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Abstract: Creating new insecticide lead compounds based on the design and modification of natural
products is a novel process, of which chlorfenapyr is a typical successful example. Chlorfenapyr is an
arylpyrrole derivative that has high biological activity, a wide insecticidal spectrum, and a unique
mode of action. For decades, a series of chlorfenapyr derivatives were designed and synthesized
continuously, of which many highly active insecticidal compounds were discovered sequentially.
However, due to the widespread application of chlorfenapyr and its degradation properties, some
adverse effects, including pest resistance and environmental toxicity, occurred. In this review, a brief
history of the discovery and development of chlorfenapyr is first introduced. Then, the synthesis,
structural modification, structure activity relationship, and action mechanism of arylpyrroles are
summarized. However, challenges and limitations still exist, especially in regard to the connection
with pest resistance and environmental toxicology, which is discussed at the end of this review. This
comprehensive summary of chlorfenapyr further promotes its progress and sensible application for
pest management.
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1. Introduction

For centuries, there has been a critical need for the discovery of new insecticides
to control pests and protect the expanding global food population [1–7]. Resource-rich
plants, fungi, bacteria, etc. from the earth provide abundant natural products that could be
potential insecticidal candidates. Over the past 60 years, natural products have played a
central role in the development of new active ingredients for crop protection [8–12]. Among
these numerous instances, chlorfenapyr, which was ultimately commercially produced, is a
typical successful case [12]. In the early 1980s, the American Cyanamid Company (ACC)
discovered that the antibiotic dioxopyrrolamycin had broad-spectrum insecticidal and aca-
ricidal activity. But it also had the disadvantages of poor stability and high toxicity. Hence,
the researchers further modified the structure of dioxopyrrolamycin and obtained a series of
analogs, of which the 2-arylpyrrole analogs were found to have excellent activity. Addition-
ally, through further structure activity relationship research, the widely used commercial
insecticide and acaricide, chlorfenapyr, was developed [2]. Chlorfenapyr (4-bromo-2-(4-
chlorophenyl)-1-(ethoxymethyl)-5-(trifluoromethyl)-1h-pyrrol-3-carbonitrile) belongs to
the group of heterocyclic compounds. Epoch-making heterocyclic drugs, such as pyra-
zoles, pyridines, imidazoles, and pyrroles, have emerged and gradually attracted the
attention of researchers, and they also have become hot spots in the field of insecticide
research. Recently, heterocyclic pesticides of natural origin, represented by nicotine [13],
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rotenone [14,15], saxitoxin [16], and physostigmine, and chemically synthesized hetero-
cyclic pesticides, such as fipronil, fenpyroximate, tebufenpyrad, pyrazinone, etoxazole, and
chlorfenapyr, have been discovered and developed one after another [17]. Because of their
novel structure, unique mechanism of action, high biological activity, and low resistance,
these pesticides have gradually replaced the traditional, highly toxic organophosphorus
and carbamate pesticides and have become important insecticides and acaricides.

Chlorfenapyr is highly efficient and possesses broad-spectrum activity. It was found that
chlorfenapyr can effectively control Plutella xylostella, Spodoptera exigua, Mamestra brassicoe,
Pieris rapae, Hellula undalis Fabricius, Lipaphis erysimi, Tetranychid mites, Frankliniella occidentalis,
and other major vegetable, fruit tree, and cotton pests [18–21]. Meanwhile, it is effectively
against horticultural plant pests, such as Aleyrodiae, Liriomyza, and Altica Goeffroy as well. In
particular, chlorfenapyr shows low interactive resistance to carbamate, organophosphorus,
and pyrethroid insecticides. Chlorfenapyr is thought to act as an uncoupler in mitochon-
drial oxidative phosphorylation. It obstructs the conversion of ADP to ATP, leading to an
energy metabolism disorder that ultimately causes insect death [22]. Thus, chlorfenapyr is
considered an efficient, low-toxicity, target-specific, and environmentally friendly pesticide.
In the quest to find more efficient and broad-spectrum compounds, numerous chlorfenapyr
backbone-based compounds have been designed and synthesized, and many promising
compounds have been obtained [23]. However, due to the widespread application of
chlorfenapyr and its degradation properties, some adverse effects, including pest resistance
and environmental toxicity, occurred [24]. Chlorfenapyr residues in the environment and
their toxic effects on non-target organisms have also raised concerns regarding the need for
the development of its hazard evaluation.

In this review, a brief history of the discovery and development of chlorfenapyr is first
introduced. Then, the synthesis, structural modification, structure activity relationship,
and action mechanism of chlorfenapyr derivatives are summarized. The connection to
pest resistance and environmental toxicology is discussed at the end. This comprehen-
sive summary of chlorfenapyr further promotes its progress and sensible application for
pest management.

