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Abstract: Cotton (Gossypium hirsutum) is an economically important crop and is widely cultivated
around the globe. However, the major problem of cotton is its high vulnerability to biotic and abiotic
stresses. It has been around three decades since the cotton plant was genetically engineered with
genes encoding insecticidal proteins (mainly Cry proteins) with an aim to protect it against insect
attack. Several studies have been reported on the impact of these genes on cotton production and
fiber quality. However, the metabolites responsible for conferring resistance in genetically modified
cotton need to be explored. The current work aims to unveil the key metabolites responsible for
insect resistance in Bt cotton and also compare the conventional multivariate analysis methods with
deep learning approaches to perform clustering analysis. We aim to unveil the marker compounds
which are responsible for inducing insect resistance in cotton plants. For this purpose, we employed
1H-NMR spectroscopy to perform metabolite profiling of Bt and non-Bt cotton varieties, and a total of
42 different metabolites were identified in cotton plants. In cluster analysis, deep learning approaches
(linear discriminant analysis (LDA) and neural networks) showed better separation among cotton
varieties compared to conventional methods (principal component analysis (PCA) and orthogonal
partial least square discriminant analysis (OPLSDA)). The key metabolites responsible for inter-
class separation were terpinolene, α-ketoglutaric acid, aspartic acid, stigmasterol, fructose, maltose,
arabinose, xylulose, cinnamic acid, malic acid, valine, nonanoic acid, citrulline, and shikimic acid.
The metabolites which regulated differently with the level of significance p < 0.001 amongst different
cotton varieties belonged to the tricarboxylic acid cycle (TCA), Shikimic acid, and phenylpropanoid
pathways. Our analyses underscore a biosignature of metabolites that might involve in inducing
insect resistance in Bt cotton. Moreover, novel evidence from our study could be used in the metabolic
engineering of these biological pathways to improve the resilience of Bt cotton against insect/pest
attacks. Lastly, our findings are also in complete support of employing deep machine learning
algorithms as a useful tool in metabolomics studies.
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1. Introduction

The development of plants with improved agronomic traits has revolutionized the
cash crop (e.g., wheat, cotton, and rice) production through genetic engineering. Moreover,
over the years genetic engineering has proven to play a substantial role in the development
of crops with enhanced traits yielding better productivity and resistant characteristics
against insects and herbicides. Resultantly, these genetically engineered crops generate
significant revenues and yields [1,2].

Cotton (Gossypium hirsutum) is one of the major cash crops in the world. It is in-
cluded among the important agricultural contributors towards economic growth for both
developed and underdeveloped countries, and is found to be ranked amongst the ma-
jor agricultural contributors which produce a significant impact on the economy of both
developed and middle-income countries. However, according to an evaluation. About
87% of cotton is provided by developing countries [3]. Further, a retrospective study
showed that cotton being a major stakeholder in the world’s economy brought about an
economic impact of $600 billion in the world’s leading textile industries [4]. In addition to
the economic impact, cotton shows a high vulnerability to both biotic and abiotic stresses,
as reported by numerous studies about the key role of these stress factors as key players in
the deterioration of cotton production [5,6]. For this very reason, cotton was genetically
engineered with genes encoding insecticidal proteins. The commercialization of Bt cotton
has revolutionized the cotton industry, it has raised the farmer’s benefit by 261–438 US$ per
hectare [7]. Therefore, Bt-engineered cotton is safeguarding crops against major devastators
like Helicoverpa armigera, pink bollworm, and diamond black moth [8]. Studies have been
reported on the impact of these genes on cotton production and fiber quality [9]. However,
the metabolites responsible for conferring resistance in genetically modified cotton need to
be explored.

Plants produce a large number of metabolites of heterogeneous nature, which play impor-
tant roles in plant growth, development, and their response to the external environment [10].
These small molecules (metabolites) are valuable nutritional sources not only for plants but
also for humans and livestock. According to an estimate, nearly 200,000 compounds have been
found in the plant kingdom and out of 200,000, only 50,000 metabolites are known so far [11].
Plant metabolites, particularly secondary metabolites, play a prominent role in plants’ defense
mechanisms. Secondary metabolites include alkaloids, terpenoids, flavonoids, isoprenoids,
phenylpropanoids, and nitrogen- and sulfur-based phenolic compounds [12]. Summarily, these
phytochemicals serve as a preliminary line of defense against biotic stresses [13]. Terpenoids
such as iridoids and benzoxazinoids play an active role in plant defense [14]. Gossypol, a
sesquiterpenoid aldehyde was found to be phytoalexin in nature. Similarly, hemigossypolene
showed anti-fungal activities against A. flavus [15]. Thus, the diversity of plant metabolites
and their complicated regulatory mechanisms have stressed upon the need to explore them in
depth. Consequently, making plant metabolomics an emerging field of science for researchers
to explore different tangents in order to get a dynamic snapshot of their underlying biochemical
pathways, identification of plant disease biomarkers, and studying plants’ response to biotic
and abiotic stresses [16].

