten animals were used for
each group.
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2.3. Antiseizure Activity and Neurotoxicity

Both the maximal electroshock seizure (MES) and the subcutaneous pentylenetetrazole
(sc-PTZ) model, widely used to screen antiseizure candidates in early drug discovery, were
applied to determine the antiseizure effects of the target compounds (3a–l) [37]. Mice were
treated i.p. with 30, 100, and 300 mg/kg of the test compounds and positive controls, and
then tested at 0.5 and 4 h after administration. The protection of mice against the seizure
was observed and recorded. Carbamazepine and valproate, currently used ASMs, were
selected as the positive control and tested in the same situation [38].

As listed in Table 1, almost all molecules except 3k displayed antiseizure activity in
the MES model at 100 mg/kg or 300 mg/kg, while there was no compound that exhibited
protection in the PTZ model even at 300 mg/kg. Compounds 3c–3d, 3f, and 3l were found
to be effective at 0.5 h intervals in the MES test. Furthermore, their antiseizure activity was
also observed at 4h intervals when administrated at 300 mg/kg.

Table 1. Antiseizure and neurotoxic effects of the target compounds (3a–l) after a single intraperi-
toneal injection in mice a.

Compd. -R

Maximal Electroshock
Test

Pentylenetetrazole
Test

Rotarod
Test

0.5 h 4 h 0.5 h 4 h 0.5 h 4 h

3a -C3H7 300 - - - - -
3b -C4H9 300 - - - - -
3c -C5H11 100 300 - - 300 -
3d -C6H13 300 300 - - 300 -
3e -C7H15 300 - - - - -
3f -CH2C6H5 100 300 - - 300 -
3g -CH2C6H4(2-F) 100 - - - - -
3h -CH2C6H4(3-F) 300 - - - - -
3i -CH2C6H4(4-F) 300 - - - - -
3j -CH2C6H4(2-Cl) 300 - - - - -
3k -CH2C6H4(3-CI) - - - - - -
3l -CH2C6H4(4-CI) 300 300 - - 300 -

Carbamazepine - 30 100 - - 100 100
Valproate - 300 - 300 - - -

a Three mice were used for one dosage of a compound. The figure in the table represents the minimal dose in
which antiseizure action was observed in two or three mice. The dotted line indicates that no antiseizure or
neurotoxic effects were observed at the dose of 300 mg/kg.

The CNS agents are usually accompanied by neurotoxicities such as slow reaction,
dyskinesia, lethargy, and unclear consciousness. To assess the neurotoxicity of the target
compounds, the rotarod test was carried out. As listed in Table 1, four compounds (3c,
3f, 3d, and 3l) showed neurotoxicity at the maximum dose administered (300 mg/kg) in
the rotarod test. At the dosage of 100 and 30 mg/kg, none of the compounds presented
neurotoxicity in the rotarod test or gave any behavior related to nerve suppression or
excitation such as mania, lethargy, and dyskinesia.

Compounds 3c, 3f, and 3g, displaying antiseizure activity at 100 mg/kg in the MES
test, were the three most active compounds. To obtain their accurate dose of antiseizure
activity and neurotoxicity, they were re-subjected to the MES and rotarod tests. As listed
in Table 2, compound 3c had a median effective dose (ED50) value of 63.4 mg/kg and a
median toxic dose (TD50) value of 264.1 mg/kg. Compound 3f showed an ED50 value
of 78.9 and a TD50 value of 253.5 mg/kg. Compound 3g showed an ED50 value of 84.9
and a TD50 value of 439.9 mg/kg. All of them displayed higher anti-MES activity than
valproate but lower activity than carbamazepine. PI value, a parameter used to evaluate
the safety of antiseizure candidates, was calculated via dividing TD50 by ED50. As seen in
Table 2, compounds 3c and 3f exhibited PI values of 4.2 and 3.2, which were lower than
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carbamazepine, but higher than valproate. Compound 3g exhibited a superior PI value
than carbamazepine and valproate (5.2 vs. 4.8 and 1.5).

Table 2. ED50 and TD50 values of 3c, 3f, and 3g in the MES test.

Compounds ED50
a TD50

b PI c

3c 63.4 (58.0–69.3) 264.1 (240.1–290.5) 4.2
3f 78.9 (71.7–86.8) 253.5 (230.5–278.8) 3.2
3g 84.9 (75.16–95.83) 439.9 (394.45–490.70) 5.2

Carbamazepine 8.7 (8.3–10.2) 41.5 (38.1–46.3) 4.8
Valproate 288 (257–329) 432 (370–492) 1.5

a ED50—median effective dose required to assure antiseizure protection in 50% animals. b TD50—median toxic
dose eliciting minimal neurological toxicity in 50% animals. c PI—protective index (TD50/ED50).