2. Discovery of Chlorfenapyr

Previous studies have revealed that many microorganisms can produce antibiotics
with a pyrrole ring, demonstrating potential antibacterial, antifungal, and insecticidal
activity (Figure 1). In the 1960s, pyrrolnitrin (1), which contains a pyrrole ring and which
originated from Pseudomonas pyrrocinia, was detected as possessing good antibacterial
activity [25]. With pyrrolnitrin acting as the lead compound, the arylpyrrolic fungicides
fenpicloni (2) and fludioxonil (3) were consequently discovered [26]. After that, a series of
arylpyrrole antibiotics from a variety of microbial metabolites, namely pyrolomycin A, B,
C, D, E, F (4, 5, 6, 7, 8, 9) and pyoluteorin (10) [2,26,27], were detected. In 1987, researchers
at the ACC isolated a strain of Streptomyces fumanus from soil collected in Oklahoma, USA.
From the multitudinous metabolites of the microorganism, dioxapyrrolomycin was isolated
and detected to have insecticidal activity [28]. Almost at the same time, two research groups
from Meiji Seika and the SS Pharmaceutical company found the same metabolites from
S. fumanus to have good bactericidal activity [29].

Dioxapyrrolomycin (11) was found to have good acaricidal activity and moderate
insecticidal activity (Table 1). However, it showed extremely high toxicity in mice, as
the oral toxicity LD50 value of dioxapyrrolomycin in mice was 14 mg/kg (body weight).
In spite of this, the simple structure and insecticidal potential of dioxapyrrolomycin still
attracted much attention from researchers [29]. Hence, a large number of derivatives of
dioxapyrrolomycin were synthesized and tested to determine their activity. Among them,
12 and 13 were found to have excellent insecticidal activity, while 13 causes intolerable
plant phytotoxicity due to it acting as the blocker of oxidative phosphorylation. It not only
damages the mitochondria of insects but also affects plant chloroplasts. Through further
research by the ACC, the precursor compound 14 was synthetized, which could turn into
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13 after insect metabolism. The toxicity of 14 is far lower than the mouse oral toxicity LD50
(662 mg/kg) of dioxapyrrolomycin, and 14 has better physical and chemical properties.
Ultimately, compound 14 was developed and commercialized as chlorfenapyr, the famous
insecticide and acaricide. Since the 1990s, chlorfenapyr has been registered and listed in
more than 30 countries worldwide. Its sales volume has exceeded USD 100 million in the
global pesticide market [27,28,30].
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Figure 1. The structure of aromatic pyrrole antibiotics.

Table 1. The biological activities of compounds 11, 13, and 14.

Compound
Armyworm Budworm Mite Leafhopper

LC50 (mg/L)

11 40 32 10 >100
13 3.5 3.6 2.9 4.9
14 2.6 7.5 1.6 0.92
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3. Synthesis of Chlorfenapyr and Its Derivatives
3.1. Chlorfenapyr

Compared to dioxypyrrolomycin, chlorfenapyr shows significant changes in its
backbone [31]. Firstly, there is one carbon atom between the benzene ring and the pyrrole
ring in dioxypyrrolomycin, while the benzene ring and pyrrole ring in chlorfenapyr are di-
rectly connected. Secondly, both compounds show significant differences in the substituents
located on the benzene and pyrrole rings. Thirdly, chlorfenapyr has an ethoxymethyl group
on the pyrrole nitrogen atom, which is a necessary structural modification to address the
issue of the phytotoxicity of chlorfenapyr’s parent compound (13).

There are two main routes for chlorfenapyr synthesis (Figure 2). The first route is to use
4-bromopyrrole (4-bromo-2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile)
and chloromethyl ethyl ether as raw materials with an inorganic base or organic base,
which are then catalyzed to synthesize chlorfenapyr. For example, researchers use sodium
carbonate or potassium carbonate as a de-acid reagent and carry out a condensation
reaction with 4-bromopyrrole and chloromethyl ether to prepare chlorfenapyr, which has a
high yield and purity [32]. This route has the advantages of being a simple process and
producing a high synthesis yield. Thus, it is suitable for industrial production and has been
widely used. However, it is difficult to purchase commercial products of chloromethyl
ether, which increases production costs. In addition, chloromethyl ether is a carcinogen
that has a negative impact on staff health.
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The second process route is to use 4-bromopyrrole to react with diethyloxymethane,
phosphoryl chloride, and N,N-dimethylformamide (DMF) under the condition of an or-
ganic base, which acts as the acid binding accelerator to synthesize chlorfenapyr. For
instance, Cyanamid reported using phosphoryl chloride and DMF to prepare a Vilsmeier
reagent. At the same time, they used chlorinate diethyloxymethane to prepare chloromethyl
ether. Finally, all of the above materials were subjected to a condensation reaction under
the catalysis of triethylamine to obtain chlorfenapyr [33]. BASF revealed their patent
application for a production method of the arylpyrrole compound. In the presence of
N-ethyl-N,N-diisopropylamine, diethyloxymethane, phosphoryl chloride, and DMF are
used to prepare chlorfenapyr, producing a high yield [34]. This route reduces the cost of
raw materials and avoids the use the strong carcinogens, such as chlorodimethyl ether.
Nevertheless, the reaction wastewater contains a large amount of DMF and phosphate,
making the wastewater costly to treat and environmentally unfriendly.

