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Abstract: Despite the obvious advantages of heterogeneous photocatalysts (availability, stability,
recyclability, the ease of separation from products and safety) their application in organic synthesis
faces serious challenges: generally low efficiency and selectivity compared to homogeneous photocat-
alytic systems. The development of strategies for improving the catalytic properties of semiconductor
materials is the key to their introduction into organic synthesis. In the present work, a hybrid
photocatalytic system involving both heterogeneous catalyst (TiO2) and homogeneous organocata-
lyst (N-hydroxyphthalimide, NHPI) was proposed for the cross-dehydrogenative C–C coupling of
electron-deficient N-heterocycles with ethers employing t-BuOOH as the terminal oxidant. It should
be noted that each of the catalysts is completely ineffective when used separately under visible light
in this transformation. The occurrence of visible light absorption upon the interaction of NHPI with
the TiO2 surface and the generation of reactive phthalimide-N-oxyl (PINO) radicals upon irradiation
with visible light are considered to be the main factors determining the high catalytic efficiency.
The proposed method is suitable for the coupling of π-deficient pyridine, quinoline, pyrazine, and
quinoxaline heteroarenes with various non-activated ethers.

Keywords: Minisci reaction; heterogeneous photocatalysis; N-hydroxyphthalimide; titanium dioxide;
green chemistry; visible light photocatalysis

1. Introduction

Heterogeneous photocatalysis in organic synthesis is a young and fast-growing
area [1–5]. The semiconductor materials used in photocatalysis are inexpensive and widely
available; their advantages include the ease of separation from organic products, stability
and recyclability [1,5]. However, the development of this area is still hindered by several
formidable obstacles, such as low catalytic efficiency due to the low degree of charge
separation in photoexcited states and the fast recombination of electron–hole pairs [6,7],
low visible light absorption and low selectivity due to the strong oxidation power of photo-
generated valence-band (VB) holes in popular semiconductors (TiO2, ZnO, Bi2O3, WO3,
etc.) [1,8]. This situation is reflected in the comparatively low number of synthetic methods
in fine organic synthesis based on heterogeneous photocatalytic systems compared to the
mainstream applications of heterogeneous photocatalysis: oxidative destruction of pollu-
tants [9–11], hydrogen generation [12,13], CO2 reduction [14–16] and water splitting [17].

Currently, the scope of synthetic transformations enabled by heterogeneous photo-
catalysis is much less diverse compared to the scope of homogeneous photoredox-catalyzed
reactions. Heterogeneous catalysis is mainly used in comparatively simple reactions; for
example, alkylarene benzylic oxidation [18–20], the oxidation of benzylamines [4,5,21,22],
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alcohols [4,5] and sulfides [4,23], oxidative esterification [4], nitro-group reduction [4], tiol-
ene reaction [24], alkene amination with aqueous ammonia [25] and the decarboxylation of
carboxylic acids [26–28]. Cross-coupling reactions are much less developed and usually
demand transition metal co-catalysts, such as palladium or nickel complexes [29–33].

UV irradiation, which is used frequently for the excitation of heterogeneous photo-
catalysts, is inconvenient due to safety issues, the comparatively high cost of UV light
sources, incompatibility with common laboratory glassware (UV-transparent quartz is
necessary) and possible side reactions due to the high energy of the light. The modification
of heterogeneous photocatalysts, such as TiO2, in order to shift their photoactivity spec-
trum from UV to visible light [10,34–37] is the key task for expanding the scope of their
applications in organic synthesis, increasing selectivity and making the of use cheap and
available light sources for catalyst activation possible. At present, the following modifi-
cation approaches have been proposed: the immobilization of dyes (organic compounds
or metal complexes) on the photocatalyst surface [34,38–41], doping with metal ions or
non-metal elements [42,43], semiconductor coupling [7,44–49] and modification with or-
ganic molecules bearing hydroxyl or carboxyl groups [34,50–56], which demonstrate the
occurrence of visible light absorption when adsorbed on the surface of a semiconductor.

NHPI/TiO2 is one of the efficient catalytic systems activated by visible light based
on industrially available substances (Scheme 1). The interaction of NHPI with the TiO2
surface leads to the occurrence of visible light absorption, resulting in the photogeneration
of phthalimide-N-oxyl radicals (PINO) [20,22]. In our previous work [20], we demon-
strated that the NHPI/TiO2 system could be successfully applied to the aerobic oxidation
of alkylarenes under visible light irradiation (Scheme 1A). The conceptual novelty of this
system arises from the conjunction of heterogeneous photocatalysis with homogeneous
radical chain organocatalysis. A distinguishing feature of this system is the migration of
PINO into the volume of solution, where the PINO/NHPI catalyzed radical chain process,
once initiated on the TiO2 surface, produces the target product without the need for addi-
tional light absorption [20]. Thus, the energy efficiency of photocatalysis is fundamentally
improved by combining heterogeneous photocatalysis with homogeneous organocataly-
sis. In the presence of additional organocatalyst (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl
(TEMPO) the effective oxidative homocoupling of benzylamines [22] was achieved previ-
ously (Scheme 1B).
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Scheme 1. Applications of NHPI/TiO2 photocatalytic system in organic synthesis: CH-oxygenation 
(A) [20], oxidative homocoupling of benzylamines (B) [22], and Minisi-type corss-dehydrogenative 
C–C coupling reported in the present work (C). 

Scheme 1. Applications of NHPI/TiO2 photocatalytic system in organic synthesis: CH-oxygenation
(A) [20], oxidative homocoupling of benzylamines (B) [22], and Minisi-type corss-dehydrogenative
C–C coupling reported in the present work (C).

