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Abstract: The modification of the Tetraselmis sp. algae material (Tetra-Alg) with surfactant Cethyltrim
ethylammonium Bromide (CTAB) yielded adsorbent Tetra-Alg-CTAB as an adsorbent of methyl
orange (MO) and methylene blue (MB) solutions. The characterization of the adsorbent used an
infrared (IR) spectrometer to identify functional groups and Scanning Electron Microscopy with
Energy Dispersive X-ray (SEM-EDX FEI Inspect-S50, Midland, ON, Canada) to determine the surface
morphology and elemental composition. Methyl orange and methylene blue adsorption on the
adsorbent Tetra-Alg, Tetraselmis sp. algae-modified Na+ ions (Tetra-Alg-Na), and Tetra-Alg-CTAB
were studied, including variations in pH, contact time, concentration, and reuse of adsorbents. The
adsorption of MO and MB by Tetra-Alg-CTAB at pH 10, during a contact time of 90 min, and at a
concentration of 250 mg L−1 resulted in MO and MB being absorbed in the amounts of 128.369 and
51.013 mg g−1, respectively. The adsorption kinetics and adsorption isotherms of MO and MB and
Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB tend to follow pseudo-second-order kinetics models
and Freundlich adsorption isotherms with each correlation coefficient value (R2) approaching 1. Due
to the modification with the cationic surfactant CTAB, anionic dyes can be strongly sorbed in alkaline
pH due to strong electrostatic attraction, while MB is more likely to involve cation exchange and
hydrogen bonding. The reuse of Tetra-Alg-CTAB was carried out four times with adsorption percent
> 70%, and the adsorbent was very effective in the adsorption of anionic dyes such as MO.

Keywords: Tetraselmis sp. algae; cethyltrimethylammonium bromide; adsorption; methylene blue;
methyl orange

1. Introduction

Aquatic environmental problems, such as water that is not fit for consumption, have
become very common nowadays. The problem is triggered by pollution originating from
the accumulation of various kinds of waste. One sector that contributes to waste in the
aquatic environment is the textile industry sector. Although the textile industry is one of
the sectors that has a positive impact on supporting economic development, the textile
industry also contributes a very detrimental negative impact to the environment due to
the presence of waste products in the form of dye waste. This is supported by data; it is
estimated that the textile industry consumes about 60% of the total dye produced, and
about 10–15% of the remaining dye comes out as waste [1,2]. When the waste is discharged
into the aquatic environment, the textile dyes contained in the waste will become more
stable and more difficult to decompose due to the complex chemical structure formed [3].
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Dye waste that enters water forms a more complex chemical structure, causing the dye
to be difficult to decompose in water [4]. Types of synthetic dyes that are widely produced
and used in the textile industry are thiazine dyes, such as methylene blue, and compounds
with an azo group, such as methyl orange. Thiazine compounds have functional group
characteristics, namely the presence of a group (C=N), and if there is an increase in the
amount of thiazine dye in the water, it will reduce the level of dissolved oxygen in the
water and damage aquatic life [5,6]. Methyl orange is one of the anionic dyestuffs with an
azo group and its derivatives from the benzene group [7]. Azo compounds are compounds
that have an N=N group, called the azo structure, and are most commonly found in waste.
Because of their widespread usage, toxicity, carcinogenicity, and poor removal rates during
wastewater treatment, most of these synthetic dyes pose a threat to the environment [8–11].
Additionally, when the amount of oxygen in the water drops, anaerobic organisms become
more active, producing a product with an unpleasant odor [12].

Treating garbage that contains dyes before it is released into the environment is one of
the best strategies to lower pollution and the spread of dyes in the environment. Synthetic
dyes have been eliminated from industrial effluents using a variety of physical and chemical
techniques, including adsorption, flocculation, coagulation, membrane filtration, photo-
catalytic degradation, and irradiation [13–16]. Of these several methods, the adsorption
method is quite widely used. The adsorption process is easy to use, reasonably priced, and
produces no environmentally hazardous byproducts [17,18]. The kind and compatibility of
the adsorbent utilized have a major impact on the adsorption process’s outcome. A high
adsorption rate and capacity are necessary for an efficient adsorbent in adsorption. It can
also be utilized repeatedly, is environmentally friendly, and is chemically stable [19,20].