2.4. Effects of Compound 3g on the Level of Neurotransmitters GABA and 5-HT in Mouse Brain

The neurotransmitters (such as GABA, Glu, 5-HT, taurine, and so on), their corre-
sponding receptors (such as GABAAR, GABABR, NMDA, AMPA, KAR, and so on), and
ion channel (such as Cl−, Na+, K+, Ca2+) are the main targets or mechanisms involved in
the current ASMs. In our previous study, antiseizure compounds containing triazole were
confirmed to modulate GABAergic activity in mice [39,40]. With regard to depressive disor-
ders, in addition to the monoamine hypothesis, other neurotransmitters, such as GABA and
Glu, were also identified and confirmed to have a pathogenic role [41,42]. The GABA levels
in occipital regions, ventromedial prefrontal regions, the dorsal anterolateral prefrontal,
and the dorsomedial, were found to be downregulated in depression patients [43]. Based
on the above, the effects of compound 3g on the level of GABA and 5-HT in mice brains
were investigated to verify the contribution of GABA and 5-HT in the antiseizure and
antidepressant activities of it.

ELISA assays were carried out to explore the effects of 3g on the level of GABA and
5-HT in mice brains. Phenytoin and FXT were used as the positive control [44,45]. As
presented in Figure 6A, compounds 3g and phenytoin improved the level of GABA in the
mice brains significantly in comparation to the control group. FXT significantly increased
the level of 5-HT in the mice brains nearly twice that of the control group. However,
compound 3g had no obvious effect on the level of 5-HT in mice brain. The aforementioned
suggested that the increasing of the GABA level in the brain might contribute to the
antiseizure and anti-depressive effects of the compound 3g.
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Figure 6. Effects of 3g, phenytoin, and FXT on whole brain GABA (A) and 5-HT (B) levels in mice
brains. Eight animals were used for each group. * p < 0.05 compared to the control group, ** p < 0.01
compared to the control group.

To further confirm the above indication, the anti-MES and anti-immobility activity
of compound 3g was evaluated in the mice pretreated by thiosemicarbazide (TSC). As
we know, GABA is synthesized by the decarboxylation of glutamate in the brain, and
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the reaction process is catalyzed by glutamate decarboxylase (GAD). TSC, as one of the
GAD inhibitors, can interrupt the GABA synthesis, and reduce the level of GABA in the
CNS [46].

In this assay, mice were pretreated with 25 mg/kg of TSC (i.p.) for three consecutive
days. Half an hour after the last administration, the treated mice were then subjected to
the MES and FST. The results showed that the antiseizure activity disappeared in the MES
test. No protection was obtained in the MES test when 100 or 300 mg/kg of compound
3g (i.p.) was administered. In the FST, the anti-immobility activity of compound 3g was
also reversed. As shown in Figure 7, TSC did not affect the immobility time of mice
when compared to the vehicle group. But the anti-immobility activity of compound 3g
at 50 mg/kg was reversed in the TSC-treated mice. The above results suggested that the
upregulation of GABA levels in the brain of mice was involved in the antiseizure and
antidepressant activities of compound 3g.
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Figure 7. Effects of compound 3g (50 mg/kg) on the immobility time in the TSC-treated mice in the
FST. Eight animals were used for each group. ** p < 0.01 compared to the vehicle group; ### p < 0.001
compared to the vehicle + 3g group.

As we mentioned previously, the common pathological basis of epilepsy and depres-
sion have been found. Some neurotransmitters such as GABA and 5-HT are associated
with their common pathogenesis. In this study, the synthesized compound 3g affected
the GABA level, but not the 5-HT, which give it the potential to act as both an antiseizure
and an antidepressant drug. The shared pathogenesis of epilepsy and depression make it
possible to find some candidates for the depression and epilepsy comorbidities, such as
compound 3g.