In the present study, we demonstrate the successful application of the NHPI/TiO2
system to a more challenging cross-dehydrogenative C–C coupling process (Scheme 1C).
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In this case, previously reported CH-oxygenation processes [20] should be suppressed,
which is a difficult task. In addition, the process of C–O coupling between NHPI-derived
PINO radicals and CH-reagents [57–59] must be avoided. The oxidative coupling of ethers
with π-deficient N-heteroaromatic compounds (a Minisci-type reaction) was chosen as a
model reaction due to the practical importance for the functionalization of N-containing
heterocycles with C–C bond formation. Minisci-type reactions [60–68] are based on the
addition of nucleophilic C-centered radicals to electron-deficient arenes and represent one
of the most important methods for the functionalization of such arenes, along with the
nucleophilic aromatic substitution of hydrogen [69–71], and functionalization via transition-
metal-catalyzed C(sp2)–H bond activation [72–76]. The products of the Minisci reaction
are of great value for medicinal chemistry [61,64]. Thus, the development of new, milder,
more efficient methods tolerant to a large number of functional groups based on Minisci
chemistry remains a hot research topic.

To date, many photochemical protocols have been developed for the Minisci reaction, both
with the use of metal complex photocatalysts [60,77–80] and organic photocatalysts [81–83]. In
some specific cases, the Minisci reaction proceeds without a photocatalyst [84–87]. At the
same time, examples of the application of heterogeneous photocatalysis for the Minisci
reaction that are attractive from the practical point of view remain rare [88–91]. In this work,
we demonstrate the use of the developed hetero-/homogeneous NHPI/TiO2 photocatalytic
system for the Minisci reaction between π-deficient heteroarenes (pyridines, quinolines,
isoquinolines, pyrazines, and quinoxaline) and non-activated ethers.

2. Results and Discussion
2.1. Optimization of Photocatalytic System Composition

Based on our previous work [20], TiO2 with high specific surface area (anatase
nanopowder, Hombikat UV100) and industrially available N-hydroxyphthalimide were
chosen as the components of the photochemical system. Blue LEDs (455 nm) with an input
power of 10 W were used as light sources. In the first step, we optimized the conditions
of the photochemical cross-dehydrogenative Minisci reaction between 4-methylquinoline
1a and tetrahydrofuran 2a (Table 1). Tert-butyl hydroperoxide (TBHP) was used as an
inexpensive, easily available and metal-free oxidant.

The starting conditions (10 mg of TiO2, 20 mol.% of NHPI, 4 mmol of TBHP, 5 h,
run 1) yielded 45% of the product 3aa. The absence of either TiO2 or NHPI resulted in the
zero conversion of 1a (runs 2, 3), proving that both components of the catalytic system
are essential. Without t-BuOOH, the reaction proceeded with low efficiency: only trace
amounts of the product were formed (run 4). As a rule, the addition of a strong Brønsted
acid, such as HCl [85] or TFA [77,79,82,84,86], increases the efficiency of the Minisci reaction.
Acids protonate π-deficient N-containing heterocycles, making them more susceptible to
attack by nucleophilic C-centered radicals [67]. However, in our case, the addition of
trifluoroacetic acid (TFA, run 5) had no significant effect on the yield and conversion. The
addition of 0.5 mL of water resulted in a drop in 3aa yield (run 6). Water breaks down
the stable suspension of TiO2 in THF, causing the catalyst particles to aggregate in the
water droplets. Both an increase and a decrease in the amount of THF lead to a decrease
in the yield of 3aa (runs 7, 8). The dilution of the reaction mixture with such co-solvents
as hexafluoroisopropanol (HFIP, run 9) and acetonitrile (MeCN, run 10) slowed down the
reaction, and dilution with dichloroethane (DCE, run 11) led to the complete suppression
of the target process. It is known that hydrogen peroxide can be used as the oxidant for
the photocatalytic Minisci reaction [85]. However, the change of the oxidant from TBHP to
aqueous H2O2 led to a dramatic drop in the yield (run 12). The lower efficiency of H2O2
compared to TBHP can be explained by the fact that H2O2 can not only initiate free-radical
reactions but can also be an inhibitor via the formation of HOO• radicals [92–94]. The
use of other organic peroxides, such as meta-chloroperoxybenzoic acid (m-CPBA, run 13),
cumene hydroperoxide (run 14) and dicumyl peroxide (run 15) led to low yields or did not
provide the product at all. Dibenzoylperoxide (BzOOBz, run 16) showed a yield comparable
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to TBHP, but the formation of a large amount of benzoic acid, which is poorly soluble
in the system, complicates the isolation of the products and limits the scalability of the
procedure. Therefore, TBHP was chosen as the optimal oxidant. The standard version
of the Minisci reaction often uses inorganic persulfates as oxidants. In our system, the
use of persulfates was less efficient than TBHP, and led to a significant drop in yield with
increasing reaction time, presumably due to the overoxidation of the product (runs 17–20).
An inert atmosphere did not increase the selectivity of the process (run 21), so we decided
to carry out the reaction under air.

Table 1. Influence of photocatalytic system composition, irradiation power, and nature of oxidant on
the conversion of 4-methylquinoline 1a and yield of 3aa in photocatalytic Minisci reaction.
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Run Changes to the General Conditions Conversion a 1a, % Yield a 3aa, %

1 none 53 45
2 no TiO2 0 0
3 no NHPI 0 0
4 no TBHP 6 4
5 TFA (1.5 mmol) added 52 45
6 H2O (0.5 mL) added 23 9
7 THF (12.5 mmol) 38 36
8 THF (50 mmol) 32 27
9 HFIP (1 mL) added 18 16
10 MeCN (1 mL) added 17 16
11 DCE (1 mL) added 0 0
12 H2O2 34% aq. b 9 3
13 m-CPBA 75% aq. b 28 0
14 PhCH(CH3)2OOH 80% 15 15
15 PhCH(CH3)2OOPhCH(CH3)2 98% b 16 0
16 BzOOBz 75% aq. (1 mmol) b 59 44
17 (NH4)2S2O8

b,c 39 33
18 Na2S2O8

b,c 36 22
19 K2S2O8

b,c 44 39
20 K2S2O8

b,c, 16 h, Argon atmosphere 90 27
21 Argon atmosphere 44 39

a The conversion of 1a and the yield of 3aa were determined by 1H NMR using C2H2Cl4 as an internal standard.
b instead of TBHP. c 1 mL of water was used as co-solvent to dissolve the persulfate.