Currently, adsorption is being widely developed to reduce the contamination of
synthetic dyes in liquid waste by using adsorbent base materials derived from organisms
such as fungi, bacteria, yeast, and algal biomass [21–23]. Algal biomass is generally used as
an adsorbent because it can be available in large quantities. In addition, it is an effective
and relatively inexpensive adsorbent [20,24].

By nature, algal biomass is a highly potent adsorbent that can remove contaminants
from organic substances, including dye-derived chemicals [19,22,25]. Nevertheless, several
limitations, including their tiny size, low specific gravity, and susceptibility to degradation
by other microbes, limit their capacity to bind these chemical substances [26,27]. Numerous
attempts have been made to address these shortcomings, including improving the biomass
of the algae using different modifying agents [20,21,28].

The capacity and quality of algal biomass can be increased by using adsorbent surface
modifying agents such as cationic surfactant CTAB. Surface modification of algal biomass
with cationic surfactants can make the adsorbent rich in positive charges so that it will
be effective against adsorbates that tend to be negatively charged [29–31]. An adsorbent
has an alkaline or alkaline earth cation exchange active group that can be swapped out for
various cations, including cationic surfactants, to serve as a charge balancer [32–34].

A good sorbent, especially for large-scale applications, must be recyclable in order
to be competitive. Both the demand for fresh sorbent and the issue of disposing of spent
sorbent can be addressed via regeneration. Different regeneration techniques have been
applied, with varying degrees of effectiveness. Solvent-washing, thermal, chemical, and
electrochemical regeneration are some of these techniques [35]. Recently, upcycling of dye-
loaded spent sorbent via an appropriate management pathway (anaerobic fermentation)
for the development of a low-cost hydrogen production scenario was investigated [36];
the findings of that study inferred that the spent algal sorbent could be introduced as an
effective substitute for biohydrogen production.

Based on this description, an adsorbent was created in this study using the cation
exchange characteristics of CTAB surfactants and the active groups of algal biomasses
to adsorb MO and MB dyes. The algal biomass of Tetraselmis sp. was modified for this
purpose. Consequently, it is possible to produce an efficient adsorbent to adsorb colors in
solution. Dye desorption and sorbent recycling are carried out after sorption kinetic and
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equilibrium investigations. The findings of this study may offer a way to stop dangerous
dyes from spreading across the environment.

2. Results and Discussion
2.1. Adsorbent Characterization

Analysis of Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB (Figure 1) using an IR
spectrometer showed that, on the three adsorbents, there was an absorption band at a wave
number of 3695.61 cm−1 which indicated the presence of N-H stretching vibrations. In
addition, at a wave number around 3425.58 cm−1, there is an absorption band indicating
the presence of O-H stretching vibrations, and at 2931.80 cm−1 one from the C-H (alkyl)
stretching vibration of aliphatic (-CH2) and the carbonyl group (C=O) at number waves
around 1651.07 cm−1. The success of Tetra-Alg modification with CTAB is indicated by
the appearance of an absorption band at wave number 1465.90 cm−1 originating from the
methyl group contained in CTAB in Tetra-Alg-CTAB (Figure 1c), while in Tetra-Alg and
Tetra-Alg-Na the absorption band does not appear.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 16 
 

 

Based on this description, an adsorbent was created in this study using the cation 
exchange characteristics of CTAB surfactants and the active groups of algal biomasses to 
adsorb MO and MB dyes. The algal biomass of Tetraselmis sp. was modified for this pur-
pose. Consequently, it is possible to produce an efficient adsorbent to adsorb colors in 
solution. Dye desorption and sorbent recycling are carried out after sorption kinetic and 
equilibrium investigations. The findings of this study may offer a way to stop dangerous 
dyes from spreading across the environment. 

2. Results and Discussion 
2.1. Adsorbent Characterization 

Analysis of Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB (Figure 1) using an IR 
spectrometer showed that, on the three adsorbents, there was an absorption band at a 
wave number of 3695.61 cm−1 which indicated the presence of N-H stretching vibrations. 
In addition, at a wave number around 3425.58 cm−1, there is an absorption band indicating 
the presence of O-H stretching vibrations, and at 2931.80 cm−1 one from the C-H (alkyl) 
stretching vibration of aliphatic (-CH2) and the carbonyl group (C=O) at number waves 
around 1651.07 cm−1. The success of Tetra-Alg modification with CTAB is indicated by the 
appearance of an absorption band at wave number 1465.90 cm−1 originating from the me-
thyl group contained in CTAB in Tetra-Alg-CTAB (Figure 1c), while in Tetra-Alg and 
Tetra-Alg-Na the absorption band does not appear. 

