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Abstract: Supported Pt-based catalysts have been identified as highly selective catalysts for CO
oxidation, but their potential for applications has been hampered by the high cost and scarcity of
Pt metals as well as aggregation problems at relatively high temperatures. In this work, nanorod
structured (TiO2−Pt)/CeO2 catalysts with the addition of 0.3 at% Pt and different atomic ratios of
Ti were prepared through a combined dealloying and calcination method. XRD, XPS, SEM, TEM,
and STEM measurements were used to confirm the phase composition, surface morphology, and
structure of synthesized samples. After calcination treatment, Pt nanoparticles were semi-inlayed on
the surface of the CeO2 nanorod, and TiO2 was highly dispersed into the catalyst system, resulting in
the formation of (TiO2−Pt)/CeO2 with high specific surface area and large pore volume. The unique
structure can provide more reaction path and active sites for catalytic CO oxidation, thus contributing
to the generation of catalysts with high catalytic activity. The outstanding catalytic performance is
ascribed to the stable structure and proper TiO2 doping as well as the combined effect of Pt, TiO2, and
CeO2. The research results are of importance for further development of high catalytic performance
nanoporous catalytic materials.

Keywords: Al-Ce−Pt-TiO2 alloy ribbon; dealloying; CO oxidation; (TiO2−Pt)/CeO2

1. Introduction

Carbon monoxide is one of the most dangerous waste gases because of its harmful
impact on the environment and high toxicity to animal and human lives. As catalytic
CO oxidation is an efficient method to eliminate CO pollution under low temperature
conditions, it has attracted widespread research interest in recent years [1,2]. Among them,
the supported Pt-based catalysts have been widely investigated since Langmuir’s first
discovery [3–5]. Pt-based catalysts are critical to industrial CO oxidation because of their
superior catalytic activity and stable catalytic properties [6–8]. The catalytic mechanism of
Pt catalysts has been widely investigated and the results show that the reaction generally
follows Langmuir–Hinshelwood (L-H) models [9–11]. However, the relative high cost and
scarcity of noble metals, as well as their aggregation tendency as temperature rises, have
retarded their further development [12,13]. Both theoretical and experimental studies have
demonstrated that combining transition metal oxides [14,15] or rare earth metal ions [16,17]
with noble metals is an effective method to reduce cost while maintaining stable catalytic
property, which has been widely used in fuel cell and energy conversion/storage equipment.
TiO2, as a typical metal oxide, exhibits high oxygen storage capacity and redox properties
as well as active catalytic performance by enhancing the migration rate of surface-active
oxygen atoms and plays an important role in the catalysis field [18–20]. For example, Liou’s
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team [21] prepared Cu-doped TiO2 microsphere for catalytic CO oxidation. They think
that the highly dispersed doping metals can increase the exposure of copper and TiO2
matrix, thus leading to the improvement of catalytic performance. However, the bulk metal
oxides always show poor charge transfer ability and conductivity, which hinders their full
play. Combining TiO2 with Pt is an effective strategy to avoid the aggregation of Pt and
enhance the overall property of materials. Liu’s group [22] fabricated the Pt-Au/TiO2-CeO2
catalyst and found that the introduction of TiO2 into a system can improve CO oxidation by
enhancing the charge transfer from Pt to Au sites. Nava’s team [23] investigated the loading
amount of TiO2 on catalytic performance of Au/TiO2/SBA-15 systems and concluded that
the catalyst reached the highest catalytic activity when 10 wt% TiO2 was added. Therefore,
TiO2 is a good promoter in improving the catalytic performance of catalysts.