2.5. Molecular Docking, Drug-Like Properties, and Pharmacokinetic Properties Prediction

Based on the above finding, it is accepted that the GABAergic system was involved in
the mechanism of action of compound 3g. Molecular docking is a theoretical and computed
method to study molecular interactions and predicts the mechanism of action. Therefore,
a docking of compound 3g and GABAA receptor was performed to obtain the binding
mode and molecular interactions. As seen in Figure 8, GABAA agonist diazepam showed a
hydrogen bond with Thr206; p–p stacking with TYR209 and HIS101; and a hydrophobicity
interaction with TYR159 and VAL211. Compound 3g showed a hydrogen bond with
ARG132 and HIS101; p–alkyl with LEU140, ARG132, and VAL202, p–sulful with MET130;
p–p stacking with TYR209 and TYR159; and a hydrophobicity interaction with GLU189,
and VAL211. The overlying pattern of compound 3g and diazepam was shown in Figure 9,
which vividly presented that compound 3g and diazepam had a similar binding model
with the GABAA receptor. Inspiringly, the docking scores for compound 3g and the BZD-
binding pocket was obtained to be 115.34, which is higher than that of diazepam, with a
score of 104.52. These results suggested that compound 3g might exert its pharmacologic
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effects by binding with the GABAA receptor and have a similar mechanism of action to
that of benzodiazepines.
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Lipinski’s “Rule of Five” is widely used in early drug development such as drug
design and screening. It suggests that most “drug-like” molecules have similar parameters,
including LogP ≤ 5, molecular weight (MW) ≤ 500, the number of H-bond acceptors
(HAB) ≤ 10, the number of H-bond donors (HBD) ≤ 5, and the number of rotatable bonds
(ROTB) ≤ 10. Molecules that completely met the five rules indicate good oral bioavailability.
As listed in Table 3, compounds 3a–l met the Rule of Five, which indicates that they have a
good drug-likeliness.

With regard to CNS agents, the absorption and blood–brain barrier permeability is
especially important. To predict the pharmacokinetic properties of the molecules 3a–l, a
calculated molecular properties module in the DS 2019 platform was run to predict the
absorption and blood–brain barrier permeability of the molecules 3a–l. As illustrated
in Figure 10, all compounds fell in the circle of absorption and BBB permeability, which
indicated that they have favorable absorption and BBB permeability.
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Table 3. Drug-like property parameters of the target compounds 3a–l.

Compound MW CLogP HBD HBA n-ROTB Lipinski’s Violation

Rule 500 ≤5 ≤5 <10 ≤10 ≤1
3a 297.355 1.549 0 4 4 0
3b 311.382 2.005 0 4 5 0
3c 325.408 2.462 0 4 6 0
3d 339.435 2.918 0 4 7 0
3e 353.461 3.374 0 4 8 0
3f 345.398 2.26 0 4 4 0
3g 363.388 2.466 0 4 4 0
3h 363.388 2.466 0 4 4 0
3i 363.388 2.466 0 4 4 0
3j 379.843 2.925 0 4 4 0
3k 379.843 2.925 0 4 4 0
3l 379.843 2.925 0 4 4 0
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3. Materials and Methods
3.1. Chemiscal Part

The reagents used in this study were purchased from Macklin Inc. Thin-layer chro-
matography (TLC) was used to monitor the reaction progress. After purification, the
products were sent to the analysis center for structure confirmation. NMR spectrums were
measured on a Bruker AV-300 spectrometer. The HR-MS of compounds was measured on a
Xevo G2-XS QT mass spectrometer.

3.1.1. Synthesis Procedure of 6-Acetyl-3,4-dihydroquinolin-2(1H)-one (1)

3,4-Dihydro-1H-quinolinone (2.94 g, 20 mmol) and AlCl3 (9 g, 68 mmol) were mixed
in CS2 solution (60 mL). Acetyl chloride (2.36g, 30 mmol) was added dropwise under
the cooling of an ice bath. When the dropping is finished, the ice bath was removed, the
mixture was reacted at 25 ◦C for 1h and then reacted at 55 ◦C for 24 h. When the reaction
was completed, the reactant was dumped into ice water and the white sediment formed
was filtered. The filter cake was purified by recrystallization with ethyl acetate. Compound
1 was obtained with a yield of 67%. Mp 165–167 ◦C. 1H-NMR δ ppm (CDCl3, 300 MHz):
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2.57 (s, 3H, COCH3), 2.70 (t, J = 7.5 Hz, 2H, CH2), 3.04 (t, J = 7.5 Hz, 2H, CH2), 6.93 (d,
J = 8.2 Hz, 1H, Ar-H), 7.79–7.83 (m, 2H, Ar-H), 9.80 (s, 1H, CONH). 13C NMR δ ppm (CDCl3,
75 MHz): 196.9, 141.6, 132.3, 128.6, 128.4, 128.3, 123.4, 115.4, 30.5, 26.4, 25.1. HR-MS (ESI)
calculated for C11H12NO2

+ ([M + H]+): 190.0863; measured: 190.0865.