In these two synthetic routes, 4-bromopyrrole (tralopyril) plays the most important
role in the synthesis of chlorfenapyr. Tralopyril is a molluscicide reported by the BASF com-
pany to kill oncomelania and is widely used as an antifoulant for shipping [35]. Tralopyril
is the brominated compound that originates from arylpyrrolonitrile (2-(4-chlorophenyl)-5-
(trifluoromethyl)-1H-pyrrole-3-carbonitrile). The synthesis of arylpyrrolonitriles also has
been widely studied. Recently, most researchers have begun to use p-chlorophenylglycine
as the starting material, which is methylated with trifluoroacetic anhydride (TFAA), ethyl
trifluoroacetate (TFAE), trifluoroacetic acid (TFA), 1,1,1-trifluoroacetic, or other trifluo-
roacetic reagents to obtain these arylpyrrolonitriles. Xu changed the reaction solvent
system and used an acid binding agent, which led the bromination reaction rate to improve
greatly, and the product yield reached above 90% [36]. On this basis, Fu found that us-
ing TFA and diethoxymethane instead of TFAA and dibromomethane could reduce the
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reaction cost remarkably. The price of the former is about a quarter of that of TFAA and
dibromomethane. Meanwhile, this modified route also avoids the use of methylethyl, a
strong carcinogen, which greatly improves the economic benefits and production safety [37].
Overall, the synthesis of arylpyrrolonitriles in recent decades has been developed in the
direction of producing a high yield and being low-cost, eco-friendly, and healthy. The
synthesis of arylpyrrolonitriles is summarized in Table 2.

Table 2. Synthesis of arylpyrrolenitriles.

Raw Materials Reaction Equation

α-P-chlorophenylglycine
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P-chlorobenzo-

nitrile 
               

P-chlorobenzonitrile, ethylene glycol dimethyl ether, dimethyl ether, acetonitrile, and potassium tert-butoxide after
heating under reflux to obtain the intermediate product. Then, it reacts with 3-bromo-trifluoroacetone to getting
arylpyrrolenitrile [41].

P-chlorobenzyl chloride
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product 2. Finally, potassium tert-butoxide and β-chloroacrylonitrile are used to obtain arylpyrrolenitrile [42].

P-chlorobenzylamine

Molecules 2023, 28, x FOR PEER REVIEW 6 of 20 
 

 

P-chlorobenzonitrile, ethylene glycol dimethyl ether, dimethyl ether, acetonitrile, and potassium tert-

butoxide after heating under reflux to obtain the intermediate product. Then, it reacts with 3-bromo-

trifluoroacetone to getting arylpyrrolenitrile [41]. 

P-chlorobenzyl 

chloride 

  

P-chlorobenzyl chloride is added to an ether solution with magnesium flakes and TFAE after the reac-

tion to obtain intermediate product 1. Then, it reacts with hydroxylammonium chloride and sodium 

acetate to obtain intermediate product 2. Finally, potassium tert-butoxide and β-chloroacrylonitrile 

are used to obtain arylpyrrolenitrile [42]. 

P-chlorobenzyl-

amine 

  

P-chlorobenzylamine and TFA after acetylation, chlorination, and cycloaddition reaction in the pres-

ence of phosphorus trichloride to obtain arylpyrrolenitrile [43,44]. 

  

P-chlorobenzylamine and methyl trifluoroacetate after reaction in the presence of methanol, phospho-

rus pentachloride, and acetonitrile to obtain arylpyrrolenitrile [45]. 

P-chloroben-

zoyl chloride   

P-chlorobenzoyl chloride and triethylamine after acetylation, chlorination, and cycloaddition reaction 

in the presence of phosphorus trichloride to obtain arylpyrrolenitrile [46,47]. 