Plant metabolomics refers to the qualitative and quantitative study of small molecules
(<1500 Da). Therefore, this field of science is equipped with the provision of highly accurate
information related to the physiological state of an organism [17]. Different analytical
techniques like gas chromatography–mass spectrometry (GC-MS), liquid chromatography–
mass spectrometry (LC-MS), nuclear magnetic resonance spectroscopy (NMR), liquid
chromatography nuclear magnetic resonance (LC-NMR), and liquid chromatography solid
phase extraction nuclear magnetic resonance (LC-SPE-NMR) have been employed in plant
metabolomics [18,19]. LCMS is a more sensitive approach than GCMS and NMR though
the major disadvantage of this platform is ion suppression. Therefore, NMR is used as a
complementary technique to GCMS and LCMS [20]. NMR spectroscopy is robust, non-
invasive, and highly reproducible including simple sample preparation [21]. It is an ideal
technique to study real-time metabolite profiling in living systems [22].
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Previously, Ren et al. [23] examined the metabolic profile of wild-type and transgenic
Arabidopsis plants through NMR spectroscopy. Similar work was done to study host plant resis-
tance against thrips by using 1H-NMR spectroscopy [24]. Likewise, Becerra–Martinez et al. [25]
deployed NMR-based metabolomics to investigate differences in the metabolic composition
of transgenic tobacco plants expressing sequisterpene cyclase. Herein, the present study we
have used NMR spectroscopy for the metabolomic analysis of Bt and non-Bt cotton varieties.
The present work aimed to unveil marker compounds responsible for insect resistance in Bt
cotton plants. Furthermore, it explores the impact of Bt genes on the expression level of the
key metabolites.

2. Results

2.1. 1H-NMR Identification of Metabolites in Cotton Varieties
1H-NMR was used to unravel the metabolic dynamics between FH-142 (Bt cotton),

Mac-07 (pest resistant), and 496 (wild) cotton varieties. The representative 1H-NMR spectra
are shown in Figure 1. The identification of metabolites was done by consulting previously
published literature [26–28] and metabolite databases [29,30]. The detailed metabolites
along with their multiplicity pattern are tabulated in Table 1. The assignment of metabolites
was validated through 2D J-resolved experiment (Supplementary Materials Figure S1). The
1H-NMR spectra of different G. hirsutum varieties can be divided into three spectral regions
i.e., a high field or aliphatic (δ 0.5–3.0 ppm), saccharide (δ 3.0–5.5 ppm), and aromatic
region (δ 5.5–10.00 ppm). The major constituents identified were amino acids, organic acids,
lipids, terpenoids, and flavonoids. In the aliphatic region, characteristic signals of four
non-essential amino acids. Namely, alanine, γ-amino butyric acid (GABA), asparagine,
citrulline, and one essential-amino acid (valine) were identified. Additionally, successful
detection of succinic acid at δ 2.45 (s), aspartic acid (δ 2.68, dd), α-Ketoglutaric acid (2.43, t),
and terpenoids (limonene and terpinolene) were also noted. Regardless of overlapping in
the carbohydrate region, anomeric proton signals of arabinose, fructose, xylulose, maltose,
and sucrose were observed. Likewise, the anomeric proton signal of sugar moieties of
choline and sycloinositol was also pointed at δ 3.20 (s) and δ 3.21 (s), respectively. The
diagnostic signals of organic acids namely aconitic acid (δ 3.43, d) shikimic acid (δ 4.01),
and tartaric acid (δ 4.35) were also observed. In the low field of 1H-NMR spectra (Figure 1),
characteristic signals of uridine (δ 5.95, d) were detected. The signals for phenylpropanoid
derivative (cinnamic acid) were found at δ 6.52 (d) and δ 7.60 (m). The 2H signal of fu-
marate was identified at δ 6.5 (s). However, the characteristic signals of dibutyl phthalate
(δ 7.7, s), formate (δ 8.47, s), and trigonelline (δ 9.14, s) were also annotated. The visual in-
spection revealed marginal metabolic differences between the wild (496) and pest-resistant
(FH-142 and MAC-07) varieties of cotton. The most prominent difference observed among
cotton varieties is the presence of stigmasterol in non-transgenic pest-resistant varieties
(MAC-07). Moreover, the signal intensity of valine, limonene, succinic acid, terpinolene,
γ-aminobutyric acid, sycloinositol, proline, shikimic acid, chlorogenic acid, ferulic acid,
arabinose, xylulose, trigonelline, and formate was found higher in FH-142. In addition to
visual inspection, we performed a visual representative analysis (heat map) of the NMR
data to find out metabolic differences among cotton varieties.
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fumarate; (32) cinnamic acid; (33) tyrosine; (34) dibutyl phthalate; (35) formate; (36) aspartic acid; 
(37) aconitic acid; (38) α-ketoglutaric acid; (39) chlorogenic acid; (40) ferulic acid; (41) quinic acid. 
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Figure 1. Annotated bioactive constituents in G. hirsutum cultivars (NB-01, non-pest-resistant variety);
PR-01 (pest-resistant American variety); PR-02 (transgenic pest-resistant variety having Cry proteins,
Bt cotton). (1) nonanoic acid, (2) valine, (3) alanine, (4) citrulline, (5) arginine, (6) limonene, (7) linoleic
acid, (8) γ-aminobutyric acid; (9) malic acid, (10) succinic acid, (11) terpinolene, (12) di-allylic methy-
lene; (13) asparagine; (14) tryptophan; (15) choline; (16) sycloinositol; (17) proline; (18) glycine;
(19) Shikimic acid; (20) arabinose; (21) fructose; (22) xylulose; (23) tartaric acid; (24) trigonelline;
(25) e-β-ocimene; (26) stigmasterol; (27) maltose; (28) sucrose; (29) uridine; (30) maleic acid;
(31) fumarate; (32) cinnamic acid; (33) tyrosine; (34) dibutyl phthalate; (35) formate; (36) aspartic acid;
(37) aconitic acid; (38) α-ketoglutaric acid; (39) chlorogenic acid; (40) ferulic acid; (41) quinic acid.