3.1.2. Synthesis Procedure of N-substituted-6-acetyl-3,4-dihydro-2(1H)-quinolinone (2a–l)

Using compound 2a as an example: Compound 1 (0.60 g, 3.2 mmol) and NaOCH3
(0.70 g, 13 mmol) were mixed in a solution of CH3CN (20 mL). The mixture was stirred
at 80 ◦C for 1h. After that, bromopropane (0.44 g, 3.6 mmol) was put into the flask and
the reaction was raised to 120 ◦C for 15 h. The CH3CN was removed, and the residue
was washed with water and filtered to get a crude product. It was purified by silica gel
column chromatography using 2% CH3OH in CH2Cl2 as eluent. Yield: 77%. Mp: 78–80 ◦C,
1H-NMR δ ppm (CDCl3, 400 MHz): 0.97 (t, 3H, J = 7.5 Hz, Methyl), 1.64–1.71 (m, 2H, CH2),
2.58 (s, 3H, COCH3), 2.68 (t, J = 7.5 Hz, 2H, CH2), 2.96 (t, J = 7.5 Hz, 2H, CH2), 2.93 (t,
J = 7.7 Hz, 2H, NCH2), 3.94 (t, J = 7.5 Hz, 2H, N-CH2), 7.03 (d, J = 8.5 Hz, 1H, Ar-H), 7.79
(s, 1H, Ar-H), 7.76 (d, J = 8.6 Hz, 1H, Ar-H). 13C NMR δ ppm (CDCl3, 126 MHz): 196.8,
170.1, 143.8, 131.6, 128.4, 128.1, 126.4, 114.5, 43.8, 31.6, 26.4, 25.5, 20.4, 11.2. HR-MS (ESI)
calculated for C14H18NO2

+ ([M + H]+): 232.1332; measured: 232.1337. Compounds 2b–l
were prepared by replacing bromopropane with other bromoalkanes or benzoyl chlorides
according to the same procedure.