 
Figure 1. Spectra of IR from (a) Tetra-Alg, (b) Tetra-Alg-Na, and (c) Tetra-Alg-CTAB. 

Surface morphology and elemental constituents of Tetra-Alg, Tetra-Alg-Na, Tetra-
Alg-CTAB were studied using SEM-EDX. The results of the analysis using SEM-EDX (Fig-
ure 2) showed that there were differences in morphology between Tetra-Alg, Tetra-Alg-

Figure 1. Spectra of IR from (a) Tetra-Alg, (b) Tetra-Alg-Na, and (c) Tetra-Alg-CTAB.

Surface morphology and elemental constituents of Tetra-Alg, Tetra-Alg-Na, Tetra-
Alg-CTAB were studied using SEM-EDX. The results of the analysis using SEM-EDX
(Figure 2) showed that there were differences in morphology between Tetra-Alg, Tetra-Alg-
Na, and Tetra-Alg-CTAB. In Figure 2a, Tetra-Alg morphology looks less contrasting and
there are homogeneous grains, while Tetra-Alg-Na (Figure 2b) shows a less homogeneous
morphology with more contrasting colors. The contrasting color difference comes from the
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presence of the metallic element of Na. Furthermore, in Tetra-Alg-CTAB) there are grains
attached to the surface, which are homogeneous with less contrasting colors. This shows
that the modification of Tetra-Alg with CTAB causes CTAB not to be absorbed in Tetra-Alg,
but only to cover the algal cell wall [20,37].
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Figure 2. SEM images and EDX spectra of (a,b) Tetra-Alg, (c,d) Tetra-Alg-Na, and (e,f) Tetra-Alg-CTAB.

The results of the analysis with surface morphology are supported by the results of
the analysis with EDX. Based on EDX data on Tetra-Alg (Figure 2a), there are the elements
C, N, and O derived from organic groups from algal biomass while in Tetra-Alg-Na, apart
from the elements found in Tetra-Alg, other elements appear, that is, Na derived from
NaCl. Furthermore, the EDX data on Algae-CTAB (Figure 2c) contained the elements of C,
N, O, and Br. The presence of Br in Tetra-Alg-CTAB indicates that modification of CTAB
surfactant on Tetra-Alg has been successfully carried out [37].
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The surface area of the resin was calculated using the following Equation [38]:

As =
10−20

M MW
G NAVφ (1)

where As is the adsorbent surface area in m2 g−1, G the amount of methylene blue adsorbed
(g) based on Langmuir adsorption capacity, NAv the Avogadro number (6.02 × 1023), φ the
methylene blue molecular cross-section (197.2 Å), MW the molecular weight of methylene
blue (373.9 g mol−1) and M the mass of adsorbent (g). The surface area of Tetra-Alg,
Tetra-Alg-Na, and Tetra-Alg-CTAB was found to be 158.93, 184.64, and 161.97 m2 g−1,
respectively.

2.2. pHpzc of Adsorbent

Determination of the pHpzc value was carried out to study the effect of pH on the
surface charge of Tetra-Alg, Tetra-Alg-Na, Tetra-Alg-CTAB. In Figure 3, it can be observed
that the pHpzc value of the three adsorbents is at pH 8. The pH area below pHpzc is
positively charged, while the pH area above pHpzc is negatively charged [19,39].
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2.3. Effect of Adsorption Initial pH

Because pH changes the dissolved adsorbate speciation and the active surface charge
of the adsorbent, it has a major effect on the adsorption process. In Figure 4, the relationship
between initial pH (pH0) and % of adsorbed dye can be observed. The effect of interaction
pH0 on % MO adsorbed (Figure 4) showed that % MO adsorbed at interaction pH 10 by
Tetra-Alg-CTAB was the largest (99.32%) compared to Tetra-Alg (5.86%) and Tetra-Alg-Na
(5.11%). This happens because of the modification with CTAB to obtain an adsorbent that
is rich in positively charged active sites. Based on the pHpzc value (Figure 3), it can be
stated that at pH 10 the adsorbent has a positive surface charge so that it can properly
adsorb the anionic (negative) MO dye through electrostatic interactions, causing high
adsorption [29,37].