Table 1. List of identified metabolites from G. hirsutum.

Sr. No. Metabolites Chemical Shift (ppm) Multiplicity Assignment Methods

1 Nonanoic acid 0.82 Doublet JRES/1D-HNMR

2 Valine 0.95 Doublet JRES/1D-HNMR

3 Alanine 1.48 Doublet JRES/1D-HNMR

4 Citrulline 1.56 Multiplet JRES/1D-HNMR

5 Arginine/myristic acid 1.68 Multiplet JRES/1D-HNMR

6 Limonene 1.91 Multiplet JRES/1D-HNMR

7 Linoleic acid 2.06 Multiplet JRES/1D-HNMR

8 γ-aminobutyric acid 2.30
3.01

triplet
triplet JRES/1D-HNMR

9 Malic acid 2.39 doublet of doublet JRES/1D-HNMR

10 Succinic acid 2.45 Singlet JRES/1D-HNMR

11 Terpinolene 2.71 Singlet JRES/1D-HNMR

12 di-allylic methylene 2.80 Multiplet JRES/1D-HNMR

13 Asparagine 2.94 Multiplet JRES/1D-HNMR

14 Tryptophan

3.15 singlet

JRES/1D-HNMR3.50 doublet

7.53 doublet

15 Choline 3.20 Singlet JRES/1D-HNMR

16 Scyloinositol 3.21 Singlet JRES/1D-HNMR

17 Proline 3.40 triplet of doublet JRES/1D-HNMR
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Table 1. Cont.

Sr. No. Metabolites Chemical Shift (ppm) Multiplicity Assignment Methods

18 Glycine 3.54 Singlet JRES/1D-HNMR

19 Shikimic acid 4.01 Multiplet JRES/1D-HNMR

20 Arabinose 3.82
4.58

doublet of doublet
doublet JRES/1D-HNMR

21 Fructose 3.85 Doublet JRES/1D-HNMR

22 Xylulose 4.28 doublet of doublet JRES/1D-HNMR

23 Tartaric acid 4.35 Singlet JRES/1D-HNMR

24 Trigonelline
4.45 singlet

JRES/1D-HNMR
9.14 singlet

25 E-β-ocimene
5.12 singlet

JRES/1D-HNMR
6.79 doublet of doublet

26 Stigmasterol 5.15 doublet of doublet JRES/1D-HNMR

27 Maltose 5.20 Doublet JRES/1D-HNMR

28 Sucrose 5.45 Doublet JRES/1D-HNMR

29 Uridine 5.95 Doublet JRES/1D-HNMR

30 Maleic acid 6.05 Singlet JRES/1D-HNMR

31 Fumarate 6.50 Singlet JRES/1D-HNMR

32 Cinnamic acid
6.52 doublet

JRES/1D-HNMR
7.60 multiplet

33 Tyrosine 7.20 Doublet JRES/1D-HNMR

34 Dibutyl phthalate 7.77 Singlet JRES/1D-HNMR

35 Formate 8.47 Singlet JRES/1D-HNMR

36 Aspartic acid 2.68 Doublet of doublet JRES/1D-HNMR

37 Aconitic acid 3.43 Doublet JRES/1D-HNMR

38 α-Ketoglutaric acid 2.43 triplet JRES/1D-HNMR

39 Chlorogenic acid 7.12 Doublet of doublet JRES/1D-HNMR

40 Ferulic acid 7.07
6.91

Doublet of doublet
Doublet JRES/1D-HNMR

41 Quinic acid 3.56 Doublet of doublet JRES/1D-HNMR

2.2. Heat map Analysis

Heat maps assisted in visualizing the variations in the metabolic contents with respect
to three different cotton varieties. Further, in order to attain a clear picture of clustering
between the metabolites as well as different types of cotton, a data refinement step was
performed, where a single data encounter represented the geometric mean of the 6 replicates
of each cotton variety calculated for each expression of metabolite. Figure 2 illustrates
a heat map along with dendrograms showing clustering along both axes, i.e., between
cotton varieties and the level of expression of various metabolites. To understand the
expression level, the red and blue color code was used where a red color represents a
higher expression level, while blue color depicts a lower expression and white signifies
no change. As a result, Figure 2 evidently distinguishes the FH-142 variety to be different
from MAC-07 and 496. This could be validated by the outcome in form of a heat map and