In practice, the metallic catalysts or metal–metal oxide composites are always sup-
ported on some nanostructured substrates to form heterogeneous catalysts [24]. This unique
structure can allow good dispersion of noble metals and make full play use of the catalysts.
It is well established that the noble catalysts supported on reducible metal oxides are more
active than non-reducible oxides such as Al2O3 or SiO2 [25,26]. In comparison, as a unique
rare metal oxide, CeO2 has been applied as a superior reducible supporting oxide due
to its rich reservation and fast storage/release oxygen ability [27]. More importantly, the
reversible Ce3+/Ce4+ redox reaction and easy generation of oxygen vacancies in CeO2 can
contribute to the improvement in CO oxidation rate [28,29]. Previous studies also imply
that the morphology and facets of CeO2-based nanocomposites can greatly influence the
formation and migration of surface oxygen vacancies, and nanosized structured CeO2
materials, including nanospheres, nanorods, and nanocubes [30,31], have been synthesized.
Among these structures, nanorod-shaped CeO2 has received a substantial amount of atten-
tion because of its potentially large surface area and abundance of oxygen vacancy defects.
Li et al. [32] prepared Au cluster-CeO2 catalysts and concluded that the Au25 nanoclusters
on CeO2 nanorods and nano polyhedra display higher activity than CeO2 nanocubes due
to the difference in concentration of (O) species on ceria surface. Kwangjin An’s group [33]
fabricated Pt/CeO2 with different morphologies and found that the Pt/CeO2 with cube
morphology shows the best activity compared with other structured samples. It is therefore
predicated that the catalytic activity of CeO2-based catalysts can be controlled by tuning
their physicochemical properties. However, the conventional fabrication methods always
require relatively high cost and complicated or time-consuming preparation processes,
which limit their large-scale application.

The structure and activity of a catalyst is greatly related to the synthesis method. Com-
pared with the traditional preparation method, dealloying is a simple and pollution-free
method to fabricate three-dimensional nanoporous materials on a large-scale production
basis [34]. The structure and pore size of samples can also be controlled by adjusting
the dealloying temperature or composition of precursor alloys [35]. Metal oxides such
as NiO [36] and CuO [37] or noble metals such as Ag [38], Au [39], and Pt [6] have been
reported to be successfully supported on CeO2 and have displayed satisfying catalytic
activity. Whereas the Pt/TiO2 composites supported onto CeO2 to improve catalytic activity
has been rarely reported.

Herein, the nanorod structured (TiO2−Pt)/CeO2 catalysts with the addition of Pt and
varied amount of TiO2 were fabricated through a combined dealloying and calcination
method. The highly dispersed Pt and TiO2 nanoparticles are loaded onto CeO2 and form a
nanoscale interface, which can accelerate the movement rate of electrons at the interface.
The good framework structure also makes CO access catalysts more efficiently and gives
full play to the role of active phases. The (0.5TiO2−Pt)/CeO2 catalyst shows optimal
catalytic property of 50% and 99% at reaction temperatures as low as 55 ◦C and 90 ◦C,
respectively. This work provides a new idea for preparation of high catalytic performance
transition metal/CeO2-based catalysts for large-scale production.
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2. Results and Discussion
2.1. Characterization of Catalysts

Figure 1a displays the XRD patterns of melt-spun and dealloyed Al91.2Ce8Pt0.3Ti0.5
ribbons. As observed, the melt-spun Al91.2Ce8Pt0.3Ti0.5 ribbons consisted of α-Al, Al4Ce
and Al92Ce8 phases; after the dealloying procedure, only a new phase of CeOx was de-
tected while α-Al, Al4Ce, and Al92Ce8 phases disappeared, implying that most of the Al
has been removed. The diffraction peaks representing Pt/Ti cannot be detected, which is
ascribed to their low content and high dispersion into alloy ribbons. The XRD patterns of
Al91.4Ce8Pt0.3Ti0.3, Al91.2Ce8Pt0.3Ti0.5, and Al91Ce8Pt0.3Ti0.7 melt-spun ribbons after deal-
loying and calcination treatments are displayed in Figure 1b. The diffraction at 28.5◦,
32.9◦, 47.4◦, 56.2◦, 69.2◦, and 76.7◦ corresponded to the (111), (200), (220), (311), (400),
and (331) planes of cubic CeO2 (PDF#89-8436), respectively; the weak diffraction peak at
41o representing Pt was also discovered while no peaks related to Ti was found. How-
ever, the content of Al, Ce, Pt, and Ti in the (0.5TiO2-Pd)/CeO2 catalyst obtained from
Al91.2Ce8Pt0.3Ti0.5 melt-spun ribbon is 3.81 at%, 90.14 at%, 1.66 at%, and 4.4 at%, respec-
tively, as shown in the EDS spectrum in Figure S1, demonstrating that Pt and Ti have been
added into Al-Ce precursor alloys successfully.
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Figure 1. The XRD patterns of (a) melt-spun and dealloyed Al91.2Ce8Pt0.3Ti0.5 ribbons;
(b) (xTiO2−Pt0.3)/CeO2 (X = 0.3, 0.5, 0.7) calcined at 300 ◦C.