In the next step, we optimized the NHPI/TiO2/TBHP ratio and irradiation time to
achieve the maximum yield of the coupling product 3aa (Table 2).

Increasing the amount of TiO2 increases the yield of 3aa (runs 1–4). However, when
switching from the TiO2 loading of 20 mg to 40 mg, the efficiency increased only slightly.
Therefore, the TiO2 loading of 20 mg was chosen as the optimal amount. Similarly, large
loadings of NHPI resulted in an increase in the 3aa yield (runs 5–8), but the step from 20 to
40 mol.% of NHPI increased the yield of 3aa slightly, and a slight drop in selectivity was
observed. The optimum excess of THBP was 4 mmol per 1 mmol of 1a (runs 9–11). The
reaction proceeded with almost complete conversion in 8 h (run 15). It should be noted
that visible-light-active heterogeneous photocatalyst g-C3N4 was ineffective for the model
coupling reaction under the same conditions (run 16). The conditions of experiment 15
were chosen as optimal for further studies of the substrate scope for the developed method.
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Table 2. Optimization of NHPI/TiO2/TBHP ratio and reaction time for the synthesis of 3aa.
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2.2. Application of the Designed Photocatalytic NHPI/TiO2 System to the Minisci Reaction

With the optimal conditions in hand (Table 2, run 15), we have synthesized a wide
range of coupling products between N-heterocycles and ethers. The scope of ethers was
explored first (Scheme 2). For substrates demonstrating lower conversions compared to 1a,
the reaction time increased in some cases up to 48 h (the reaction times and conversions are
given in Scheme 2).

Among the tested ethers, we obtained the best result with THF: after 8 h of reaction, the
almost complete conversion of 4-methylquinoline 1a and a high yield of product 3aa (89%)
were observed. As a rule, the reaction proceeds more slowly and with lower selectivity
for other ethers. In the reaction of 4-methylquinoline with 2-methyltetrahydrofuran 2b,
a mixture of products 3ab (as a diastereomeric mixture, major) and 3ab’ (minor) was
observed. The observed regioselectivity can be explained by the fact that although the
hydrogen atom abstraction is most favored from the weakest tertiary CH-bond (position 2 of
2-methyltetrahydrofuran) [95], the resulting C-centered radical is more stable and sterically
hindered than the secondary radical and reacts less efficiently with 4-methylquinoline. For
1,3-dioxolane 2c, two isomeric products 3ac and 3ac’ were formed, and the major product
3ac corresponds to the breaking of the weakest C2-H bond in 1,3-dioxolane. With dioxane
and tetrahydropyran, the reaction proceeded more slowly, but with a longer reaction time,
its selectivity decreased simultaneously with an increase in conversion. With glyme, the
dehydrogenative coupling product was not observed even after 24 h of reaction.

In the case of diethyl ether as a substrate, the reaction under the standard conditions
was not effective due to the immiscibility of Et2O and H2O contained in TBHP (70% aq.),
which led to the aggregation of TiO2 particles in water droplets and the low conversion
of 1a. The solution to the problem was the use of anhydrous TBHP, prepared before the
reaction (See experimental details for Scheme 2). The same problem limited the reaction
time for the coupling of 1a with Et2O since the water generated during TBHP reduction
accumulated in the reaction mixture and made the TiO2 suspension unstable.
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In the next step, the scope of the electron-deficient N-heterocycles was tested (Scheme 3).
N-heterocycles with electron-donor groups reacted slower compared to substrates

with electron-withdrawing groups, but at the same time, higher selectivity was observed
(products 3ba, 3ea in comparison with 3ca). The reaction is sensitive to steric hindrance:
2-chloro-5-bromoquinoline 2d did not yield the target product of 3da, presumably due
to the presence of a bulky Br substituent near the 4th position of the quinoline. Our
photochemical system is also applicable to quinoxalines and pyrazines. It is worth noting
that the products of 3ga and 3ha have not been previously reported (See Supplementary
Materials for additional information). In general, the reaction is inefficient for pyridines
with no substituents or with electron-donor substituents (pyridine, picolines, lutidine), but
good yields have been obtained for pyridines with electron-acceptor substituents, such as
pyridine-3-carboxylic acid methyl ester (product 3ia). 4-Methylquinoline-N-oxide reacted
with the preservation of the N-oxide function (product 3ja). Good yields have also been
obtained in the reaction with isoquinoline (product 3ka). In the reaction with imidazo
[1,2-a]pyridine 2l, it was only possible to isolate the product of deep oxidation with the
destruction of the ring—3la’. It should also be noted that the addition of acid (TFA) afforded
increased yields in some cases (products 3ba, 3ca, 3ea, 3ga, 3ha,3ja and 3ka).