P-chloro-

phenylamine 

acrylonitrile 

               

Bromine dissolved in carbon tetrachloride reacts with p-chlorophenylaminoacrylonitrile to obtain α-

bromo-p-chloro-β-aminoacrylonitrile. Then, it reacts with trifluoroacetone in the presence of acetic 

acid to obtain arylpyrrolonitrile [35,48]. 

α-P-chloro-

phenyl tri-

fluoroace-

tamcinonitrile 

                   

α-P-chlorophenyl trifluoroacetylaminonitrile dissolved in toluene reacts with trifluoromethanesul-

fonic acid to obtain the intermediate product. Then, after the reaction with 2-chloroacrylonitrile, ar-

ylpyrrolonitrile is obtained [49]. 

P-chlorobenzylamine and TFA after acetylation, chlorination, and cycloaddition reaction in the presence of
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Table 2. Cont.

Raw Materials Reaction Equation

P-chlorobenzoyl chloride
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3.2. Chlorfenapyr Derivatives

In view of the excellent effect of chlorfenapyr, many agricultural chemical companies,
such as the ACC, Bayer, Rhone Poulenc, and Ciba-Geigy continued their commitment to
creating new aromatic pyrrole compounds, publishing a large number of patents and discov-
ering many new highly active compounds. These representative high-activity compounds
are summarized below, and mainly include pyrrole-ring- and benzene-ring-modified com-
pounds, N-bridged compounds, and amino acid–compound conjugates that are designed
based on the “phloem-mobile insecticides” theory.

3.2.1. N-Substituted Derivatives

Arylpyrrole compounds, as oxidative phosphorylation blockers, tend to damage plant
chloroplasts [50]. However, N-derivatization in the pyrrole ring turns aryl-pyrroles into
precursor pesticides, thereby reducing the amount of plant damage. Thus, a large num-
ber of aryl-pyrrole N-derivatives have been synthesized, in which several highly active
compounds have been discovered (Figure 3) [2]. As previously mentioned, in compounds
13 and 14 (chlorfenapyr), the N-derivatization of aryl-pyrroles reduced the toxicity to
mammals and plant phytotoxicity. In addition, with the introduction of different groups
in the N position, the derivatives could obtain larger insecticidal spectra. For example,
N-derivatization of the compounds 15a, 15b, and 15c at 10 mg/L showed 100% lethal-
ity against the third-instar larvae of Heliothis virescens, Spodoptera eridania, and Empoasca
abrupta and the organophosphorus-resistant leaf mite Tetranychus urticae. Meanwhile, these
compounds have good activity against Diabrotic undecimpunctata howawdi and Blattella
germanica [26]. N-carboxylic acid ester derivatives 16a, 16b, and 16c showed 90–100%
lethality against H. virescens, S. eridania, and E. abrupta (at 10 mg/L), and against the
organophosphorus-resistant leaf mite T. urticae (at 100 mg/L) [12]. N-cyclopropyl car-
boxylate derivatives 17a and 17b also have good efficacy against the above pests [51].
N-aminoalkyl carboxylate ester derivatives, such as glycine ester-substituted 18a, 18b, and
19 at 10 mg/L could completely kill the southern armyworm, western potato leafhopper,
and tobacco budworm [52]. N-alkylcarbonylaminomethyl and N-arylaminomethyl deriva-
tives 20a and 20b, as well as N-thiomethyl 21, 22, and 23, also have good insecticidal activity
against the soybean aphid and leaf beetle [52]. N-oxyaryl derivatives 24 and 25 not only
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retain their insecticidal and acaricidal activity, but also have excellent nematocidal activities.
The N-oxyaryl derivative 25a at 150 mg/L completely controlled Caenorhabditis elegans
adults and larvae [31]. A study of the field efficiency of N-methylcarbamate derivative 26
indicated that at 100 mg/L, after 7 days, it had a value of 98% against organophosphorus-
resistant leaf mites, which is better than that of chlorfenapyr [35]. Compound 27, with
two ester groups substituted on the nitrogen atom, had better insecticidal activity against
Mythimna separate, especially when R was a short-chain alkyl group. The mortality of 28
against Culex pipiens pallens reached 100% at 0.10 mg/kg. Compound 29 had very good
insecticidal activity against the vermilion mite, with an LD50 of 0.43 mg/L, which was
2.65 times higher than that of chlorfenapyr [52].
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3.2.2. Aryl-Substituted Derivatives