To further confirm the chemical state of Pt, Ti, and Ce, XPS characterization of
(0.5TiO2−Pt)/CeO2 is conducted with results shown in Figure 2. The Ce 3d spectrum
displayed in Figure 2a reveals that the sample exhibits both Ce4+ and Ce3+ ions. The five
peaks at 881.9 eV, 888.3 eV, 897.7 eV, 900.4 eV, and 907.3 eV are ascribed to Ce4+, while
the other two peaks at 885.1 eV and 903.7 eV corresponded to Ce3+. The existence of Ce3+

implies the generation of oxygen vacancies; Ce3+ can adsorb active oxygen at the catalytic
interface, thus contributing to the formation of interfacial active center. The concentration
of Ce3+ can be reflected from the integrated areas of the Ce3+ peak to the total (Ce3+ +
Ce4+) peaks. As a result, the surface concentration of Ce3+ on the (0.5TiO2−Pt)/CeO2
catalyst is 21.58% according to the fitting calculation of the Ce 3d spectrum. For the Pt
4f spectrum in Figure 2b, the binding energies at 70.8 eV for Pt 4f7/2 and 73.9 eV for Pt
4f5/2 are assigned to metallic state platinum (Pt0), while the peaks at 71.9 eV and 76.4 eV
corresponded to Pt2+ [40,41]. Likewise, the content of Pt0 accounts for 61.6% of the total
(Pt0 + Pt2+). The Ti 2p spectrum in Figure 2c displays a Ti4+ binding energy, in which the
two peaks at 463.6 eV and 457.8eV corresponded to Ti 2p1/2 and Ti 2p3/2, respectively [42].
Since Ti mainly existed in the form of Ti4+ in the product, it is deduced that TiO2 existed in
the composite material. The O 1s spectrum in Figure 2d can be fitted to three peaks. The
binding energies centered around ~529.3 eV, ~531 eV, and ~532.2 eV corresponded to lattice
oxygen species (Olat), surface adsorbed oxygen (Osur), and weakly bonded specific oxygen
species such as adsorbed O2, H2O, and CO2 (Obon), respectively. The active surface oxygen
can be evaluated by Osur, and the ratio of active oxygen species for (0.5TiO2−Pt)/CeO2
is 20.8%.
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Figure 2. XPS spectra of (a) Ce 3d, (b) Pt 4f, (c) Ti 2p, and (d) O 1s of the (0.5TiO2−Pt)/CeO2 catalyst.

Figure 3 presents the surface and cross-sectional morphologies of (TiO2−Pt)/CeO2
with different TiO2 content. As observed, all the three samples display a robust framework,
which are composed of a nanoporous matrix with nanorods embedded in them. The
nanorods pile up on each other to form rich pores among them. Notably, the slight increase
in TiO2 content from 0.3 at% to 0.5 at% does not influence the overall morphologies of
samples and only fine-tunes the arrangement of pores, as shown in Figure 3a,d,g. Moreover,
the cross-sectional SEM image of (0.5TiO2−Pt)/CeO2 in Figure S2 further reflects the
presence of rich pores and independent arrangement of nanorods. The unique and robust
nanorod-embedded matrix structure is beneficial to stabilize the overall structure of samples
during the catalytic process; the existence of lots of pores distributed among matrix and
nanorods can also provide more channels for reacted gas to enter and exit; therefore, the
catalytic CO oxidation performance is expected to be improved.