It turned out that carrying out the reaction to complete the conversion of π-deficient
arenes in the NHPI/TiO2 photochemical system leads to a sharp drop in selectivity for
target product 3. We assumed that product 3 could undergo further oxidation under the
reaction conditions. To find out what role the individual components of the system play
in oxidation, we performed control experiments in which the pure reaction product 3aa
was placed under standard reaction conditions or irradiated in an inert atmosphere in the
absence of NHPI or TBHP (Scheme 4).
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Under the standard conditions, an 86% conversion of 3aa was observed in 8 h
(Scheme 4, A). In the absence of TBHP under an air atmosphere, the product is also
oxidized (88% conversion, Scheme 4, B), which suggests that a significant role in the decom-
position of the product is played by air as an oxidant. The primary oxidation product was
hydroperoxide 3aa’, which was detected in a mixture of oxidation products by 13C NMR
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and was confirmed by HRMS (See Supplementary Materials). The 13C signal with chemical
shift typical for geminal alkoxyhydroperoxide fragment was observed [96]. However,
carrying out the reaction under an argon atmosphere (Scheme 4, C) does not completely
suppress the oxidation of product 3aa since TBHP or residual amounts of oxygen can serve
as oxidants. The lowest conversion of the product was observed when the reaction was
carried out in an argon atmosphere without the addition of NHPI (Scheme 4, D), implying
that NHPI-derived PINO radicals play an important role in 3aa oxidation.

Based on the collected data, we proposed the following mechanism (Scheme 5). Upon
irradiation with visible light, PINO radicals are generated from NHPI on the TiO2 surface.
Simultaneously, the tert-butyl hydroperoxide decomposes on the TiO2 surface with the
formation of tert-butoxyl radicals. Tert-butoxyl radicals can regenerate PINO by abstracting
a hydrogen atom from the NHPI in solution [59]. Tert-butoxyl radicals can also generate tert-
butylperoxy radicals from t-BuOOH [97,98]. Either tert-butoxy, tert-butylperoxy [99–101],
or PINO radicals [59,95] can abstract a hydrogen atom from the α-CH bond in ether to
form C-centered radical A. However, considering the fact that no cross-dehydrogenative
coupling was observed without the addition of NHPI, the main role in H-atom abstraction
is assumed to be played by the PINO radicals. Then, radical A undergoes addition to a
heteroarene with the formation of the intermediate radical B, which is further subjected to
HAT with the retrieval of aromaticity.
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3. Materials and Methods
3.1. General

Room temperature (rt) stands for 23–25 ◦C.
Commercial TiO2 Hombikat UV 100 (anatase, specific surface area, BET: 300 m2·g−1,

primary crystal size according to Scherrer <10 nm) was used as is. N-hydroxyphthalimide
(NHPI, 98%, Acros Organics), 4-methylquinoline (99%, Acros Organics), 2-methylquinoline (97%,
Acros Organics), 2-chloroquinoline (99%, Acros Organics), isoquinoline (97%, Acros Organics),
quinoxaline (99%, Acros Organics), pyrazine (99+%, Acros Organics), 2-methylpyrazine (99+%,
Acros Organics), Methyl nicotinate (99%, Acros Organics), 2-methoxyquinoline, 5-bromo-
2-chloroquinoline were used as is from commercial sources. 4-methylquinoline 1-oxide
was synthesized according to the literature procedure [102], 2-(4-bromophenyl)imidazo
[1,2-a]pyridine was synthesized according to the procedure in the literature [103]. Bulk
g-C3N4 was prepared analogously to previously reported methods [104,105], and the urea
was heated in a covered alumina crucible for 4 h at 550 ◦C (heating rate 5 ◦C·min−1).
MeCN was distilled over P2O5, and Ethers (THF, 2-Methyltetrahydrofuran, 1,3-dioxolane,
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1,4-dioxane, tetrahydropyran and diethyl ether, dimethoxyethane, bis(2-methoxyethyl)
ether) were distilled over LiAlH4. The reaction mixtures were sonicated in an ultrasonic
bath (HF-Frequency 35 kHz, ultrasonic nominal power 80 W) before the irradiation.

Experimental details for Table 1

General reaction conditions: 4-methylquinoline 1a (1 mmol, 143.2 mg), TiO2 (10 mg),
NHPI (0.2 mmol, 32.6 mg), t-BuOOH (70% aq., 4 mmol, 515 mg), THF 2a (25 mmol, 2 mL)
and a magnetic stir bar (6 × 10 mm) were placed in a 50 mL round-bottom flask. The
obtained mixture was sonicated for 5 min in an ultrasonic bath, then magnetically stirred
(500 rpm) in a thermostated water bath at 25 ◦C (±1 ◦C) under irradiation of 10 W blue LED
for 5 h under an air atmosphere (closed flask). Then, the solvent was rotary evaporated, and
C2H2Cl4 (40–60 mg, 0.4–0.61 mmol) was added as a standard for NMR yield determination.
The reaction mixture was centrifuged, and the NMR spectrum was recorded.

Experimental details for Table 2

4-methylquinoline 1a (1 mmol, 143.2 mg), TiO2 Hombikat UV 100 (2.5–40 mg), NHPI
(0.05–0.4 mmol, 8.2–65.2 mg), t-BuOOH 70% aq. (1–6 mmol, 129–772 mg) and THF 2a
(25 mmol, 2 mL) and a magnetic stir bar (6 × 10 mm) were placed in a 50 mL round-bottom
flask. The obtained mixture was sonicated for 5 min in an ultrasonic bath, then magnetically
stirred (500 rpm) in a thermostated water bath at 25 ◦C (±1 ◦C) under irradiation of 10 W
blue LED for 1–16 h under an air atmosphere (closed flask). Then, the solvent was rotary
evaporated, C2H2Cl4 (40–60 mg, 0.4–0.61 mmol) was added as a standard for NMR yield
determination. The reaction mixture was filtrated through a Celite layer, and the NMR
spectrum was recorded.