In Figure 4, it can also be seen that the % MB adsorbed by Tetra-Alg and Tetra-
Alg-Na in all pH ranges is almost the same. In Tetra-Alg-CTAB, the % MB adsorbed
was relatively lower than Tetra-Alg and Tetra-Alg-Na. This happens because Tetra-Alg-
CTAB is dominated by positive charge, so it is less effective in interacting with cationic
MB. Therefore, the increase in MO removal after cationic surfactant modification can
be explained by electrostatic interactions. Even at pH0 values = 3, the adsorption of
MO remained significantly high due to the presence of the cationic surfactant, while
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MB adsorption is more likely to involve cation exchange and hydrogen bonding. The
adsorption process mechanism may also be significantly influenced by other forces such as
n–π stacking interactions and dipole-dipole hydrogen bonding [40]. It is also important to
remember that some oppositely charged surface sites may have existed concurrently with
the overall negatively or positively charged adsorbent surface charge. Also, in Figure 4,
it can be observed that the highest adsorption occurred at pH 12 for Tetra-Alg, Tetra-Alg-
Na, Tetra-Alg-CTAB with % MB adsorbed, respectively, being 97.41, 98.35, and 99.11%.
However, at pH 12 there was high adsorption of MB by the three adsorbents; it is assumed
that the interaction that occurs between the adsorbent and MB is a precipitation process
caused by the high concentration of OH- in the solution under alkaline conditions [21].
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Figure 4. Effect of interaction pH0 on % adsorption of MO-dye and MB-dye by Tetra-Alg, Tetra-Alg-
Na, Tetra-Alg-CTAB (adsorbent mass: 0.1 g; solution volume: 25 mL; C0: 10 mg L−1; temperature:
27 ± 1 ◦C; agitation speed: 150 rpm; time: 60 min).

2.4. Effect of Contact Time

The relationship between adsorption contact time on % MO and MB adsorbed by
Tetra-Alg, Tetra-Alg-Na, Tetra-Alg-CTAB is shown in Figure 5. In Figure 5, it can be seen
that the addition of relative adsorption interaction time did not increase the % MO and MB
adsorbed. At the interaction time of 90 min, it was observed that the % MO adsorbed on
Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB was 12.86, 14.97, and 99.17%, respectively.
Then, at the same time, the contact time of 90 min, the % MB adsorbed by Tetra-Alg,
Tetra-Alg-Na, and Tetra-Alg-CTAB was 93.38, 96.58, and 61.94%, respectively.

In Figure 5, it can be observed that, when the two data of MO and MB dyes are
compared, MO dyes are more adsorbed on Tetra-Alg-CTAB while MB tends to be adsorbed
by Tetra-Alg and Tetra-Alg-Na. This is in line with the data obtained on the effect of
pH interactions (Figure 4). The interaction of MO with Tetra-Alg-CTAB occurs through
electrostatic interactions because the adsorbent Tetra-Alg-CTAB is rich in positively charged
active sites while MO is anionic [30,31].
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Alg-CTAB (adsorbent mass: 0.1 g; solution volume: 25 mL; C0: 10 mg L−1; temperature: 27 ± 1 ◦C;
agitation speed: 150 rpm; pH: 10).

2.5. Adsorption Kinetics

By utilizing the pseudo-second-order (PSO) kinetic model (Equation (2)) and the intra-
particle diffusion (IPD) Model (Equation (3)), the adsorption kinetics parameters of MO
and MB dyes were ascertained through an analysis of the data presented in Figure 5. The
pseudo-second-order kinetic model assumes that the adsorption capacity is proportional to
the number of active sites on the adsorbent. By applying the linear Equation (2),

t
qt

=
1

k2q2
e
+

t
qe

(2)

where qt and qe (mg g−1) are total MO or MB adsorption capacity at time t and equilibrium,
respectively, and k2 is the second-order rate constant, respectively, the results of the analysis
of the adsorption kinetics data were obtained and are presented in Table 1.

Table 1. Pseudo-second-order kinetics for the adsorption of MO and MB on Tetra-Alg, Tetra-Alg-
Na, Tetra-Alg-CTAB (adsorbent mass: 0.1 g; solution volume: 25 mL; C0: 10 mg L−1; temperature:
27 ± 1 ◦C; agitation speed: 150 rpm; pH: 10).