TEM and HRTEM characterization are performed to further understand the microstruc-
ture of (TiO2−Pt)/CeO2 catalysts. As shown in the TEM images of (0.3TiO2−Pt)/CeO2,
(0.5TiO2−Pt)/CeO2, and (0.7TiO2−Pt)/CeO2 presented in Figure 3b,e,h, respectively, the
samples are composed of a large number of uniform nanorods with an average diameter of
10 nm, which are interconnected and stacked on each other; some dark nanoparticles with
diameter of 3–5 nm on average are uniformly embedded on the surface of nanorods. These
are consistent with SEM results. The corresponding HRTEM images of (0.3TiO2−Pt)/CeO2,
(0.5TiO2−Pt)/CeO2, and (0.7TiO2−Pt)/CeO2 are displayed in Figure 3c,f,i, respectively.
The lattice fringe with a space of 0.32 nm corresponded to the (111) plane of CeO2, implying
the cubic structured CeO2 nanorod in the (111) crystal plane. The dark nanoparticles with
lattice space of 0.229 nm are assigned to the (111) plane of Pt, which further indicates
that Pt has been added into Al-Ce alloy successfully. However, no results related to Ti
are found in TEM characterization. This may be because the calcination temperature in
the (TiO2−Pt)/CeO2 system is relatively low (300 ◦C); CeO2 can inhibit the crystallization
of other oxides during the calcination process under such low temperatures [43]. Our
previous work also found that CeO2 can inhibit the crystallization of NiO; as temperature
rises, the structure of NiO in the system is transformed from the amorphous state into the
crystallization state [36]. Therefore, the reason why the lattice fringe related to TiO2 is not
detected in TEM characterization may be the amorphous state of TiO2 in the system, which
is in line with XRD results.
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The distribution of elements on the surface of the CeO2 nanorod is further investigated
via STEM mapping, with results presented in Figure 4. Figure 4a displays the SEM image
of (0.5TiO2−Pt)/CeO2. For (0.5TiO2−Pt)/CeO2 obtained from Al91.2Ce8Pt0.3Ti0.5 through
the dealloying and calcination processes, Pt is semi-embedded onto the surface of the
CeO2 nanorod, while Ti is uniformly distributed into the CeO2 nanorod, as reflected in
Figure 4b–d. Combined with XPS and STEM results, it can be concluded that Ti mainly
exists as the TiO2 phase in the composite system; thus, the obtained composite material is
named as (TiO2−Pt)/CeO2.

The specific surface area, pore size distribution, and pore volume of (TiO2−Pt)/CeO2
composite materials with varied TiO2 proportions are measured via the N2 adsorption-
desorption test, with results displayed in Figure 5. The isotherms of three catalysts be-
long to type IV and possess H3 hysteresis loops at relative pressure of 0.7–1.0 P/P0 ac-
cording to the IUPAC classification (Figure 5a), indicating the mesoporous structure of
(TiO2−Pt)/CeO2 [44]. The BET surface area of (0.3TiO2−Pt)/CeO2, (0.5TiO2−Pt)/CeO2,
and (0.7TiO2−Pt)/CeO2 is 101.88, 108.88, and 110.11 m2 g−1, respectively, while their
corresponding pore size is centered at 14.36, 12.71, and 13.58 nm, and pore volume is 0.36,
0.37, and 0.35 cm3 g−1, respectively, as displayed in the BHJ pore size distribution curves
in Figure 5b. Obviously, the three catalysts possess similar results in specific surface area
and pore size distribution, which illustrates that the variation in the amount of Pt and TiO2
does not influence the physical structure of materials significantly, nor their mesoporous
properties. In contrast, (0.5TiO2−Pt)/CeO2 has higher specific surface area, larger pore
volume, and smaller porosity, which is beneficial for gas penetration during the catalytic
process by providing more reaction paths and active sites for catalytic CO oxidation, and
thus improving its catalytic performance.
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Figure 5. (a) Nitrogen adsorption–desorption isotherms and (b) the BHJ pore size distribution of
(TiO2−Pt)/CeO2.