Experimental details for Schemes 2 and 3

Heterocycle 1 (1 mmol), TiO2 (20 mg), NHPI (0.2 mmol, 32.6 mg), t-BuOOH 70% aq.
(4 mmol, 515 mg), CH-reagent 2 (25 mmol) and a magnetic stir bar (6 × 10 mm) were
placed in a 50 mL round-bottom flask. The obtained mixture was sonicated for 5 min in an
ultrasonic bath, then magnetically stirred (500 rpm) in a thermostated water bath at 25 ◦C
(±1 ◦C) under irradiation of 10 W blue LED for 8 h under an air atmosphere (closed flask).
If needed, another 4 mmol of the reaction t-BuOOH was added, and the reaction mixture
was irradiated for another 8 h. At the end of the required time, the reaction mixture was
poured into 20 mL of water and extracted with 3×15 mL of CH2Cl2. The combined organic
extracts were washed with 2 × 20 mL of NaHCO3 saturated solution. The extracts were
dried over MgSO4, and the solvent was evaporated in a vacuum membrane pump. The
residue was purified using column chromatography to afford products 3aa–3ka. For the
reaction of 1a with Et2O, anhydrous t-BuOOH was prepared. t-BuOOH 70% aq. (12 mmol,
1545 mg) was extracted with CH2Cl2 (10 mL). The organic layer was dried over MgSO4, and
the solvent was rotary evaporated. The obtained anhydrous t-BuOOH was used instead of
t-BuOOH 70% aq. For the longer reaction times, the new portion of anhydrous t-BuOOH
(4 mmol, 360 mg) was added each 8 h.

Experimental details for Scheme 4

4-methyl-2-(tetrahydrofuran-2-yl)quinoline 3aa (0.5 mmol), TiO2 (10 mg), NHPI (0.1 mmol,
16.3 mg), t-BuOOH 70% aq. (2 mmol, 257 mg) and a magnetic stir bar (6 × 10 mm) were
placed in a 50 mL round-bottom flask. The obtained mixture was sonicated for 5 min in an
ultrasonic bath. For the entries of C and D, the flask was vacuumed and then filled with Ar
three times. The mixture was magnetically stirred (500 rpm) in a thermostated water bath
at 25 ◦C (±1 ◦C) under irradiation of 10 W blue LED for 8 h. The conversion of 3aa was
determined by 1H NMR in MeCN using C2H2Cl4 as the internal standard.

3.2. Characterization Data of the Cross-Dehydrogenative C–C Coupling Products

4-Methyl-2-(tetrahydrofuran-2-yl)quinoline 3aa [91] was isolated using column chro-
matography (Petroleum ether/EtOAc = 2/1) as a colorless viscous liquid (190 mg, 89%).
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1H NMR (300.13 MHz, CDCl3) δ 8.07–7.99 (m, 1H), 7.92–7.85 (m, 1H), 7.66–7.58 (m, 1H),
7.48–7.41 (m, 1H), 7.40 (s, 1H), 5.10 (t, J = 6.9 Hz, 1H), 4.16–4.08 (m, 1H), 4.02–3.94 (m, 1H),
2.63 (s, 3H), 2.53–2.38 (m, 1H), 2.11–1.90 (m, 3H).13C{1H}NMR (75.48 MHz, CDCl3) δ 163.0,
147.3, 144.8, 129.5, 129.0, 127.4, 125.7, 123.6, 118.6, 82.0, 69.1, 33.2, 25.9, 18.8.

2-(2-hydroperoxytetrahydrofuran-2-yl)-4-methylquinoline 3aa’. 13C{1H}NMR (75.48 MHz,
CDCl3) δ 159.4, 146.0, 145.7, 128.8, 128.7, 127.2, 126.1, 123.4, 119.7, 113.3, 69.5, 36.8, 24.8, 19.0.
HR-MS (ESI): m/z = 246.1125, calcd. for C14H15NO3+H+: 246.1123.

Anti-4-methyl-2-(5-methyltetrahydrofuran-2-yl)quinoline 3ab was isolated using
column chromatography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (66 mg,
29%). 1H NMR (300 MHz, Chloroform-d) δ 8.07–8.02 (m, 1H), 7.98–7.93 (m, 1H), 7.66 (ddd,
J = 8.4, 6.8, 1.5 Hz, 1H), 7.50 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.46 (s, 1H), 5.26 (t, J = 7.1 Hz,
1H), 4.51–4.33 (m, 1H), 2.70 (s, 3H), 2.63–2.49 (m, 1H), 2.24–2.02 (m, 2H), 1.75–1.59 (m,
1H), 1.36 (d, J = 6.1 Hz, 3H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 163.6, 147.3, 145.1, 129.6,
129.2, 127.5, 125.9, 123.8, 118.6, 81.8, 76.7, 34.1, 34.0, 21.5, 19.0; FTIR (KBr): νmax = 2968,
2928, 2869, 1602, 1509, 1447, 1379, 1311, 1225, 1181, 1074, 910, 883, 760 cm−1. HR-MS (ESI):
m/z = 228.1389, calcd. for C15H17NO+H+: 228.1383.

Syn-4-methyl-2-(5-methyltetrahydrofuran-2-yl)quinoline 3ab’ was isolated using col-
umn chromatography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (59 mg, 26%).
1H NMR (300 MHz, Chloroform-d) δ 8.08–8.03 (m, 1H), 7.97 (dd, J = 8.4, 1.5 Hz, 1H), 7.68
(ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.58–7.46 (m, 2H), 5.13 (dd, J = 7.6, 6.5 Hz, 1H), 4.33–4.21 (m,
1H), 2.72 (d, J = 0.7 Hz, 3H), 2.60–2.42 (m, 1H), 2.21–1.99 (m, 2H), 1.69–1.50 (m, 1H), 1.44 (d,
J = 6.1 Hz, 3H).13C{1H}NMR (75.48 MHz, CDCl3) δ 163.3, 147.3, 145.2, 129.6, 129.3, 127.6,
126.0, 123.8, 118.8, 82.5, 76.9, 33.5, 33.2, 21.4, 19.1; FTIR (KBr): νmax = 2970, 2928, 2870, 1736,
1602, 1563, 1509, 1447, 1380, 1090, 1032, 913, 882, 760 cm−1. HR-MS (ESI): m/z = 228.1388,
calcd. for C15H17NO+H+: 228.1383.