dendrogram which is illustrating an entirely different pattern of expression for FH-142.
Furthermore, a separate branching from the cluster of MAC-07 and 496 varieties reveals
that these two varieties share a somewhat similar metabolite profile in comparison to
FH-142. Summarily, primary metabolites such as tryptophan, tyrosine, arabinose, citrulline,
maltose, fumarate, and GABA were highly expressed in the Bt cotton variety (FH-142).
Likewise, the secondary metabolites cinnamic acid, succinic acid, stigmasterol, limonene,
linoleic acid, and E-β-ocimene were also found to have increased expression in Bt cotton.
This inferred that induction of Cry genes in cotton variety resulted in increased production
of primary and secondary metabolites in cotton plants.
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Figure 2. Heat map showing an overall metabolite content in cotton varieties. M376 refers to
Arabinose M716 to tyrosine, M348 to tryptophan, M241 to succinic acid, M648 to cinnamic acid, M674
to E-β-ocimene, M515 to maltose, M512 to stigmasterol, M200 to linoleic acid, M646 to fumarate,
M296 to GABA, M278 to di-allylic methylene, M186 to limonene respectively. Red color shows
an increased expression level while blue color displays decreased expression level. Hierarchical
classification was performed to group metabolites from each group. Dendrograms show clustering
between metabolites which were closely related based on their estimated Euclidean distance.
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2.3. Multivariate Data Analysis

The variation in the metabolite content of cotton varieties was also evaluated by
using multivariate data analysis (MvDA). The principal component analysis (PCA) was
applied to apprehend the clustering features of three different cotton varieties. In PCA,
five components contributed 84% total variance. PC1 explains 53% variation while PC2
accounts for 13% of the variation in data. It can be seen in Figure 3 that PCA was unable to
show any meaningful separation among the data. The PCA results did not exhibit notable
differences among samples so we applied Orthogonal partial latent square discriminant
analysis (OPLSDA) to the data.
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Figure 3. PCA score plot of cotton varieties.

The OPLSDA model shows a complete discrimination among the cotton varieties.
The model depicts high goodness of fit and low predictability with an R2X value of 0.888
and a Q2 value of 0.362. The model was further validated through a 100 permutations
test and a Q2 value of −0.361 was found as shown in Figure 4B. The OPLSDA score plot
shown in Figure 4A clearly separates FH-142 (Bt cotton) from MAC-07 and 496. FH-142
was separated by OPLS1 and OPLS2 from the other two varieties, whereas Mac-07 and
496 were projected together on the positive side of OPLS1. A detailed examination of the
loading plot (Figure 4C) shows that terpinolene, α-ketoglutaric acid, aspartic acid, cinnamic
acid, stigmasterol, fructose, maltose, arabinose, xylulose, cinnamic acid, and Shikimic acid
were responsible for separating FH-142 from MAC-07 and 496. Consequently, malic acid
and valine correspond more to 496 and MAC-07.