Researchers reported that they replaced the benzene ring of chlorfenapyr with polyflu-
orinated benzo-1,4-dioxane to obtain new arylpyrrolenes (Figure 4). These compounds
displayed biological activity, as 30 and 31 demonstrated insecticidal activities against the
corn weevil, leaf mites, and diamondback moth [53,54]. Using a thiophene or furan ring
substitute for the benzene ring could improve the new arylpyrrolenes’ insecticidal and
acaricidal activities. Compound 32 showed 100% lethality against the southern armyworm
and leaf beetles at 300 µg/mL and 50 µg/mL, respectively. It displayed nearly 100% lethal-
ity against resistant leaf mites and the tobacco budworm at 300 µg/mL and 100 µg/mL,
respectively. Meanwhile, the thiophene-substituted arylpyrrolenes were found to pos-
sess an anti-fungal effect against Venturia inaegualis, Plasmopara viticola, Puccinia recondite,
Erysiphe graminis, and other plant pathogens [55].
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3.2.3. 5-Position-Substituted Derivatives

Trifluoromethyl is a common electron-withdrawing and lipophilic group that presents
in position 5 in the pyrrole ring for chlorfenapyr and its homolog. Ciba-Geigy discovered
that by using polyfluoroalkyl to replace trifluoromethyl, they could obtain a series of
broadly active arylpyrrolenes (Figure 5) [56]. The indoor activity tests showed that these
compounds had good effects against Nilaparvata lugens, H. virescens, bean aphid, leaf mite,
Lucilia cuprina, Plutella xylostella, and Blattella germanica. Compounds 33a, 33b, and 33c also
had excellent fungicidal activity [56,57]. Bayer reported 5-haloalkane sulfur or sulfinyl
substitute arylpyrrolenes to be extremely active against lepidopteran pests. Compound 34
at 10 µg/mL showed 100% lethality against P. xylostella [58,59]. Cyanamid tried something
similar and developed compound 35 with a similar structure and effect [60,61]. Researchers
also tried to rearrange the 3-, 4-, and 5-position substituents CN, Br, and CF3 of chlorfenapyr
interchangeably, but the activity was not prominent [62].
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3.2.4. Other Positions Substituted in the Pyrrole Ring

Another benzene ring was introduced in the pyrrole ring to obtain new diarylpyrrolitrile
and diarylnitropyrrolitrile compounds (Figure 6). Compound 36 and 37 at 100 µg/mL
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showed insecticidal activity against the southern armyworm, western potato leafhop-
per, and tobacco budworm [63]. Similarly, introducing one or more trifluoromethyl
groups into the pyrrole ring led to the formation of high-activity bis-trifluoromethyl or
tri-trifluoromethyl arylpyrrolenes, such as 38 [64]. For position 3 of the pyrrole ring, re-
searchers attempted to introduce thioamide, haloalkane, sulfur, or sulfinyl one after another,
and they obtained several new arylpyrrolenes, including 39, which has good activity for
pests, mites, and fungi [65].
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In summary, N-substituted modifications have led to many derivatives with more
prominent insecticidal activity and a broader insecticidal spectrum, which continue to be
the hot spots of arylpyrrolene insecticide research and development. Moreover, it can be
seen that the introduction of trifluoromethyl and polyfluoroalkyl helps to maintain these
compounds’ activity and facilitate their absorption, stabilization, and metabolism within
the organism.

3.2.5. Amino Acid Chlorfenapyr Conjugate

The introduction of an endogenous nutrient, such as a monosaccharide or amino
acid to the parent insecticide, can enhance plasma membrane permeation and improve
the phloem mobility of the conjugate. Based on this, “phloem-mobile insecticides” are
designed and synthesized, which are efficient for pest control. For example, a glycosyl
fipronil conjugate was synthesized and demonstrated to be involved in the active transport
system. An amino acid-herbicide conjugate, 2,4 D-Lys, showed a distinctive distribution in
plants due to mediation by the amino acid carrier system [66].

Yang reported that the introduction of glutamic acid or theanine onto pyrrolonitrile
obtained several amino acid pyrrolonitrile conjugates [67] (Figure 7). Among them, the
glutamic acid pyrrolonitrile conjugate showed good insecticidal activity, while the theanine-
pyrrolonitrile conjugate did not. It is noteworthy that the glutamic acid pyrrolonitrile
conjugate exhibited insecticidal activity only in the presence of methoxy on a linker arm [68].
Han designed a series of amino acid methyl ester chlorfenapyr conjugates using amide
bonds as linker arms. Compound 41a displayed optimal transport properties in rice.
Compounds 40, 41b, and 41c showed similar insecticidal activity to chlorfenapyr against
S. exigua and P. xylostella. Li obtained nine glutamic acid pyrrolonitrile conjugates with
different carbon chain lengths by using click chemistry. These conjugates could improve the
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transport properties in phloem effectively. And the transport properties improved along
with the carbon chain length [69].
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3.2.6. N-Bridged Chlorfenapyr Derivatives