4-methyl-2-(2-methyltetrahydrofuran-2-yl)quinoline 3ab’ was isolated using column
chromatography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (28 mg, 12%). 1H
NMR (300 MHz, Chloroform-d) δ 8.07 (d, J = 8.4, 1H), 7.99–7.94 (m, 1H), 7.67 (ddd, J = 8.4,
6.8, 1.5 Hz, 1H), 7.62–7.60 (m, 1H), 7.51 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 4.13–4.02 (m, 1H),
3.95–3.83 (m, 1H), 2.88–2.75 (m, 1H), 2.71 (d, J = 1.0 Hz, 3H), 2.14–1.95 (m, 2H), 1.89–1.74
(m, 1H), 1.65 (s, 3H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 166.6, 147.5, 144.6, 129.9, 129.0,
127.2, 125.8, 123.7, 118.5, 86.2, 68.1, 37.7, 28.3, 26.1, 19.1; FTIR (KBr): νmax = 2977, 2931,
1600, 1447, 1383, 1363, 1196, 1101, 1033, 761 cm−1. HR-MS (ESI): m/z = 228.1380, calcd. for
C15H17NO+H+: 228.1283.

2-(1,3-dioxolan-2-yl)-4-methylquinoline 3ac [65] was isolated using column chro-
matography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (54 mg, 25%). 1H NMR
(500 MHz, Chloroform-d) δ 8.16 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.74–7.67 (m,
1H), 7.59–7.53 (m, 1H), 7.49 (s, 1H), 5.95 (s, 1H), 4.27–4.19 (m, 2H), 4.16–4.08 (m, 2H), 2.71 (s,
3H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 156.7, 147.2, 145.7, 130.2, 129.5, 128.4, 126.9, 123.8,
118.7, 104.3, 65.8, 19.0.

2-(1,3-dioxolan-4-yl)-4-methylquinoline 3ac’ [65] was isolated using column chro-
matography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (18 mg, 8%). 1H NMR
(300 MHz, Chloroform-d) δ 8.05 (d, J = 8.4 Hz, 1H), 8.00 (dd, J = 8.4, 1.4 Hz, 1H), 7.71 (ddd,
J = 8.4, 6.8, 1.4 Hz, 1H), 7.60–7.52 (m, 1H), 7.48 (s, 1H), 5.34 (s, 1H), 5.33–5.26 (m, 1H), 5.15 (s,
1H), 4.47–4.36 (m, 1H), 4.08 (dd, J = 8.3, 5.6 Hz, 1H), 2.73 (s, 3H). 13C{1H}NMR (75.48 MHz,
CDCl3) δ 160.0, 147.1, 146.0, 129.7, 129.5, 127.8, 126.5, 123.9, 118.8, 96.4, 78.3, 71.1, 19.1. FTIR
(KBr): νmax = 2925, 2855, 16001, 1509, 1449, 1157, 1088, 1029, 936, 760 cm−1. HR-MS (ESI):
m/z = 238.0841, calcd. for C13H13NO2+Na+: 238.0838.

2-(1,4-dioxan-2-yl)-4-methylquinoline 3ad [85] was isolated using column chromatog-
raphy (Petroleum ether/EtOAc = 2/1) as white crystals (45 mg, 20%). Mp = 81–82 ◦C (lit.
Mp = 82–83 ◦C [10.1039/C9OB02653C]). 1H NMR (300 MHz, Chloroform-d) δ 8.10 (d,
J = 8.5 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.76–7.64 (m, 1H), 7.59–7.51 (m, 1H), 7.47 (s, 1H),
4.92 (dd, J = 10.3, 2.9 Hz, 1H), 4.25 (dd, J = 11.7, 2.9 Hz, 1H), 4.06–3.94 (m, 2H), 3.88–3.74 (m,
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2H), 3.70–3.57 (m, 1H), 2.73 (s, 3H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 157.9, 147.4, 145.3,
129.9, 129.4, 127.7, 126.3, 123.8, 119.2, 78.9, 71.2, 67.2, 66.5, 18.9.

4-methyl-2-(tetrahydro-2H-pyran-2-yl)quinoline 3ae [85] was isolated using column
chromatography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (73 mg, 32%). 1H
NMR (300 MHz, Chloroform-d) δ 8.06 (d, J = 8.4 Hz, 1H), 7.98–7.89 (m, 1H), 7.70–7.60
(m, 1H), 7.52–7.46 (m, 1H), 7.45 (s, 1H), 4.60 (dd, J = 11.0, 2.3 Hz, 1H), 4.25–4.15 (m, 1H),
3.75–3.60 (m, 1H), 2.68 (s, 3H), 2.16–2.04 (m, 1H), 2.03–1.88 (m, 1H), 1.83–1.66 (m, 2H),
1.66–1.51 (m, 2H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 162.2, 147.2, 145.1, 129.7, 129.1, 127.6,
125.9, 123.7, 118.9, 81.6, 68.9, 32.8, 25.9, 23.8, 18.9.