3.1.3. Synthesis Procedure of Target Compounds (3a–3l)

4H-1,2,4-triazol-4-amine (1.04 g, 12 mmol), PTSA (0.12 g, 0.7 mmol), and compound
2 (2.9 mmol) were mixed with 12 mL toluene. The mixture, after stirring and refluxing
overnight, was cooled under an ice bath. Finally, compound 3 was provided after the
filtration, washing and recrystallization of the precipitated solid obtained above. The
melting point, yield, and structural characterization data of the synthesized compounds
(3a–3l) are shown below.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-propyl-3,4-dihydroquinolin-2(1H)-one
(3a): Mp 194–196 ◦C, yield 82%. 1H-NMR δ ppm (CDCl3, 300 MHz): 0.98 (t, J = 7.3 Hz, 3H,
Methyl), 1.64–1.62 (m, 2H, -CH2), 2.37 (s, 3H, Methyl), 2.70 (t, 2H, J = 6.9 Hz, CH2), 2.98 (t,
2H, J = 6.9 Hz, CH2), 3.94 (t, 2H, J = 7.5 Hz, N-CH2), 7.01 (d, 1H, J = 9.3, Ar-H), 7.78–7.81
(m, 2H, Ar-H), 8.24 (s, 2H, Triazolo-H). 13C-NMR δ ppm (75 MHz, CDCl3): 172.25, 169.76,
143.06, 139.54, 129.06, 127.21, 126.98, 126.70, 114.73, 43.59, 31.44, 25.41, 20.24, 16.20, 11.06.
HR-MS (ESI) calculated for C16H20N5O+ ([M + H]+): 298.1662; measured: 298.1659.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-butyl-3,4-dihydroquinolin-2(1H)-one
(3b): Mp 196–197 ◦C, yield 81%. 1H-NMR δ ppm (CDCl3, 300 MHz): 0.97 (t, 3H, J = 7.2 Hz,
Methyl), 1.37–1.45 (m, 2H, CH2), 1.59–1.69 (m, 2H, CH2), 2.38 (s, 3H, Methyl), 2.70 (t,
J = 6.7 Hz, 2H, CH2), 2.98 (t, J = 6.7 Hz, 2H, CH2), 3.98 (t, J = 7.6 Hz, 2H, N-CH2), 7.08–7.81
(m, 3H, Ar-H), 8.26 (s, 2H, Triazolo-H). 13C-NMR δ ppm (CDCl3, 75 MHz,): 172.32, 169.80,
143.18, 129.13, 127.31, 127.06, 126.83, 114.80, 41.95, 31.54, 29.63, 29.15, 25.51, 20.06, 16.27,
13.78. HR-MS (ESI) calculated for C17H22N5O+ ([M + H]+): 312.1819; measured: 312.1811.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-pentyl-3,4-dihydroquinolin-2(1H)-one
(3c): Mp 206–208 ◦C, yield 80%. 1H-NMR δ ppm (CDCl3, 300 MHz): 0.91 (t, J = 6.8 Hz, 3H,
Methyl), 1.33–1.70 (m, 6H, CH2), 2.37 (s, 3H, Methyl), 2.69 (t, J = 6.8 Hz, 2H, CH2), 2.98 (t,
J = 6.8 Hz, 2H, CH2), 3.96 (t, J = 7.6 Hz, 2H, N-CH2 ), 7.07 (d, J = 9.2 Hz, 1H, Ar-H),
7.79–7.82 (m, 2H, Ar-H), 8.26 (s, 2H, Triazolo-H). 13C-NMR δ ppm (CDCl3, 75 MHz):
172.26, 169.71, 143.07, 139.83, 129.03, 127.23, 126.98, 126.73, 114.70„ 42.10, 31.45, 28.85, 26.68,
25.41, 22.27, 16.19, 13.89. HR-MS (ESI) calculated for C18H24N5O+ ([M + H]+): 326.1975;
measured: 326.1969.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-hexyl-3,4-dihydroquinolin-2(1H)-one
(3d): Mp 215–217 ◦C, yield 80%. 1H-NMR δ ppm (CDCl3, 300 MHz): 0.89 (t, J = 6.8 Hz, 3H,
Methyl), 1.25–1.41 (m, 6H, CH2), 1.60–1.70 (m, 2H, CH2), 2.38 (s, 3H, Methyl), 2.70 (t, 2H,
J = 6.7 Hz, CH2), 2.98 (t, J = 6.7 Hz, 2H, CH2), 3.96 (t, J = 7.7 Hz, 2H, N-CH2), 7.08 (d,
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J = 9.2 Hz, 1H, Ar-H), 7.80–7.83 (m, 2H, Ar-H), 8.25 (s, 2H, Triazolo-H). 13C-NMR δ ppm
(CDCl3, 75 MHz): 172.32, 169.77, 143.17, 139.62, 129.13, 127.31, 127.06, 126.81, 114.79, 42.22,
31.54, 31.42, 27.03, 26.47, 25.51, 22.51, 16.27, 13.96. HR-MS (ESI) calculated for C19H26N5O+

([M + H]+): 340.2132; measured: 340.2129.
(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-heptyl-3,4-dihydroquinolin-2(1H)-one