A bridging method can be used to link two chlorfenapyr derivatives together, forming
a N-bridged aryl pyrrole derivative (Figure 8). These compounds maintain the insecticidal
activity of their parent while reducing the toxicity to plants and mammals and broaden-
ing their insecticidal spectrum [53]. Compounds 42, 43, and 44 at a high concentration
(50 mg/kg) showed significant insecticidal activity against M. separate, which was close
to that of chlorfenapyr. However, the effects of 43 and 44 were far lower than that of
chlorfenapyr when at a medium concentration (20 mg/kg). For the larvae of Culex acutus,
42 and 43 at 0.5 mg/kg caused 100% mortality, which is similar to that of chlorfenapyr.
However, 44 demonstrated no activity at all. For T cinnabarinus, 43 possessed an equivalent
effect to that of chlorfenapyr at 200 mg/kg. But 42 and 44, at the same dose, only led to
half the mortality of chlorfenapyr or no activity, respectively [70].

3.3. Structure Activity Relationship

Extensive research on the structure activity relationship of arylpyrrolenes has been
conducted (Figure 9). As shown for 45, different substitutions on the pyrrole ring are listed
in Figure 9. Based on a large number of indoor and field experimental studies, it was
found that when positions 2- and 3 of the pyrrole ring are replaced by an aryl group and
electron-withdrawing group (EWG), respectively, and another position is also substituted
once, the pyrrolenes show good insecticidal and acaricidal activity. Therefore, the general
structure of arylpyrrole is represented by 46 [27,28]. On this basis, further research has
certified the following: (1) When both X and Y are Cl or Br, the compounds have almost the
same insecticidal activity. However, when X is replaced by Cl or Br and Y is substituted
by CF3, the obtained compounds have the strongest activity. (2) When EWG is NO2, CN
or SO2CF3, the compounds have no significant difference in activity. (3) When R1 is the
electron-donating group, alkyl or alkoxy substitution weakens the compound’s activity.
Meanwhile, if R1 is changed to an EWG or lipophilic group, such as Cl, Br, or CF3, then
substitution on position 4 of the benzene ring is preferred, which could strengthen the
insecticidal and acaricidal activity. (4) As a precursor pesticide, alkyl or alkoxy substitution
is the most suitable for position N. In addition, weakly acidic NH2 groups are required for
the uncoupling action. Therefore, there is a strong correlation between compound acidity
(pKa), lipophilicity (lgP), and insecticidal activity. The compounds exhibit high insecticidal
activity only in the appropriate parameter range [71,72].
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4. Mode of Action of Chlorfenapyr

Arylpyrroles are mitochondrial oxidative phosphorylation uncouplers in insects. They
can damage mitochondria by disturbing the proton gradient in the mitochondrial mem-
brane and inhibiting the conversion of adenosine diphosphate (ADP) to adenosine triphos-
phate (ATP) (Figure 10) [73]. This further causes cell death and ultimately kills pests. As an
oxidative phosphorylation uncoupler, the compound should possess appropriate acidity
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and lipophilicity. Chlorfenapyr is a lipophilic compound with an lgP value of 4.6 at a pH
range of 2.4 to 11.0. However, chlorfenapyr does not demonstrate acidity before removing
N-substituent group. The lgP and pKa values of proton type N-H arylpyrrole are 5 and
7.6, respectively [23,74]. Hence, chlorfenapyr is a precursor pesticide that only works after
removing the N-ethoxymethyl groups using oxidases in insects. The research indicates
that the microsomal monooxygenase inhibitor piperonyl butoxide significantly reduced
the toxicity of chlorfenapyr against the potato leaf beetle, but it had no effect on CL303268
(the successor of chlorfenapyr). Additionally, the respiratory rate is a key physiological
effect phenomenon induced by uncoupling agents. CL303268 at 20 nmol/L doubled the
respiratory rate in rats and inhibited it as the concentration increased [23].
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5. Resistance of Chlorfenapyr