2-(1-ethoxyethyl)-4-methylquinoline 3af [85] was isolated using column chromatog-
raphy (CH2Cl2/EtOAc = 20/1) as a colorless liquid (77 mg, 36%). 1H NMR (300 MHz,
Chloroform-d) δ 8.07 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.68 (t, J = 8.4 Hz, 1H),
7.57–7.48 (m, 1H), 7.44 (s, 1H), 4.69 (q, J = 6.6 Hz, 1H), 3.57– 3.45 (m, 1H), 3.47–3.34 (m,
1H), 2.72 (s, 3H), 1.53 (d, J = 6.6 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H).13C{1H}NMR (75.48 MHz,
CDCl3) δ 164.1, 147.2, 145.5, 129.6, 129.3, 127.8, 126.1, 123.8, 118.4, 79.7, 64.8, 22.7, 19.1, 15.6

2-methoxy-4-(tetrahydrofuran-2-yl)quinoline 3ba was isolated using column chro-
matography (EtOAc/petroleum ether 1/2) as a colorless liquid (122 mg, 53%). 1H NMR
(300 MHz, Chloroform-d) δ 7.89 (d, J = 8.4 Hz, 1H), 7.81–7.72 (m, 1H), 7.68–7.54 (m, 1H),
7.44–7.31 (m, 1H), 7.07 (s, 1H), 5.52 (t, J = 6.9 Hz, 1H), 4.27–4.13 (m, 1H), 4.08 (s, 3H),
4.08–3.95 (m, 1H), 2.65–2.47 (m, 1H), 2.14–1.92 (m, 2H), 1.92–1.78 (m, 1H). 13C{1H}NMR
(75.48 MHz, CDCl3) δ 162.8, 152.3, 147.1, 129.2, 128.1, 123.8, 123.3, 122.9, 108.5, 76.8, 69.1,
53.4, 33.7, 26.0. FTIR (KBr): νmax = 2979, 2949, 1612, 1575, 1473, 1438, 1387, 1366, 1340, 1238,
1195, 1080, 1055, 1024, 761 cm−1. HR-MS (ESI): m/z = 230.1181, calcd. for C14H15NO2+H+:
230.1176

2-chloro-4-(tetrahydrofuran-2-yl)quinoline 3ca was isolated using column chromatog-
raphy (Petroleum ether/EtOAc = 2/1) as a slightly yellow liquid (87 mg, 37%). 1H NMR
(300.13 MHz, CDCl3) δ 8.04 (d, J = 8.5 Hz, 1H), 7.85 (dd, J = 8.4, 1.4 Hz, 1H), 7.71 (ddd, J = 8.4,
6.9, 1.4 Hz, 1H), 7.60–7.49 (m, 1H), 7.54 (s, 1H), 5.55 (t, J = 7.1 Hz, 1H), 4.22 (m, 1H), 4.02
(m, 1H), 2.70–2.55 (m, 1H), 2.13–1.95 (m, 2H), 1.94–1.76 (m, 1H).13C{1H}NMR (75.48 MHz,
CDCl3) δ 153.1, 151.4, 148.1, 130.2, 129.5, 126.8, 124.5, 123.4, 117.9, 76.7, 69.2, 34.0, 26.1. FTIR
(KBr): νmax = 2965, 2928, 2871, 1586, 1560, 1506, 1292, 1264, 1145, 1099, 1081, 1041, 1021, 878,
855, 792, 763 cm−1. HR-MS (ESI): m/z = 234.0688, calcd. for C13H12ClNO+H+: 234.0680.

2-methyl-4-(tetrahydrofuran-2-yl)quinoline 3ea [91] was isolated using column chro-
matography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (161 mg, 75%). 1H NMR
(300 MHz, Chloroform-d) δ 8.03 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.69–7.57 (m, 1H),
7.50–7.41 (m, 1H), 7.42 (s, 1H), 5.53 (t, J = 7.1 Hz, 1H), 4.24–4.14 (m, 1H), 4.00 (q, J = 7.1 Hz,
1H), 2.65–2.47 (m, 1H), 2.12–1.89 (m, 2H), 1.86–1.72 (m, 1H). 13C{1H}NMR (75.48 MHz,
CDCl3) δ 159.1, 149.4, 147.9, 129.4, 129.0, 125.5, 123.9, 123.0, 117.2, 76.8, 69.0, 33.9, 26.0, 25.6.

2-(tetrahydrofuran-2-yl)quinoxaline 3fa [66] was isolated using column chromatog-
raphy (Petroleum ether/EtOAc = 2/1) as a colorless liquid (113 mg, 56%). 1H NMR
(300.13 MHz, CDCl3) δ 9.02 (s, 1H), 8.12–8.07 (m, 1H), 8.07–8.01 (m, 1H), 7.76–7.69 (m, 2H),
5.21 (t, J = 7.0 Hz, 1H), 4.17 (q, J = 7.0 Hz, 1H), 4.05 (dd, J = 7.2 Hz, 1H), 2.57–2.46 (m, 1H),
2.21–2.11 (m, 1H), 2.11–2.00 (m, 2H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 157.7, 143.6, 142.0,
141.7, 130.2, 129.6, 129.3, 129.2, 80.6, 69.5, 33.0, 26.1.

2-(tetrahydrofuran-2-yl)pyrazine 3ga was isolated using column chromatography
(CH2Cl2/MeOH = 50/1) as a colorless liquid (59 mg, 40%).1H NMR (300 MHz, Chloroform-
d) δ 8.68 (s, 1H), 8.52–8.36 (m, 2H), 5.01 (t, J = 6.4 Hz, 1H), 4.14–4.02 (m, 1H), 4.00–3.87 (m,
1H), 2.49–2.29 (m, 1H), 2.11–1.86 (m, 3H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 158.2, 143.8,
143.5, 142.7, 79.8, 69.3, 32.9, 25.9. FTIR (KBr): νmax = 3389, 2959, 2882, 1724, 1701, 1406, 1304,
1140, 1052, 1020 cm−1. HR-MS (ESI): m/z = 151.0873, calcd. for C8H10N2O+H+: 151.0866.