(3e): Mp 215–216 ◦C, yield 76%. 1H-NMR δ ppm (CDCl3, 300 MHz): 0.88 (t, J = 6.6 Hz, 3H,
Methyl), 1.22–1.34 (m, 8H, CH2), 1.60–1.70 (m, 2H, CH2), 2.38 (s, 3H, Methyl), 2.67–2.72
(t, J = 6.7 Hz,2H, CH2), 2.98 (t, J = 6.7 Hz, 2H, CH2), 3.96 (t, J = 7.6 Hz, 2H, N-CH2), 7.08
(d, J = 9.2 Hz, 1H, Ar-H), 7.80–7.83 (m, 2H, Ar-H), 8.25 (s, 2H, Triazolo-H). 13C-NMR
δ ppm (CDCl3, 75 MHz): 172.29, 169.73, 143.07, 139.57, 129.03, 127.22, 126.98, 126.72, 114.71,
42.15, 31.59, 31.44, 28.83, 26.99, 26.68, 25.41, 22.42, 16.18, 13.94. HR-MS (ESI) calculated for
C20H28N5O + ([M + H]+): 354.2288; measured: 354.2277.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-benzyl-3,4-dihydroquinolin-2(1H)-one
(3f): Mp 246–247 ◦C, yield 74%. 1H-NMR δ ppm (CDCl3, 300 MHz): 2.33 (s, 3H, Methyl),
2.86 (t, J = 6.6 Hz, 2H, CH2), 3.08 (t, J = 6.6 Hz, 2H, CH2), 5.24 (s, 2H, CH2), 6.97 (d,
J = 8.6 Hz, 1H, Ar-H), 7.19–7.35 (m, 5H, Ar-H), 7.64–7.67 (dd, J = 8.6, 1.9 Hz, 2H, Ar-H), 7.82
(d, J = 1.9 Hz, 1H, Ar-H), 8.24 (s, 2H, Triazolo-H). 13C-NMR δ ppm (CDCl3, 75 MHz): 172.12,
170.11, 143.17, 139.49, 136.16, 129.36, 128.81, 128.75, 127.23, 126.80, 126.60, 126.22, 115.54,
45.89, 31.42, 25.42, 16.15. HR-MS (ESI) calculated for C20H20N5O+ ([M + H]+): 346.1662;
measured: 346.1660.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-(2-fluorobenzyl)-3,4-dihydroquinolin-
2(1H)-one (3g): Mp 201–202 ◦C, yield 82%. 1H-NMR δ ppm (CDCl3, 300 MHz): 2.35
(s, 3H, Methyl), 2.85 (t, J = 7.9 Hz, 2H, CH2), 3.08 (t, J = 7.9 Hz, 2H, CH2), 5.28 (s, 2H,
CH2), 6.96 (d, J = 8.7 Hz, 1H, Ar-H), 7.02–7.28 (m, 4H, Ar-H), 7.67–7.70 (dd, J = 8.7,
2.1 Hz,2H, Ar-H), 7.82 (d, J = 2.1 Hz, 1H, Ar-H), 8.23 (s, 2H, Triazolo-H). 13C-NMR δ ppm
(CDCl3, 75 MHz): 172.11, 170.21, 160.31 (d, 1Jc–f = 244.0 Hz), 142.77, 129.57, 128.94, 127.55 (d,
3Jc–f = 5.9 Hz), 127.37,126.88, 126.60, 124.39(d, 4Jc–f = 3.4 Hz), 123.10, 115.45(d,
2Jc–f = 14.0 Hz), 115.15, 39.58, 39.51, 31.42, 25.36, 16.20. HR-MS (ESI) calculated for
C20H19FN5O+ ([M + H]+): 364.1568; measured: 364.1558.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-(3-fluorobenzyl)-3,4-dihydroquinolin-
2(1H)-one (3h): Mp 216–219 ◦C, yield 70%. 1H-NMR δ ppm (CDCl3, 300 MHz): 2.34
(s, 3H, Methyl), 2.85 (t, J = 8.0 Hz, 2H, CH2), 3.09 (t, J = 8.0 Hz, 2H, CH2), 5.22 (s, 2H, CH2),
6.87–7.03 (m, 4H, Ar-H), 7.28 (d, J = 8.6 Hz, 1H, Ar-H), 7.65–7.70 (dd, J = 8.6, 2.2 Hz, 2H,
Ar-H), 7.82 (d, J = 2.2 Hz, 1H, Ar-H), 8.23 (s, 2H, Triazolo-H). 13C-NMR δ ppm (CDCl3,
75 MHz): 172.03, 170.08, 163.36 (d, 1Jc–f = 245.1 Hz), 142.87, 138.96, 138.87, 130.35, 129.61
(d, 3Jc–f = 8.2 Hz), 127.27, 126.94, 126.55, 121.88 (d, 4Jc–f = 1.8 Hz), 115.31, 114.21, 113.23 (d,
2Jc–f = 14.0 Hz), 45.47, 31.33, 25.35, 16.18. HR-MS (ESI) calculated for C20H19FN5O+

([M + H]+): 364.1568; measured: 364.1560.
(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-(4-fluorobenzyl)-3,4-dihydroquinolin-