Although OPLSDA clearly separated FH-142 from MAC-07 and 496, MAC-07 and
496 were unable to be discriminated against. Hence, we performed the latest deep learn-
ing approaches such as LDA and neural networks on NMR data as a feature reduction
approach. Initially, LDA failed to discriminate against the cotton varieties and resultantly
most of the predictors given were in the unidentified region as a solution. We further
filtered the data by excluding the unidentified region and performed LDA and neural
network analyses. Consequently, there was a notable improvement in the results, as shown
in Figure 5A. The score plot of LDA accounted for a 100% group classification among
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the cotton varieties. The discriminant analysis produced fourteen potential predictors
classified the types of cotton at a significance level of 0.001, as elucidated in Figure 5B. The
Fisher’s discriminant functions revealed that nonanoic acid, valine, alanine, citrulline, and
arginine were major contributors in distinguishing between cotton varieties. Coefficients
with the highest scores were attributed more toward the classification of a particular group.
The classification results as presented in Figure 5C showed that 100% of the originally
grouped data was correctly classified and showed a 100% predicted group membership.
The fourteen significantly shortlisted predictors from LDA were further subjected to multi-
layer perceptron neural network analysis, which is a supervised deep learning approach
deployed to test the efficiency of the data. The data consisting of independent variables
were randomly divided into training and testing sets. The classification results (Figure 6A)
from the multilayer perceptron model provided 100% correct prediction calculations for
the training and testing data sets. The individual importance of variables in the prediction
of a particular variety is elucidated in Figure 6B,C, which showed that malic acid, argi-
nine, citrulline, and valine were the most important metabolites in distinguishing each
cotton variety in the present model. Our results showed that there is concordance in the
metabolites identified by conventional methods (PCA and OPLSDA) and deep learning
methods (LDA and neural networks). However, OPLSDA has given more discriminating
metabolites than LDA but LDA showed a clear separation between cotton varieties on the
basis of 14 predictor metabolites, depicting clear discrimination of cotton variety to a specific class.
Moreover, relative quantification results (Table and graphs (Supplementary Figure S2A,B))
also displayed a comparative level of differentiating metabolites among the studied cotton
groups (Supplementary Table S1).
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Fisher’s discriminant functions revealed that nonanoic acid, valine, alanine, citrulline, and 
arginine were major contributors in distinguishing between cotton varieties. Coefficients 
with the highest scores were attributed more toward the classification of a particular 
group. The classification results as presented in Figure 5C showed that 100% of the origi-
nally grouped data was correctly classified and showed a 100% predicted group member-
ship. The fourteen significantly shortlisted predictors from LDA were further subjected to 
multilayer perceptron neural network analysis, which is a supervised deep learning ap-
proach deployed to test the efficiency of the data. The data consisting of independent var-
iables were randomly divided into training and testing sets. The classification results (Fig-
ure 6A) from the multilayer perceptron model provided 100% correct prediction calcula-
tions for the training and testing data sets. The individual importance of variables in the 
prediction of a particular variety is elucidated in Figure 6B,C, which showed that malic 
acid, arginine, citrulline, and valine were the most important metabolites in distinguish-
ing each cotton variety in the present model. Our results showed that there is concordance 
in the metabolites identified by conventional methods (PCA and OPLSDA) and deep 
learning methods (LDA and neural networks). However, OPLSDA has given more dis-
criminating metabolites than LDA but LDA showed a clear separation between cotton 
varieties on the basis of 14 predictor metabolites, depicting clear discrimination of cotton variety 
to a specific class. Moreover, relative quantification results (Table and graphs (Supplemen-
tary Figure S2A,B)) also displayed a comparative level of differentiating metabolites 
among the studied cotton groups (Supplementary Table S1). 
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Figure 4. (A) OPLSDA score plot of different cotton varieties; (B) validation by 100 permutations;
(C) loading scatter plot of OPLSDA.
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2.4. Metabolic Pathway Analysis

The annotated metabolites were characterized under general biochemical pathways such
as tricarboxylic acid cycle (TCA), Shikimic acid pathway, glutamine synthetase/synthase
(GS/GOGAT) cycle, and amino acid biosynthetic metabolism based on the search results in
KEGG. The induction of the Cry gene regulated the concentration of organic acids, ter-
penoids, amino acids, and flavonoids. In the TCA cycle, the concentration of aconitic
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acid, α-ketoglutaric acid, succinic acid, and fumarate has increased in FH-142 (Bt cotton)
as highlighted in green color in Figure 7A. The expression of Cry genes was shown to cause
an incremental effect in their expression on a number of major intermediates of Shikimic
acid pathways. The levels of Shikimic acid and quinic acid were significantly enhanced in
FH-142 compared to other varieties. Furthermore, the upregulation of tryptophan (0.103)
and tyrosine (0.0085) was observed in the FH cotton variety (Supplementary Table S1,
Figure S2A,B). Similarly, the content of cinnamic acid and ferulic acid was also upregu-
lated in FH-142. As these metabolites, along with shikimic acid, are important intermediates
of plants’ secondary metabolism, the enhanced production of these compounds would result
in a better defense mechanism in Bt cotton. Figure 7B illustrates the biological schema of
the secondary metabolites and their flow of interrelationships. In GS/GOGAT biosynthetic
pathway, transamination-related metabolites were also upregulated in FH-142 (Bt cotton).
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3. Discussion