Raman spectroscopy measurement is conducted to understand the structural phase
changes of (TiO2−Pt)/CeO2 catalysts. In Figure 6, the weak peaks of Raman shift around
306 and 534 cm−1 indicate the existence of anatase TiO2; the appearance of new and broad
peaks around 269 cm−1 is attributed to co-doping of Pt [45,46]. Moreover, compared with
Raman peaks of pure CeO2 in Figure S3, the diffraction peak is shifted from 459 cm−1 to
439 cm−1, which is ascribed to the formation of more grain boundaries after the addition
of TiO2 and Pt nanoparticles. It is expected that the Pt and TiO2 nanoparticles that are
highly dispersed on CeO2 nanorods can cause a large number of defects including oxygen
vacancies, grain boundaries, and dislocations, which are helpful for improvement in
catalytic activity of catalysts.
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Figure 6. Raman spectra of (TiO2−Pt)/CeO2 catalysts.

2.2. Catalytic Performance

Figure 7 presents the catalytic CO oxidation performance of (TiO2−Pt)/CeO2 catalysts.
For Pt0.3/CeO2 without the addition of TiO2, the temperature for 50% CO conversion
(T50) and 99% CO conversion (T99) is 91◦C and 113 ◦C, respectively, which is much higher
than that of the CeO2 matrix (T50 = 235 ◦C, T99 = 320 ◦C), as observed in Figure S4.
The catalytic activity is greatly improved after the addition of TiO2. The T50 and T99 of
(0.3TiO2−Pt)/CeO2 is 65 ◦C and 110 ◦C, respectively, when 0.3 at% Ti is added into alloy
system. As Ti content increases to 0.5 at%, the catalytic activity reaches the optimum with
a T50 and T99 decrease to 55 ◦C and 90 ◦C, respectively; on further increasing Ti content
to 0.7 at%, catalytic performance decreases with T50 and T99 of 65 ◦C and 100 ◦C, respec-
tively, as displayed in Figure 7a. The influence of calcination temperature on catalytic
property of the (0.5TiO2−Pt)/CeO2 catalyst is shown in Figure 7b, in which the T99 of
(0.5TiO2−Pt)/CeO2 without calcination treatment, calcined at 200 ◦C, 300 ◦C, 400 ◦C, and
500 ◦C is 120 ◦C, 110 ◦C, 90 ◦C, 100 ◦C, and 120 ◦C, respectively. The catalytic performance
of (0.5TiO2−Pt)/CeO2 was stable after three repeated tests (Figure S5), implying good
reusability of (0.5TiO2−Pt)/CeO2. The catalytic activity of (0.5TiO2−Pt)/CeO2 also sur-
passes the state-of-the-art TiO2/CeO2-based catalysts reported in the literature, as shown
in Table 1 [24,47–50], indicating its superior catalytic property. It is clearly observed that
the catalytic activity is improved as calcination temperature increases from room tem-
perature to 300 ◦C, which is reduced as calcination temperature further increases. The
(0.5TiO2−Pt)/CeO2 exhibits optimum catalytic performance after calcination at 300 ◦C.
Furthermore, the addition of Ti into the Pt-CeO2 catalytic system can partly make up for
the deficiency of the single precious metal Pt and realize the purpose of the experiment.
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Figure 7. (a) The catalytic performance of Pt0.3/CeO2, (0.3TiO2−Pt)/CeO2, (0.5TiO2−Pt)/CeO2,
(0.7TiO2−Pt)/CeO2 catalysts; (b) the (0.5TiO2−Pt)/CeO2 catalyst obtained at different
calcination temperatures.
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Table 1. Comparison on catalytic performance of (0.5TiO2−Pt)/CeO2 with previous reports.