Adsorbent

Pseudo-Second-Order (PSO)

MO MB

qe-exp
(mg g−1)

qe-PSO
(mg g−1)

k2 × 10−3

(g mg−1 min−1) R2 qe-exp
(mg g−1)

qe-PSO
(mg g−1)

k2 × 10−3

(g mg−1 min−1) R2

Tetra-Alg 0.301 0.290 6.032 0.999 2.307 2.340 0.758 0.999
Tetra-Alg-Na 0.357 0.357 9.551 0.994 2.407 2.363 0.749 0.999
Tetra-Alg-CTAB 2.479 2.475 12.640 0.999 1.467 1.445 0.473 0.997
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From Table 1, it can be seen that each value of the linear correlation coefficient (R2)
of the second-order model of the MO and MB dyes by Tetra-Alg, Tetra-Alg-Na, Tetra-Alg-
CTAB is relatively the same. If the k2 values of both MO and MB dyes are compared, it can
be seen that the MO adsorption rate is greater than MB. Furthermore, the adsorption rate
of MO-dye on Tetra-Alg-CTAB is higher than that of Tetra-Alg and Tetra-Alg-Na.

Data on the effect of contact time (Figure 5) were also analyzed using the intra-particle
diffusion (IPD) kinetic model developed by Morris and Weber [41,42]. The IPD kinetic
model assumes that the diffusion process of an adsorbate, such as dye, to an adsorbent is
controlled by a physical mechanism that has an important role in the adsorption process,
as described by Equation (3).

qt = kidt0.5 + C (3)

The intra-particle diffusion rate constant is denoted by kid (mg g−1 min−0.5), whereas
the constant C value (mg g−1) indicates the barrier to mass transfer in the boundary layer.
The slope and intercept of the lines derived from plots of qt versus t0.5 were used to compute
the values of kid and C. The results of the analysis of MO and MB adsorption data by Tetra-
Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB obtained from the completion of the IPD kinetic
model are shown in Table 2 and Figure 6.

Table 2. Intra-particle diffusion model for MO and MB adsorption on Tetra-Alg, Tetra-Alg-Na,
Tetra-Alg-CTAB.

Adsorbent–Adsorbate

Initial Linear Portion Second Linear Portion

ki1 C1
R1

2
ki2 C2

R2
2

(mg g−1 min0.5) (mg g−1) (mg g−1 min0.5) (mg g−1)

Tetra-Alg-MO 0.005 0.603 0.951 0.037 0.029 0.899
Tetra-Alg-Na-MO 0.022 0.203 0.935 0.04 0.053 0.973

Tetra-Alg-CTAB-MO 0.065 2.028 0.947 0.044 2.172 0.957
Tetra-Alg-MB 0.059 2.024 0.951 0.030 2.261 0.900

Tetra-Alg-Na-MB 0.065 1.874 0.989 0.017 2.238 0.926
Tetra-Alg-CTAB-MB 0.037 1.164 0.947 0.024 1.287 0.940
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Figure 6. Intraparticle diffusion plot on adsorption of (a) MO and (b) MB on Tetra-Alg, Tetra-Alg-Na,
Tetra-Alg-CTAB.

It is evident from Figure 6 that every plot has two linear components. This pattern
suggests the involvement of many adsorption models. The external mass transfer is shown
by the pattern in the first linear portion, which spans an adsorption time of 0 to 60 min. The
second linear section covers an adsorption period of 60–120 min, representing the pattern
describing the intraparticle diffusion of the particles. The fact that the second linear portion
does not pass through the origin (C 6= 0) shows that intraparticle diffusion controls the rate
of external mass transfer simultaneously with other steps [41,42].

Based on the observations in Figure 6, two steps describe the transfer of the dye from
the solution to the external surface of the adsorbent and directed diffusion. Then, the step is
continued from the dye to the active site of each adsorbent through the pore cavity and the
active group. The adsorption mechanism can be explained in two different ways, namely
the occurrence of diffusion through the pores of the adsorbent and electrostatic interactions
in the presence of a positively charged functional group from the modification of Tetra-Alg
to Tetra-Alg-CTAB [43]. This is in line with the results of the second-order pseudo-kinetic
model analysis that has been discussed previously.