2(1H)-one (3i): Mp 290–292 ◦C, yield 71%. 1H-NMR δ ppm (CDCl3, 300 MHz): 2.33
(s, 3H, Methyl), 2.85 (t, J = 8.0 Hz, 2H, CH2), 3.07 (t, J = 8.0 Hz, 2H, CH2), 5.19 (s, 2H, CH2),
6.95 (d, J = 8.6 Hz, 1H, Ar-H), 6.9–7.03 (m, 2H, Ar-H), 7.17–7.21 (m, 2H, Ar-H), 7.66–7.69 (dd,
J = 8.6, 2.2 Hz, 2H, Ar-H), 7.83 (d, J = 2.2 Hz, 1H, Ar-H), 8.25 (s, 2H, Triazolo-H). 13C-NMR
δ ppm (CDCl3, 75 MHz): 172.50, 169.81, 161.16 (d, 1Jc–f = 237.8 Hz), 146.95, 142.19, 140.02,
133.08, 129.59, 128.48 (d, 3Jc–f = 8.3 Hz), 127.06 (d, 3Jc–f = 6.8 Hz), 126.67, 115.36, 115.33
(d, 2Jc–f = 21.8 Hz), 43.79, 30.95, 24.58, 16.18. HR-MS (ESI) calculated for C20H19FN5O+

([M + H]+): 364.1568; measured: 364.1562.
(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-(2-chlorobenzyl)-3,4-dihydroquinolin-

2(1H)-one (3j): Mp 201–203 ◦C, yield 75%. 1H-NMR δ ppm (CDCl3, 300 MHz): 2.3 (s,
3H, Methyl), 2.87 (t, J = 8.0 Hz, 2H, CH2), 3.07 (t, J = 8.0 Hz, 2H, CH2), 5.28 (s, 2H, CH2), 6.80
(d, J = 8.7 Hz, 1H, Ar-H), 6.92 (dd, J = 8.6, 1.44 Hz, 1H, Ar-H), 7.12–7.26 (m, 2H, Ar-H), 7.42
(dd, J = 8.6, 1.4 Hz, 1H, Ar-H), 7.66 (dd, J = 8.7, 2.2 Hz, 2H, Ar-H ), 7.83 (d, J = 2.2 Hz, 1H,
Ar-H), 8.26 (s, 2H, Triazolo-H). 13C-NMR δ ppm (CDCl3, 75 MHz): 172.05, 170.09, 142.81,
139.51, 133.03, 132.54, 129.68, 129.63, 128.44, 127.41, 127.05, 126.87, 126.58, 126.48, 115.32,
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43.90, 31.40, 25.36, 16.20. HR-MS (ESI) calculated for C20H19ClN5O+ ([M + H]+): 380.1273;
measured: 380.1270.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-(3-chlorobenzyl)-3,4-dihydroquinolin-
2(1H)-one (3k): Mp 216–219 ◦C, yield 80%. 1H-NMR δ ppm (CDCl3, 300 MHz): 2.34
(s, 3H, Methyl), 2.86 (t, J = 8.0 Hz, 2H, CH2), 3.08 (t, J = 8.0 Hz, 2H, CH2), 5.20 (s, 2H, CH2),
6.91 (d, J = 8.6 Hz, 1H, Ar-H), 7.08–7.01 (m, 1H, Ar-H) 7.12–7.26 (m, 2H, Ar-H), 7.18–7.26
(m, 3H, Ar-H), 7.64–7.68 (dd, J = 8.6, 2.1 Hz, 2H, Ar-H ), 7.84 (d, J = 2.1 Hz, 1H, Ar-H), 8.23
(s, 2H, Triazolo-H). 13C-NMR δ ppm (CDCl3, 75 MHz): 172.03, 170.09, 142.87, 139.50, 138.38,
134.70, 130.06, 129.62, 127.53, 127.32, 126.96, 126.58, 126.36, 124.45, 115.30, 45.46, 31.34, 25.36,
16.20. HR-MS (ESI) calculated for C20H19ClN5O+ ([M + H]+): 380.1273; measured: 380.1265.

(E)-6-(1-((4H-1,2,4-triazol-4-yl)imino)ethyl)-1-(4-chlorobenzyl)-3,4-dihydroquinolin-
2(1H)-one (3l): Mp 290–292 ◦C, yield 83%. 1H-NMR δ ppm (CDCl3, 300 MHz): 2.34
(s, 3H, Methyl), 2.85 (t, J = 7.9 Hz, 2H, CH2), 3.08 (t, J = 7.9 Hz, 2H, CH2), 5.20 (s, 2H, CH2),
6.92 (d, J = 8.6 Hz, 1H, Ar-H), 7.14–7.31 (m, 4H, Ar-H), 7.67 (dd, J = 8.6, 2.2 Hz, 2H, Ar-H),
7.84 (d, J = 2.2 Hz, 1H, Ar-H), 8.22 (s, 2H, Triazolo-H). 13C-NMR δ ppm (CDCl3, 75 MHz,):
171.78, 170.07, 139.47, 137.98, 132.38, 131.29, 129.01, 127.84, 127.30, 127.01, 124.60, 115.41,
111.65, 45.39, 31.46, 29.63, 25.50. HR-MS (ESI) calculated for C20H19ClN5O+ ([M + H]+):
380.1273; measured: 380.1268.