Recently, plant metabolomics has been extensively used to assess metabolic pertur-
bations in plants caused by biotic or abiotic stresses [31] as well as for risk assessment
of genetically modified crops [32]. Thereby, the present work was majorly focused on
the identification of biomarkers responsible for insect resistance in pest-resistant cotton
varieties. The metabolite characterization results depicted that cotton varieties are enriched
in bioactive compounds. Among the identified compounds, the amount of cinnamic acid,
E-β-ocimene, tryptophan, valine, uridine, dibutyl phthalate, GABA, succinic acid, fumarate,
shikimic acid, arabinose, xylulose, trigonelline, glycine, di-allylic methylene, tyrosine, and
malic acid was found to be high in FH-142 (Bt cotton) as compared to other varieties.
Levande et al. [33] employed capillary electrophoresis to compare metabolic profiles of
three Bt transgenic maize varieties with wild maize plants, the results revealed a significant
difference in overall metabolite content. Likewise, Ning et al. [34] used GC–MS and UPLC–
MS/MS to examine the cambium metabolomes of multi-gene stress resistant transgenic
lines. The study concluded that a notable difference in the relative abundances of sucrose,
arginine, uridine diphosphate glucose, glutamate, and catechol was observed in multi-gene
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stress-resistant transgenic lines of popular plants in comparison to non-transgenic ones.
Further, we can state that the findings of our metabolomic analyses are in agreement with
the past studies.

Amino acids are key products of primary metabolism, they are involved in multiple
functions in plants such as growth promoters, cell wall biosynthesis, osmoregulator, and
intermediates of secondary metabolites [27]. Previous data have shown variation in amino
acid content among transgenic lines as compared to wild type [34]. In the present study,
a significant increase in the amount of valine, GABA, tryptophan, tyrosine, glycine, and
arabinose was observed in FH-142. Additionally, aromatic amino acids such as tyrosine and
tryptophan are not only the major components of plant proteins, but are also involved in the
upregulation of growth hormones and secondary metabolites [27]. Tyrosine is a precursor
of various secondary metabolites that serve as attractants and defensive compounds [35].
Tryptophan, an essential amino acid, plays an important role in the biosynthesis of precur-
sors involved in plant growth, defense against biotic and abiotic stresses, and plant-insect
interaction [36]. Valine is involved in the biosynthesis of glucosinolates which has a de-
terring effect on micro-organisms and herbivory [37]. A previous study showed that by
exogenous application of amino acids on flowers of Bt cotton the concentration of Bt pro-
teins could be increased [38], therefore, proposing that the concentration of Bt proteins
could be increased with the upregulation of amino acids. GABA, a non-protein amino acid
act as a signaling molecule in plants [39]. It works either by having a direct inhibitory effect
by regulating a defense mechanism or a combination of both [39]. Shelp et al. [40] reported
the indirect role of GABA in plant growth as well as the regulation of defense mechanisms
against biotic and abiotic stresses. Scholz et al. [41] investigated the impact of insect feeding
on the mutants of Arabidopsis thaliana. The results demonstrated that accumulation of
GABA occurred upon insect infestation. Furthermore, a decline in the development of
Spodoptera littoralis larvae was observed when fed on GABA enriched artificial diet. Bown
et al. [42] observed that non-wounding insects crawling on leaves induced the production of
GABA, thus inferring the role of GABA in the defense mechanism of plants. The enhanced
production of GABA in Bt cotton could possibly be responsible for conferring resistance
against Helicoverpa armigera, pink bollworm, and diamond black moth.

Carbohydrates are major energy bearers in plants [43]. Carbohydrates such as sucrose,
glucose, fructose, and raffinose are notable compatible solutes in plants [44]. In our work,
elevation in the concentration of arabinose and xylulose was observed in Bt cotton. Arabi-
nose, which is a constituent of plant cell walls, plays a pivotal role in the synthesis of cell
wall intermediates, flavonoids, and signaling peptides [45]. Zayed [46] studied the role of
arabinose in plants under salt stress. He found that arabinose-based glycoproteins help
plants in tolerating salt stress. Therefore, a high concentration of arabinose in leaves of
FH-142 might play an important role in tolerating abiotic stress.

Among organic acids, fumarate, malic acid, succinic acid, shikimic acid, and malic
acid were found in high concentrations in FH-142. These metabolites are intermediates of
primary and secondary metabolism. Fumarate, malic acid, and succinate are intermediates
of the tricarboxylic acid cycle (TCA), and are also involved in regulating pH in plants [47].
A study conducted by Zhou et al. [48] demonstrated irregularity in the levels of TCA
intermediates in Bt-transgenic rice grown under insecticidal stress. After an early decrease,
a significant increase in the concentration of TCA intermediates was reported. These
findings are in good agreement with our results. Further, Fahnenstich et al. [49] proposed
that malate and fumarate play key roles in the primary metabolism of A. thaliana. Reactive
oxygen species (ROS) are normally produced in plants. An increase in the concentration
of ROS species occurring during the stress conditions leads to oxidative stress [50], which
resultantly assists in the release of hydroxyl radicals which damages plant macromolecules
especially proteins [51]. However, Succinic acid and malic acid have scavenging effects
on ROS species [52]. The upregulation of these metabolites possibly protects FH-142
against abiotic stress. Shikimic acid is an indispensable component of the Shikimate
and phenylpropanoid pathways [53]. The elevated level of shikimic acid is the result
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of the biosynthesis of secondary metabolites which are involved in the plant’s defense
mechanisms such as flavonoids and lignins [48]. Thus, a high level of shikimate might lead
to the upregulation of secondary metabolites in FH-142 which can lead to better defense
against pest attacks.