Chlorfenapyr, as a mitochondrial oxidative phosphorylation uncoupler, has no specific
gene or protein target resistance in theory. But this not means it does not have any resistance
risk. For example, T. urticae is a well-known pest with a wide range of hosts worldwide.
Herron reported that in Australian nectarine orchards, T. urticae developed a 2.9-fold
resistance to chlorfenapyr compared to other pesticides, and this value will increase to
8.7-fold in future [75,76]. It was found that chlorfenapyr may have cross-resistance when
combined with other insecticides. Citing another case, in Pakistan, Earias vittella and
bollworm were found to have 7.7- and 74-fold resistance to chlorfenapyr, respectively.
As chlorfenapyr was not commercially available in Pakistan at the time of the study,
the researchers attributed the high resistance to chlorfenapyr to its cross-resistance with
permethrin [57,59]. Another study showed that in Belgium, T. urticae (MR-VL), a strain
with extremely high resistance to bifenthrin, dicofol, and dimethoate, had a 154-fold cross-
resistance after the use of chlorfenapyr [60]. According to these reports, the resistance
of pests and mites to chlorfenapyr is mostly due to cross-resistance with conventional
insecticides. However, there was no target-insensitive cross-resistance found between
chlorfenapyr and conventional insecticides. Guessan found that an Anopheles gambiae
multi-resistant strain with kdr genes (for resistance to pyrethroids and DDT), Rdl genes
(for resistance to dieldrin), and Ace-lR genes (for acetylcholinesterase insensitivity) has no
cross-resistance to chlorfenapyr [61].

The resistance of pests or mites to chlorfenapyr is closely related to detoxification
metabolizing enzymes. Insect detoxification enzymes are a kind of heterogeneous en-
zyme that metabolizes large amounts of endogenous or exogenous substrates, allowing
insects to survive by rapidly responding to drug stresses. Multifunctional oxidase (MFO)
is an important kind of oxidative metabolism enzyme in insects that plays a major role
in the oxidative metabolism of exogenous and endogenous compounds, including in-
secticides. Its content and activity are closely related to insects’ adaptation, resistance,
and antimicrobial resistance. T. urticae’s resistance to chlorfenapyr is associated with the
increasing activity of esterases and P450 monooxygenases and the reducing activity of
the peroxidation reaction [59,77]. For example, the enhanced esterase activity in the boll-
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worm is a major mechanism in its high resistance to pyrethroids and cross-resistance to
chlorfenapyr [77]. The MFO of Choristoneura rosaceana and T. urticae are correlated to the
resistance to chlorfenapyr [78]. Treated with an MFO or glutathione-S-transferase inhibitor
improves these pests’ sensitiveness to cypermethrin and chlorfenapyr.

6. Environmental Toxicology of Chlorfenapyr

Studies have shown that chlorfenapyr has a strong binding force with soil particles, as
well as low water solubility and volatility. Chlorfenapyr degrades slowly in soil, sediment,
and water, with an average half-life of 1.0 year, 1.1 years, and 0.8 years, respectively [79].
In the past few years, chlorfenapyr was recommended for use on rice to control resistant
insects. Accordingly, chlorfenapyr might be released into aquatic environments more
easily through spray drift or surface runoff after rainfalls. Chlorfenapyr was detected
in northwest Mississippi, with sediment concentrations of up to 2.03 µg/L [80]. In light
of the popularity of chlorfenapyr, the potential risks it causes to the environment and
non-target organisms have attracted researchers’ attention. The toxic effects of chlorfenapyr
have been reported in ducks, fish, silkworm, and mice. It has moderate oral toxicity
(LD50 = 662 mg/kg bw for mouse by mouth) and low transdermal toxicity in mammals
(LD50 > 2000 mg/kg bw for rabbit by skin). However, aquatic organisms, birds, and
bees are sensitive to chlorfenapyr [81]. For explanatory purposes, the chlorfenapyr used
against Japanese carp resulted in an LC50 = 0.5 µg/L; in rainbow trout, LC50 = 7.4 µg/L; in
earthworm, LD50 = 22 mg/kg; in quail, LD50 = 34 mg/kg; in wild duck, LD50 = 10 mg/kg;
in honey bee, LD50 = 0.2 µg each [82] (Figure 11).
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Consequently, it is vital to re-evaluate the toxic effects and explore the mechanism of
action of chlorfenapyr on non-target organisms. As seen in Table 3, Chen found that chlor-
fenapyr has high bioaccumulation in zebrafish, with bioaccumulation factors of 864.6 and
1321.9 after 21 days of exposure to 1.0 and 10 µg/L of chlorfenapyr, respectively. Further-
more, chlorfenapyr chronic exposure caused oxidative damage, apoptosis, and immune
disorders in zebrafish liver [80]. It also altered the levels of endogenous metabolites in the
liver and brain. As for humans, a few fatal toxicity cases of chlorfenapyr have been reported.
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The characteristic features of chlorfenapyr intoxication are high fever and rhabdomyol-
ysis, which gradually worsen until death [83]. Studies have shown that chlorfenapyr
ingestion causes damage to high-energy organs, such as the brain, kidney, muscles, and
heart. Chlorfenapyr also induces delayed injury, such as Leigh’s disease or mitochondrial
neurogastrointestinal encephalopathy, and ultimately results in death [84,85]. Considering
the widespread use of chlorfenapyr, non-target organisms, particularly humans, may face
potential threats to their health. Ren reported that chlorfenapyr induced toxicity in human
hepatocytes (HepG2) and induced cellular mitochondrial damage associated with reactive
oxygen species accumulation and calcium overload. In addition, DNA damage and cell
cycle arrest were detected in cells treated with chlorfenapyr [67]. Although chlorfenapyr
is a promising insecticide, due to its high environmental persistence and potential toxic
effects on non-target organisms, chlorfenapyr has been banned or its use has been limited
in some countries, such as Europe and the United States [25].