2.6. Adsorption Isotherm

The MO and MB adsorption isotherm models were studied by varying the dye con-
centration from 0–250 mg L−1, as shown in Figure 7. Based on the data in Figure 7, it can
be observed that the adsorption of MO and MB by Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-
CTAB increased with the increasing concentrations used. The data contained in Figure 7
were analyzed using the Freundlich (Equation (4)) and Langmuir (Equation (5)) isotherm
models, as follows:

log qe = log KF +
1
n

log Ce (4)

1
qe

=
1

qmKLCe
+

1
qm

(5)

where KF is the Freundlich constant related to adsorption capacity (mg g−1) (L mg−1)1/n)
and n is the adsorption intensity. KL is the ratio of the adsorption and desorption rate in
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L mg−1, and qm is the maximum adsorption capacity estimated by the Langmuir model in
mg g−1.
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Figure 7. Effect of initial concentration on the amount of MO and MB adsorbed on Tetra-Alg, Tetra-
Alg-Na, Tetra-Alg-CTAB (adsorbent mass: 0.1 g; solution volume: 25 mL; temperature: 27 ± 1 ◦C;
agitation speed: 150 rpm; pH: 10; time: 90 min).

The Freundlich isotherm model is an empirical formula used to describe adsorption
at multilayer and heterogeneous systems [44]. The Langmuir adsorption isotherm model
assumes that the adsorbent surface is uniform, there are a fixed number of active sites
proportionate to the surface area, and the adsorption process is monolayer [45,46]. The
results of the data analysis in Figure 7 are shown in Table 3.

Table 3. Adsorption isotherm parameters of MO and MB on Tetra-Alg, Tetra-Alg-Na, Tetra-Alg-CTAB
(adsorbent mass: 0.1 g; solution volume: 25 mL; temperature: 27 ± 1 ◦C; agitation speed: 150 rpm;
pH: 10; time: 90 min).

Adsorbent–Adsorbate

Adsorption Isotherm Parameters

Langmuir Freundlich

qm
(mg g−1)

KL × 10−2

(L mg−1) R2
KF × 10−2

((mg g−1)
(L mg−1)1/n)

n R2

Tetra-Alg-MO 51.631 0.361 0.946 14.894 0.310 0.985
Tetra-Alg-Na-MO 94.389 0.209 0.914 13.364 0.362 0.990
Tetra-Alg-CTAB-MO 128.369 3.520 0.933 18.059 0.235 0.994
Tetra-Alg-MB 50.055 3.395 0.915 0.407 1.187 0.995
Tetra-Alg-Na-MB 58.155 2.423 0.919 0.6.68 1.124 0.990
Tetra-Alg-CTAB-MB 51.013 0.239 0.933 0.224 0.707 0.991

Based on the data obtained in Table 3, it can be observed that the adsorption on MO
and MB tends to follow the Freundlich adsorption isotherm model. This can be seen from
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the coefficient value (R2) on the Freundlich adsorption isotherm, which is closer to 1 when
compared to the correlation coefficient value (R2) on the Langmuir adsorption isotherm.
The Freundlich adsorption isotherm model assumes that the dye layer formed on the
surface of the adsorbent is a multilayer [47]. From Table 3, it can be observed that the
adsorption capacity of MO that was adsorbed by Tetra-Alg-Na and Tetra-Alg-CTAB was
greater than that of MB. This happens because the interaction that occurs between MO with
Tetra-Alg-Na and Tetra-Alg-CTAB tends to occur through electrostatic interactions, while
MB is more likely to involve cation exchange [32,33].

Table 4 presents a comparison between the adsorption capacities of Tetra-Alg-CTAB
for the MO and MB dyes and those of previously documented adsorbents. The information
in Table 4 illustrates that Tetra-Alg-CTAB exhibits remarkable effectiveness as an adsorbent
for the MO dye, especially when contrasted with other adsorbents featured in the same
table. The comparison of sorption performances for Tetra-Alg-CTAB and with other algal
biomasses clearly demonstrates the synergistic effect of precursors. The incorporation of the
cationic surfactant CTAB in the algal biomass allows for the improvement of the sorption of
MO. The cationic surfactant-modified biosorbent exhibited a notable increase in its ability
to attract anionic dye molecules. This is due to the introduction of positive charges on the
Tetra-Alg-CTAB surface, which enhances the adsorption of MO via electrostatic interaction,
while MB sorption is more likely to occur through cation exchange.

Table 4. Comparison of adsorption capabilities of several adsorbents for the dyes MO and MB.