In the current study, a few terpenoids including limonene, terpinolene, stigmasterol,
and E-β-ocimene were also identified. E-β-ocimene, a monoterpene, is known to help plants
in pollination. β-ocimene is a major component of floral scents [54]. In addition to playing
the role of pollinator attractor, E-β-ocimene was found to be involved in direct insect
defense in M. truncatula [55]. Kang et al. [56] proposed that β-ocimene was responsible for
activating the defense mechanism of Chinese cabbage against M. persicae. In cotton plants,
β-ocimene was found to be synthesized in response to insect attacks [6]. We have also
found a high level of E-β-ocimene in FH-142, which may also be responsible for inducing
insect resistance in Bt cotton.

Plants use nucleotides to induce defense mechanisms against predators and
pathogens [57]. We observed an elevated level of uridine in FH-142, which can also
be an important factor in inducing the cotton plant’s defense mechanism. Furthermore, we
also observed different levels of cinnamic acid in pest-resistant varieties as compared to
non-pest-resistant varieties.

Multivariate data analysis (MvDA) has extensively been used in metabolomic
studies [58]. It is primarily used to process massive data obtained through analytical
approaches, albeit yielding useful information [59]. The two most commonly used MvDA
platforms are the principal component analysis (PCA) and the partial least square regres-
sion (PLS) method [60]. PCA is an unsupervised approach, often used as a conventional
method in plant metabolomics [61]. Although, PCA is a beneficial platform in MvD; how-
ever, occasionally it fails to analyze data obtained from multifactorial experiments [62]. In
the current work, PCA was found unable to differentiate the cotton varieties. Therefore, we
applied different algorithms like OPLSDA, LDA, and neural networks to differentiate cot-
ton varieties. OPLSDA has given more discriminating metabolites, in comparison to LDA
which presented a model with lesser predictors. However, LDA showed a clear segregation
between the cotton varieties compared to OPLSDA. The difference in the discriminating
metabolites given by OPLSDA and LDA is mainly due to the dimensions in which these
tools project the data for feature reduction. LDA projects data in a low dimensional space
i.e., K-1 [63]. While PCA projects data in K- dimensions [64]. Balakrishnama and Ganap-
athiraju, Ref. [65] reported that PCA does more feature classification, while LDA does more
data separation which is in accordance with our results. Likewise, previously reported
data by Alves et al. [66] applied nine different algorithms to find the best identification tool
for fibromyalgia. They inferred that SPA-LDA is a reliable tool in the clinical diagnosis of
fibromyalgia. It concluded that NMR-based metabolomics conjoined with multivariate
data analysis. In particular, LDA is a powerful platform in differentiating plant samples.
Moreover, the elevated levels of defensive metabolites in FH-142 might be responsible for
conferring resistance against insect herbivory.

4. Materials and Methods
4.1. Chemicals

All the chemicals and solvents utilized in the present work were of analytical grade
and purchased from Cambridge Isotope Laboratories and Acros. The chemicals used
were included deutrium oxide (D2O) (Cat-No: 14D-099), sodium deuterium oxide (NaOD)
(Cat-No.: DLM-45-PK), methanol-d4 (Cat No. DLM-24-PK), 2,2,3,3-D4 (D,98%) sodium-
3-trimethylsilylpropionate (TMSP) (Cat-No: I-18625), potassium dihydrogen phosphate
(KH2PO4) (Cat No. AC424200250), and liquid nitrogen.

4.2. Sample Collection

Three different varieties of cotton plant namely MAC-07 (non-transgenic insect =
resistant American variety), FH-142 (transgenic insect-resistant variety having Cry proteins,
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Bt cotton), and 496 (non-insect resistant variety) were procured from the Institute of Agri-
culture sciences, Punjab University Lahore. The leaf samples from six replicates of each
variety were harvested 6 months after the sowing of cotton seeds, labeled, and plunged
directly into liquid nitrogen. The samples were quenched to stop enzymatic degradation.
Samples were then brought to the research lab of IIB, GCU Lahore. Afterward, the leaves
were cryogenically dried using a mortar and pestle, and lyophilized for 48–72 h. The
lyophilized plant samples were stored in a −80 ◦C freezer (Model: MDF-594, Ultra-low,
SANYO, Osaka, Japan) till further use.