Table 3. Toxicity and toxicology of chlorfenapyr on non-target organisms.

Classification Species Main Results

Mammal

Rattus norvegicus or
Mus muscylus

Chlorfenapyr can seriously damage the DNA of peripheral blood lymphocytes in mice [83].
Chlorfenapyr has strong genotoxicity. Chlorfenapyr can induce DNA breakage damage in
spleen, liver, and kidney cells of mice, of which kidney cells are the most sensitive [84].
Chlorfenapyr can cause liver damage, and its sub-chronic maximal effect is
25 mg/(kg. d) by mouth [85].
Chlorfenapyr can increase external, visceral, and skeletal malformations and alter the
tissue ultrastructure [86].
Chlorfenapyr has potential genotoxic effects on Chinese hamster ovary (CHOK1) cells,
causing chromosome aberrations, micronucleus induction, and DNA strand
breakage [87].

Canis lupus familiaris

Severe hyperthermia, acute progressive asthma, ataxia, and restlessness occurred after
the ingestion of chlorfenapyr [88].
Acute asthma, vomiting, and subsequent pelvic limb stiffness occurs after the ingestion
of chlorfenapyr. Finally, chlorfenapyr leads to collapse and rapid death within
60 to 90 min after these initial clinical symptoms [89].

Homo sapiens

The main characteristics of the fatal cases caused by chlorfenapyr poisoning are
excessive sweating, renal failure, striated muscle tissue, and fever. Mitochondrial
dysfunction is an important component of toxic effects [89].
The latency period of chlorfenapyr poisoning with delayed toxicity and neurological
complications occurred suddenly on or after the 7th day, and death occurred
within 24 h [90,91].
Chlorfenapyr induces reversible toxic leukoencephalopathy. Although there are
survival cases of low-dose poisoning, paraplegia is still caused by the main symptoms
of the disease [92,93].

Non mammalian

Danio rerio

The acute toxicity of 95% chlorfenapyr against zebrafish is high, with an LC50 value of
0.015 mg/L for 96 h [94].
After treatment with chlorfenapyr at a concentration of 0.2 µg/L and 2 µg/L for 8 days,
the bio-enrichment coefficients (BCF8d) of chlorfenapyr in zebrafish were 1211.6 and
1549.7 [94], respectively.
Chlorfenapyr induces dose-dependent oxidative damage in the liver of zebrafish [80].

Bombyx mori

Chlorfenapyr demonstrates certain chronic cumulative toxicity in silkworms, and has
an obvious influence on a silkworm’s fecundity [95].
Chlorfenapyr causes the death of third-instar larvae by blocking molting [96].
The acute toxicity of 240 g/L of chlorfenapyr against third-instar larvae is low. The
toxicity was enhanced as continuous drug addition continued, which was slower and
showed a cumulative effect [97].

Anas platyrhynchos

Chlorfenapyr causes metabolic and gastrointestinal disorders, with black contents in
the stomach and intestines in ducks [98].
In ducks, 5 mg/L of chlorfenapyr suppresses their appetite and weakens their foraging
ability, which finally leads to death [98].

Misgurnus
anguillicaudatus or
Monopterus albus

Chlorfenapyr has minor acute toxicity against mud eels, with an LC50 value (500 <
LC50 < 10 000 mg/L) for 2 d or 4 d [99].
Chlorfenapyr has minor acute toxicity against loaches, with an LC50 value (500 < LC50
< 10 000 mg/L) for 2 d. However, it has medium acute toxicity against loaches, with an
LC50 value (100 < LC50 < 500 mg/L) for 4 d [99].
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7. Conclusions

Chlorfenapyr and its derivatives, due to their excellent activity, wide insecticidal
spectrum, and unique mode of action, have become commonly used as insecticides world-
wide. The discovery and development of chlorfenapyr is a typical successful example of
creating new insecticide lead compounds based on the design and modification of natural
products. It can also act as a reference for the development of more new insecticides in the
future. However, challenges and limits still exist, such as the resistance, residual toxicity to
non-target organisms and in-depth mechanism exploration. Nevertheless, recent advances
will lead to a solution for these issues, and will promote the development and reasonable
application of chlorfenapyr for pest management.
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