Adsorbent Dyes qm (mg g−1) References

Cross-linked chitosan MO 89.29 [48]
Chitosan/alumina composite MO 33.00 [49]
Fe-La oxides co-loaded MgO
(Fe-La/MgO) nanosheets MO 30.38 [50]

Modified wheat straw 3.0 MO 50.40 [51]
Anchote peel MO 103.03 [52]
Tetra-Alg-CTAB MO 128.37 This research
Magnetite-loaded multi-wall carbon nanotubes MB 48.00 [39]
Fe3O4@MIL-100(Fe) magnetite composite MB 74.00 [44]
Silica-Polymer hybrid MB 87.00 [53]
Spirulina sp. algae hybrid with a silica matrix MB 74.00 [19]
Neolamarckia cadamba leaves MB 101.40 [54]
Tetra-Alg-CTAB MB 58.15 This research

2.7. Adsorbent Reuse

The reuse of Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB adsorbents to adsorb MO
solution in several cycles is an important parameter in determining the quality of the
adsorbent produced. The adsorbent can be reused several times to obtain the best quality
from the adsorbent and economic efficiency.

In Figure 8 it can be seen that the reuse of Tetra-Alg-CTAB to adsorb MO showed
effective results of more than 70% on four successive repetition cycles, of 99.97, 91.97, 81.41,
and 71.90%. The reuse of Tetra-Alg and Tetra-Alg-Na adsorbents is not very effective. This
is in line with the low % MO-dye adsorbed in the first cycle and continues to decrease
until the fifth cycle. The adsorption yield decreased significantly in each iteration cycle.
The decrease in adsorption ability occurs due to the decrease in the active site on the
adsorbent caused by the desorption process carried out to release the adsorbed methyl
orange dye [55].
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3. Materials and Methods
3.1. Materials and Instruments

The algal biomass of Tetraselmis sp. was obtained from cultivation at the Center for
Marine Cultivation in Lampung, Indonesia and prepared into algal biomass in the Inorganic
chemistry laboratory of the Faculty of Mathematics and Natural Sciences, University of
Lampung. MO and MB dyes (Table S1) and other chemicals required for algal biomass
modification and adsorption processes such as NaCl, NaNO3, CTAB, HCl, NaOH, citrate
buffer, and phosphate buffer are analytical reagents (AR) grade and purchased from
Pharmacopoeia European.

The characterization of the adsorbent was carried out with an IR spectrometer (Shi-
madzu IRPrestige-21, Shimadzu Corporation, Tokyo, Japan) to identify the functional
groups of the adsorbent. Surface morphology analysis of the adsorbent was carried out us-
ing Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX FEI Inspect-S50,
Midland, ON, Canada).

3.2. Adsorbent Preparation

The Tetra-Alg biomass was air-dried for 3 days and continued in the oven at 40 ◦C
for 3 h, then ground using a grinder to form a fine powder with a size of 100 mesh. A
total of 5 g of Tetra-Alg was added to 100 mL of 0.1 M NaCl in a 250 mL Erlenmeyer flask.
The mixture was stirred using a shaker for 1 h, then allowed to stand for 24 h with the
Erlenmeyer mouth closed. After being separated, the resulting precipitate was washed
with distilled water until neutral. After that, the precipitate dried at room temperature
until the weight was constant (Tetra-Alg-Na). Then, 2 g of Tetra-Alg-Na was mixed with
200 mL 14 mmol L−1 CTAB solution in an Erlenmeyer flask and put into a water bath at
50 ◦C under stirring. Then, the resulting precipitate was washed with distilled water until
neutral and dried at room temperature to a constant weight to produce Tetra-Alg-CTAB.

3.3. Determination of pHpzc of Adsorbent

A total of 0.05 g of adsorbent was mixed with 10 mL of 0.1 M NaNO3 solution with
a pH varying between 3 to 12. pH adjustment can be carried out by adding 0.1 M NaOH
for alkaline conditions and 0.1 M HCl for acidic conditions. The solution was then stirred
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using a stirrer for 24 h. The supernatant was then poured, and the pH was measured. The
pHpzc value was obtained from the plot of the pH of the initial solution against the pH of
the supernatant [53].