Sample PreparationMethod Test Condition T50 (◦C) T99 (◦C) Reference

Pd/Pr-CeO2-5% Hydrothermal synthesis 1% CO, 99% dry air / 160 [24]
Pt/CeO2 Electrostatic Adsorption 1% CO, 20% O2, He balance 140 / [47]
Ir/CeO2 wet chemical reduction 1% CO / 110 [48]

Au/TiO2-S Deposition-precipation method 2.0% CO, 8% O2, He balance / 20 [49]
Co3O4@CeO2 Hydrothermal method 1% CO, 99% air / 160 [50]

(0.5TiO2−Pt)/CeO2 Dealloying and calcination 1% CO, 10% O2, 89% N2 55 90 This work

The catalytic performance of (0.5TiO2−Pt)/CeO2 as a function of flow rate at 70 ◦C is
detected, with corresponding catalytic activities shown in Figure 8a. As the total gas flow
rate increases from 40 to 120 mL min−1, the CO conversion decreases from 97% to 58%. It
can be also clearly detected that the reaction rate is positively related to flow rate. Figure 8b
further explores the influence of O2 concentration in feed gas on catalytic performance
of (0.5TiO2−Pt)/CeO2. The test temperature is kept at 90 ◦C with a flow rate of 100 mL
min−1. The CO conversion rate can reach 99% as 10% O2 is initially infused into the system
thanks to the sufficient O2 environment; CO conversion rate is reduced first and then kept
stable at 10% when O2 supply is suddenly decreased to zero, which may be ascribed to
the existence of surface lattice oxygen that can migrate to active sites and combine with
adsorbed CO to form oxygen vacancies. However, CO conversion rate increases in poor
oxygen conditions (0.3–5% O2) and then recovers to initial 99% value and stays unchanged
when O2 is resupplied into feed gas, implying the superior catalytic CO oxidation property
of (0.5TiO2−Pt)/CeO2.

The long-term stability of the (0.5TiO2−Pt)/CeO2 catalyst is also evaluated to inves-
tigate its practical application potential, as shown in Figure 9a. The (0.5TiO2−Pt)/CeO2
catalyst exhibits above 95% CO conversion under mixed atmosphere (1% CO, 10% O2,
89% N2) and is stable without deterioration after successive reaction of 55 h, indicating
outstanding catalytic activity of the nanorod-shaped (0.5TiO2−Pt)/CeO2 catalyst. The
outstanding catalytic performance of the (TiO2−Pt)/CeO2 catalyst can be attributed to the
unique structure and phase composition. The existence of Ce3+ on catalytic interface can
adsorb active oxygen, which is conducive to the formation of the interfacial active center;
highly dispersed TiO2 can accelerate the migration rate of active oxygen species on the
surface of CeO2 so that the oxygen atoms can react with activated CO to form CO2 [36],
as reflected in the mechanism diagram in Figure 9b. The introduction of Pt nanoparticles
and highly dispersed TiO2 can form a large number of nanoscale interfaces, which greatly
promotes the movement of electrons at the interface. The electrons can not only activate
the CO gas adsorbed by noble metals quickly but also accelerate the dissociation of gen-
erated CO2 on the catalyst surface, thus ultimately making the reaction rate increase. In
addition, the robust framework structure provides a place for catalysts to contact harmful
gases effectively; it also stimulates the effect of noble metals that are loaded on the CeO2
structure and inhibits the agglomeration or growth of loaded nanoparticles during heating
or catalytic processes, guaranteeing the high catalytic stability of the catalysts.
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Figure 8. (a) Catalytic activity of (0.5TiO2−Pt)/CeO2 under different space velocities at 70 ◦C. The measure-
ment was performed using 100 mg of the catalyst with a mixed gas of 1% CO, 10% O2, and rest N2 at a flow
rate ranging from 40 to 120 mL min−1. (b) Catalytic performance under varied oxygen concentrations.
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reaction of CO on the (TiO2−Pt)/CeO2 catalyst.