3.2. In Vivo Pharmacology

In this study, the antidepressant activity was determined through the FST and TST
model. The locomotor activity was evaluated using the open-field test. The antiseizure
activity were screened by MES and sc-PTZ. A rotarod test was used to evaluate the neuro-
toxicity. Kunming mice (20 ± 2 g) were used in all of the animal experiments. Polyethylene
glycol-400 was used as the vehicle. The procedures involving animals were approved by
the Medical Ethics Committee of Jinggangshan University (Approval No. 20200910). On
the premise of obtaining reliable data, as few animals as possible were used. The detailed
procedures of the mentioned tests were described in the previous articles [29,39,40]. In the
determination of Brain GABA and 5-HT, mice (ten in each group) were administrated (i.p.)
with the vehicle phenytoin (25 mg/kg), FXT (25 mg/kg), and compound 3g (100 mg/kg),
respectively. Once a day for three consecutive days, the mice were sacrificed by cervical
dislocation. The brains of the mice were taken out, washed with cooling physiological
saline, and homogenized (5000× g) in six volumes (g/mL) of physiological saline at 4 ◦C
for 10 min. The supernatant was subjected to enzyme-linked immunosorbent assay (ELISA)
kits (Biolegend, San Diego, CA, USA) to measure the content of the GABA and 5-HT
in the mice brain. The level of GABA and 5-HT were indicated as µmol/L and pg/mL,
respectively. The results were presented as means with standard error.

3.3. Molecular Docking, Drug-Like Properties, and Pharmacokinetic Properties Prediction

In the molecular docking study, the three-dimensional (3D) structure of the GABAA
receptor was downloaded from PDB (ID: 6 × 3x). The structure of the test molecule was
constructed by ChemDraw 16.0 software, energy minimized, and docked with GABAA
using the docking module (LiDOCK) in Discovery Studio (release 2019). The binding mode
of the ligand–receptor complex with the lowest energy was analyzed. In the prediction
of drug-like properties and pharmacokinetic properties, ChemDraw Ultra 16.0 was used
to construct the target compounds (3a–l). The calculate molecular properties module of
DS 2019 was used to predict the drug-like properties and pharmacokinetic properties
(i.e., MW, RotB, CLogP, nHBD, nHBA, absorption, and BBB permeability level) of the target
compound (3a–l).

3.4. Statistical Analysis

The data from each group in the FST and TST were analyzed by one-way ANOVA,
followed by Dunnet’s multiple comparison test. In the MES model, ED50 and TD50 values
with their 95%CI were analyzed by log-probit analysis. For the comparation of ED50
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value, the standard error (SEM) of the mean values were transformed from 95% confidence
limits, and the ED50 with the SEM were compared using the one-way analysis of variance
(ANOVA) followed by Dunnet’s test. One-way ANOVA, followed by Dunnet’s multiple
comparison test was used for the comparison of the GABA and serotonin levels. All
statistical analyses were performed with GraphPad Prism 7.0.

4. Conclusions

In this work, a dozen triazole-quinolinones (3a–l) were prepared and evaluated as
newly CNS-active agents. All compounds displayed potent antidepressant activities in
the FST. The majority of the target compounds displayed antiseizure action in the MES
test. Compounds 3c, 3f, and 3g displayed noticeable antidepressant activity in the FST and
exhibited excellent antiseizure effects in the MES model with an ED50 of 63.4, 78.9, and
84.9 mg/kg, respectively. The effect of compound 3g on the level of GABA in the mice
brains has been proven to contribute to its antiseizure and antidepressant activities. The
molecular docking study showed a good interaction between compound 3g and the GABAA
receptor. The excellent drug-like properties and pharmacokinetic properties of compound
3a–l were also predicted. These findings provided a new skeleton to develop agents for
the treatment of epilepsy and depression comorbidities, although the antiseizure potency
needs to be improved further and the mechanism of action needs further study. In the next
step, a mouse comorbidity model of epilepsy and depression will be established to evaluate
the antiseizure and antidepression activity of compound 3g. In addition, we will further
study its mechanism of action and continue to carry out structural modifications based on
the analysis results of the mechanism research to obtain stronger and safer candidate drugs.
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