3.4. Dye Adsorption Batch Experiments

MO and MB adsorption studies were carried out using the batch method. The ad-
sorbates used were MO and MB dyes. Adsorbate mother liquor (1 g L−1) is prepared by
dissolving a certain amount of adsorbate in distilled water. Then, the mother liquor is
diluted to the desired concentration. The parameters studied include the determination
of adsorption kinetics and isotherms. The standard curve between absorbance (A) and
dye concentration (C0, mgL−1) was measured with a UV-Vis spectrophotometer (Agilent
Cary 100, Markham, ON, Canada) at the maximum absorption wavelength of the dye (MO
max = 465 nm; and MB max = 664 nm). MO or MB dyes were mixed with the adsorbent
at a pH varying between 3–12, during a contact time between 0–90 min, and at a dye con-
centration varying from 0–250 mg L−1. Adsorption was carried out in a shaker incubator
at a temperature of 25 ◦C at a speed of 200 rpm. The mixture between the filtrate and the
precipitate was separated by centrifugation, and the filtrate was analyzed using a UV-Vis
spectrophotometer. The level of MO or MB adsorbed by the adsorbent is determined by
calculating the adsorbate adsorbed per unit mass of adsorbent, and the percentage of dye
absorbed by the adsorbent is calculated using the following equations:

qe =
(C0 − Ce)

m
×V (6)

qt =
(Co − Ct)

m
×V (7)

Adsorption (%) =
(Co − Ct)

Co
× 100 (8)

where Co is the initial dye concentration, Ce is the equilibrium concentration, Ct is the
concentration at a certain time t of dye solution (mg L−1), m is the mass of adsorbent
(g), V is the volume of the solution (L), q is the amount of dye adsorbed per unit mass
(mmol g−1), and Adsorption (%) is the percentage of the dye removal. All adsorption tests
were performed in triplicate, and the averages were recorded. The limit of experimental
errors on triplicates was systematically below 5%.

Note: full experimental conditions are systematically reported in the caption of the
figures and tables.

The same batch process was used for the investigation of dye desorption and ad-
sorbent recycling. The dye-loaded Tetra-Alg-CTAB adsorbents (recovered from sorption
equilibrium tests) were first washed to remove the absorbed dye. In a second step, the
adsorbent was mixed with 0.5 M HCl + 0.5 M NaCl mixed solution (adsorbent dose: 5.0 g
adsorbent per 100 mL eluent) for 140 min. The suspension was centrifuged; the supernatant
was analyzed for residual dye concentration. The collected sorbent was repeatedly rinsed
with distilled water until the pH of the rinsing water reached 7.0. The regenerated sorbent
was dried for 2 h at 40 ◦C in an oven (Gallenkamp BS Model OV-160, Loughborough (LE),
UK) and subjected to 5 consecutive adsorption/desorption cycles. The adsorption (%) was
calculated according to Equation (1).

4. Conclusions

Production of an adsorbent from algal biomass Tetraselmis sp. which was modified
with a CTAB surfactant to produce Tetra-Alg-CTAB adsorbent as MO and MB adsorbents
has been successfully carried out. The surface morphology of Tetra-Alg-CTAB illustrates
that the grains attached to the surface produced by the CTAB surfactant modification
efficiently enhanced adsorption capacity. Tetra-Alg-CTAB adsorbent was very effective in
the adsorption of anionic MO dyes and less effective against cationic MB. MO adsorption
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by Tetra-Alg-CTAB was optimum at pH 10, a contact time of 90 min, and a concentration of
250 mg L−1. Tetra-Alg-CTAB adsorbent has a relatively large adsorption rate and capacity
compared to the unmodified and Na+ ion-modified biomass (Tetra-Alg and Tetra-Alg-Na)
towards the anionic MO dye. The best isotherm model was found to be the Langmuir
isotherm, as it fits the adsorption experimental data well at equilibrium. On the other
hand, the PSO model was found to be the most suitable adsorption kinetic model for this
adsorption study. The reuse of Tetra-Alg-CTAB was carried out four times with adsorption
percent > 70%, and the adsorbent was very effective in the adsorption of anionic dyes such
as MO. These results proved that Tetra-Alg-CTAB could be employed as an alternative to
commercial activated carbon for the removal of lead from the wastewater industry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28237839/s1, Table S1: Chemical Properties and Char-
acteristics of MO and MB, Figure S1: Element mapping by SEM/EDX of Tetra-Alg, Figure S2:
Element mapping by SEM/EDX of Tetra-Alg-Na, Figure S3: Element mapping by SEM/EDX of
Tetra-Alg-CTAB.
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