3. Materials and Methods
3.1. Material Preparation

The Al92Ce8, Al91.7Ce8Pt0.3, Al91.4Ce8Pt0.3Ti0.3, Al91.2Ce8Pt0.3Ti0.5, and Al91Ce8Pt0.3Ti0.7
alloys were achieved from pure Al, Ce, Pt, and Pd through the arc-melting method under
high-purity Ar atmosphere. After being remelted and solidified, the Al-Ce−Pt-Ti alloy ribbons
with 4–6 mm width and 40–70 µm thickness were prepared. The quenched alloy ribbons were
dealloyed in 20 wt% NaOH aqueous solution at room temperature for 2 h until no obvious
bubbles were generated and most of Al were removed. After this, the samples were then further
corroded at 80 ◦C for 10 h. Finally, after cleaning and drying, the dealloyed samples were
calcined at 200–500 ◦C for 2 h under pure O2 environment.

3.2. Characterization

X-ray diffraction patterns were collected on Bruker D8 Advance to analysis phase
composition. Field emission scanning electron microscopy (FESEM, JEOL, JSM-7000F)
and high-resolution transmission electron microscopy (HRTEM, JEOL, JEM-2100) were
employed to characterize surface morphologies and microstructures. A scanning trans-
mission electron microscope (STEM, FEI-200) equipped with an Oxford Instruments EDS
spectrometer was utilized to conduct EDS analysis and mapping. X-ray photoelectron
spectroscopy (XPS) was performed on ESCALAB Xi+ to confirm element composition and
valence state. Nitrogen sorption was tested on Micromeritics ASAP 2020 at 77 K, and the
Barrett–Joyner–Halenda algorithm was adopted to evaluate pore size and pore volume.
Raman spectra were collected on an HR 800 fully automatic laser Raman spectrometer.

3.3. Catalytic Evaluations

The catalytic activity was detected in a tubular reactor at atmospheric pressure. A
100 mg sample was added to the reactor and fixed with quartz wool. The mixed reaction
gas consisting of 1% CO, 10% O2, and 89% N2 (volume fraction) was entered into the
test system at a flow rate of 100 mL min−1 (space velocity 60,000 h−1). The inflowed and
outflowed gases were collected using an Anglit 7890B gas chromatograph equipped with a
hydrogen flame detector (FID). The CO conversion was determined by:

CO conversion =
Cin − Cout

Cin
× 100% (1)

where Cin and Cout stand for the concentration of the CO inlet and outlet of the reactor, respectively.

4. Conclusions

In conclusion, the nanorod structured (TiO2−Pt)/CeO2 catalysts are fabricated via the
combined dealloying and calcination method. SEM, TEM, and STEM measurements imply
that the Pt nanoparticles were semi-inlayed on the surface of the CeO2 nanorod, while TiO2
were highly dispersed into the catalyst system. By rationally adjusting the proportion of
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TiO2 in the system, the obtained (0.5TiO2−Pt)/CeO2 displays unique nanorod structure
and large pore volume, which contributes to exceptional catalytic activity with T50 and
T99 temperature as low as 55 ◦C and 90 ◦C, respectively. It is considered that the stable
structure, proper TiO2 doping, and jointed effect of Pt and TiO2 as well as rich nanopores
contribute to the enhanced catalytic performance of (TiO2−Pt)/CeO2 catalysts. This work
provides a new idea and facile strategy for the fabrication of noble metal/metal oxide
composites with high catalytic performance.
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mdpi.com/article/10.3390/molecules28041867/s1, Figure S1: The EDS spectrum of Al91.2Ce8Pt
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SEM image of (0.5TiO2−Pt)/CeO2. Figure S3: The Raman spectrum of pure CeO2. Figure S4: The catalytic
performance of CeO2 matrix. Figure S5: The reusability test of (0.5TiO2−Pt)/CeO2.
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