4.3. NMR Sample Preparation

The plant extract was prepared by following the previously reported protocol (Hussain
et al., 2018 [17]) with minor modifications. A sample of 50 mg lyophilized plant material
was transferred to an Eppendorf tube, to which methanol d4 (500 µL) and 500 µL of
KH2PO4 buffer (in D2O containing 0.01% TMSP, pH 6.0) were added. To ensure proper
mixing of the constituents, the mixture was vortexed for 1 min followed by ultrasonication
for 20 min. Later, the extract was centrifuged (SIGMA laboratory centrifuges 3K30) for
5 min at 13,000 rpm at 4 ◦C. After centrifugation, the supernatant of each sample (600 µL)
was transferred to a 5 mm NMR tube for NMR analysis.

4.4. NMR Acquisition

NMR acquisition was performed by following the parameters as mentioned in
(Hussain et al., 2018 [17]) with few modifications. 1H-NMR spectra were obtained by
using Avance neo 600 MHz spectrophotometer. Methanol-d4 was used as an internal
lock. The spectra were recorded with 128 scans and 64K data points using Bruker’s pulse
program “ZG” without solvent suppression. The spectra were Fourier transformed with
line broadening (Lb = 0.3). However, no zero filling was added.

4.5. Data Processing

The 1H-NMR spectra were referenced to TMSP (at δ 0.0 ppm), manually phase and
baseline corrected by using MestreNova (14.0 version software). Later, all the spectra were
reduced to the ASCII file prior to MvDA. The spectral intensities were normalized to the
total area. The spectral region from δ 0.5–9.0 ppm was bucketed into bins of equal width
i.e., 0.01 thus yielding 995 variables for each spectrum. The residual water (δ 4.7–4.8) and
solvent peak (δ 3.30) was excluded from the data. The resultant file was imported to Simca
P (14.0 version) for multivariate data analysis.

4.6. Multivariate Data Analysis (MvDA)

Heat map analysis was performed in order to have a systemic overview and clustering
of metabolic distribution, by graphically representing the color-coded values among three
groups. R platform was used to generate heat maps after the transformation of the raw
data to z-score.

In total, 18 processed NMR files were subjected to PCA using SimcaP (14.0 version).
Pareto scaling was utilized to normalize the data. PCA was performed to analyze intrinsic
variation between the samples. In order to analyze the maximum variance between samples
supervised approaches such as OPLSD-DA (by using SimcaP) were carried out. The quality
of the models was described by R2 and Q2 values. R2 is defined as the proportion of
variance in the data explained by the models and indicates the goodness-of-fit, and Q2 is
defined as the proportion of variance in the data predictable by the model, and indicates
predictability [67]. The model was validated by performing 100 permutations randomly.

Later, metabolic pathway analysis was performed with the help of the Kegg pathway
database (https://www.genome.jp/kegg/pathway.html (accessed on 30 November 2021)).

https://www.genome.jp/kegg/pathway.html
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4.7. Statistical Analysis

Graphpad prism software (8.44 version), International Business Machine (IBM)—
Statistical Package for Social Sciences (SPSS) version 23, SimcaP (14.0 version), and R
programming were used for the data analysis. We performed a one-way analysis of
variance (ANOVA) and Tukey’s post hoc test of multiple comparisons to check the level
of significance of marker metabolites among three varieties. The statistical analysis was
performed with a 95% of confidence level and probabilistic value (p < 0.05) indicates
statistical significance. LDA (Linear Discriminant Analysis) was done to classify the
metabolites based on different cotton varieties. Multilayer Perceptron neural network was
trained to test for key metabolites for different cotton varieties. Analyses were declared
significant for p-value < 0.05.

5. Conclusions
1H-NMR spectroscopy coupled with multivariate data analysis is a useful method

to characterize the metabolic profiles of pest-resistant (FH-142 & MAC-07) and non-pest-
resistant (496) cotton varieties. A wide range of bioactive compounds primarily amino acids,
carbohydrates, organic acids, terpenoids, fatty acids, and phenylpropanoid derivatives
was identified in cotton varieties. We found LDA is a more effective technique than
PCA and OPLSDA in classifying cotton varieties on the basis of metabolites. The major
discriminating metabolites among cotton varieties are shikimic acid, malic acid, xylulose,
maltose, terpinolene, α-ketoglutaric acid, aspartic acid, cinnamic acid, stigmasterol, proline,
valine, and fructose. FH-142 (Bt cotton) showed an increase in the concentration of defense-
related metabolites, which is probably due to the presence of Cry genes. Furthermore, these
metabolites might be responsible for inducing resistance against insect attack in Bt cotton.
The bioengineering of defense-related metabolic pathways might be helpful in enhancing
the resistance of Bt cotton against insect herbivory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041763/s1, Figure S1: (A) 2D J-resolve of FH-142;
(B) 2D J-resolve of 496; (C) 2D J-resolve of MAC; Figure S2: (A) Relative quantification of metabolites,
(B) Relative quantification of metabolites, Table S1: Relative quantification of metabolites in different
cotton varieties.
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