2-methyl-3-(tetrahydrofuran-2-yl)pyrazine 3ha was isolated using column chromatog-
raphy (CH2Cl2/MeOH = 50/1) as a slightly yellow liquid (76 mg, 46%).1H NMR (300 MHz,
Chloroform-d) δ 8.37 (d, J = 2.6 Hz, 1H), 8.34 (d, J = 2.6 Hz, 1H), 5.15 (t, J = 7.0 Hz, 1H),
4.13–4.04 (m, 1H), 3.99–3.89 (m, 1H), 2.63 (s, 3H), 2.31–2.19 (m, 2H), 2.17–1.96 (m, 2H).
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13C{1H}NMR (75.48 MHz, CDCl3) δ 154.5, 152.5, 142.6, 141.5, 78.3, 69.2, 30.4, 26.3, 21.6. FTIR
(KBr): νmax = 3240, 3051, 2959, 2878, 1774, 1726, 1701, 1405, 1299, 1169, 1130, 1105, 1055, 988,
923, 857, 732 cm−1. HR-MS (ESI): m/z = 165.1023, calcd. for C9H10N2O+H+: 165.1022.

Methyl 6-(tetrahydrofuran-2-yl)nicotinate 3ia [91] was isolated using column chro-
matography (EtOAc/DCM = 1/20→1/5) as an orange liquid (119 mg, 57%). 1H NMR
(300.13 MHz, CDCl3) δ 9.11 (d, J = 2.2 Hz, 1H), 8.25 (dd, J = 8.2, 2.2 Hz, 1H), 7.52 (d,
J = 8.2 Hz, 1H), 5.11–4.95 (m, 1H), 4.32–3.74 (m, 5H), 2.57–2.33 (m, 1H), 2.09–1.81 (m, 3H).
13C{1H}NMR (75.48 MHz, CDCl3) δ 167.8, 165.9, 150.4, 137.9, 124.6, 119.4, 81.2, 69.3, 52.4,
33.2, 25.8.

4-methyl-2-(tetrahydrofuran-2-yl)quinoline 1-oxide 3ja [76] was isolated using col-
umn chromatography (Petroleum ether/EtOAc = 2/1) as a colorless liquid (78 mg, 34%).
1H NMR (300 MHz, Chloroform-d) δ 8.81–8.74 (m, 1H), 7.99–7.92 (m, 1H), 7.80–7.71 (m,
1H), 7.67–7.59 (m, 1H), 7.44 (s, 1H), 5.58 (t, J = 6.7 Hz, 1H), 4.17 (q, J = 6.9 Hz, 1H), 4.02
(q, J = 7.1 Hz, 1H), 2.90–2.76 (m, 1H), 2.68 (s, 3H), 2.13–1.98 (m, 1H), 1.99–1.82 (m, 2H).
13C{1H}NMR (75.48 MHz, CDCl3) δ 150.8, 141.1, 135.4, 130.3, 128.8, 128.0, 124.8, 119.9, 118.9,
76.1, 69.5, 31.2, 26.0, 18.6.

1-(tetrahydrofuran-2-yl)isoquinoline 3ka [91] was isolated using column chromatog-
raphy (CH2Cl2/EtOAc from 5/1 to 5/2) as a colorless liquid (130 mg, 65%). 1H NMR
(300.13 MHz, CDCl3) δ 8.50 (d, J = 5.8 Hz, 1H), 8.34 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 8.1 Hz,
1H), 7.75–7.52 (m, 3H), 5.72 (t, J = 7.1 Hz, 1H), 4.20 (q, J = 7.3 Hz, 1H), 4.03 (q, J = 7.5 Hz,
1H), 2.60–2.32 (m, 2H), 2.27–2.01 (m, 2H).13C{1H}NMR (75.48 MHz, CDCl3) δ 159.7, 141.4,
136.7, 130.1, 127.5, 127.3, 126.7, 125.5, 120.7, 79.2, 69.1, 30.9, 26.3.

2-(4-bromophenyl)imidazo [1,2-a]pyridine-3-carboxylic acid 3la’ [106] was isolated
using column chromatography (CH2Cl2/EtOAc = 5/2) as slightly yellow crystals (82 mg,
30%). 1H NMR (300 MHz, Chloroform-d) δ 9.27 (bs, 1H, NH), 8.41 (d, J = 8.4 Hz, 1H),
8.28–8.19 (m, 1H), 7.84 (d, J = 8.5 Hz, 2H), 7.81–7.74 (m, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.09
(dd, J = 7.3, 4.9 Hz, 1H). 13C{1H}NMR (75.48 MHz, CDCl3) δ 165.1, 151.5, 147.1, 139.3, 133.1,
132.2, 129.2, 127.4, 120.2, 114.8.

4. Conclusions

In this work, a new visible-light active heterogeneous photocatalyst system based on
industrially available and non-toxic TiO2 and NHPI was proposed for the cross-dehydrogenative
C–C coupling of electron-deficient N-heterocycles with ethers. In this photocatalytic system,
phthalimide-N-oxyl radicals photogenerated on the surface of titanium oxide become active
mediators of the reaction, which leads to 1) an increase in efficiency due to the homogeneous
organocatalytic process in solution and 2) allows the selective cleavage of the weak CH
bonds. We have proposed a new mild method for the generation of C-centered radicals
from non-activated esters for the Minisci reaction. Despite the fact that acidic additives are
frequently used in Minisci-type reactions, the addition of acid was not necessary in our
procedure in the case of several substrates. Optimal conditions were chosen for the Minisci
reaction between π-deficient pyridine, quinoline, pyrazine, and quinoxaline heteroarenes
with non-activated ethers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28030934/s1, copies of NMR spectra of the synthesized
products, the comparison of the developed method with the literature procedure, the determination
of the side products of the studied reaction.
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